This data set contains five-minute resolution surface meteorological data in National Center for Atmospheric Research/Earth Observing Laboratory (NCAR/EOL) Quality Control (QC) format from the Weather Station on Wheels for the Terrain-induced Rotor Experiment (T-REX).
This data set contains surface meteorological data from the Weather Station on Wheels (WOW), an instrumented vehicle deployed during the T-REX project. WOW measured horizontal wind direction and speed, pressure, temperature and dew point, radiation and position while driving along different road legs in Owens Valley. There is one mobile WOW station include in this data set. The WOW station was not included in the Horizontal Quality Control process because it is a mobile station.
The WOW collected data every 1 second. The five minute record for the T-REX 2006 Five Minute Weather Station on Wheels (WOW) Surface Meteorological Data is the nearest record to the nominal five minute record up to 10 seconds before the nominal time followed by up to 5 seconds after the nominal time.
Instrumentation
Measurements from the following instrumentation are included in this T-REX 5-minute surface data set.
The University of Innsbruck Weather Station on Wheels (WOW) Five Minute QCF observation data contains 10 metadata parameters and 38 data parameters and flags. The metadata parameters describe the station location and time at which the data were collected. The time of observation is reported both in Universal Time Coordinated (UTC) Nominal and UTC actual time. For this data set, reported nominal time and actual time are the same. Days begin at UTC 0100 and end at UTC 0000 the following day. The table below details the data parameters in each record. Several data parameters have an associated Quality Control (QC) Flag Code which are assigned by the Earth Observing Laboratory Data Management Group. For a list of possible QC Flag values see the Quality Control Section 3.0.
Parameters Units ---------- ----- Date of Observation UTC Nominal Time of Observation UTC Nominal Date of Observation UTC Actual Time of Observation UTC Actual Network Identifier Abbreviation of platform name Station Identifier Network Dependent Latitude Decimal degrees, South is negative Longitude Decimal degrees, West is negative Station Occurrence Unitless Station Elevation Meters Station Pressure, QC flag Hectopascals (mb) Reported Sea Level Pressure, QC flag Hectopascals (mb) Computed Sea Level Pressure, QC flag Hectopascals (mb) Dry Bulb Temperature, QC flag Celsius Dew Point, QC flag Celsius Wind Speed, QC flag m/s Wind Direction, QC flag Degrees Total Precipitation, QC flag mm Squall/Gust Indicator Code Value Squall/Gust Value, QC flag m/s Present Weather, QC flag Code Value Visibility, QC flag Meters Ceiling Height (first layer) Hundreds of feet Ceiling Flag (first layer), QC flag Code Value Cloud Amount (first layer), QC flag Code Value Ceiling Height (second layer) Hundreds of feet Ceiling Flag (second layer), QC flag Code Value Cloud Amount (second layer), QC flag Code Value Ceiling Height (third layer) Hundreds of feet Ceiling Flag (third layer), QC flag Code Value Cloud Amount (third layer), QC flag Code Value The list of code values for the Present Weather is too large to reproduce in this document. Refer to WMO, 1988 for a complete list of Present Weather codes. The code values for the Squall/Gust Indicator are: Code Definition ---- ---------- blank No Squall or Gust S Squall G Gust The code values for the ceiling flag Indicator are: Code Definition ---- ---------- 0 None 1 Thin 2 Clear below 12,000 feet 3 Estimated 4 Measured 5 Indefinite 6 Balloon 7 Aircraft 8 Measured/Variable 9 Clear below 6,000 feet (AUTOB) 10 Estimated / Variable 11 Indefinite / Variable 12 12-14 reserved 15 Missing The code values for the Cloud Amount Indicator are: Code Definition ---- ---------- 0 0 ( or clear) 1 1 okta or less, but not zero or 1/10 or less, but not zero 2 2 oktas or 2/10-3/10 3 3 oktas or 4/10 4 4 oktas or 5/10 5 5 oktas or 6/10 6 6 oktas or 7/10-8/10 7 7 oktas or more, but no 8 oktas or 9/10 or more, but not 10/10 8 8 oktas or 10/10 (or overcast) 9 Sky obscured by fog and/or other meteorological phenomena 10 Sky partially obscured by fog and/or other meteorological phenomena 11 Scattered 12 Broken 13 13-14 Reserved 15 Cloud cover is indiscernible for reasons other than fog or other meteorological phenomena, or observation is not made.
This data set contains five-minute observations for the T-REX domain and time period. The component data set from which this data set was compiled is available on-line in native format via the T-REX Master Table of data sets (NCAR/EOL, 2006)
Calculated Sea Level pressure is computed from station pressure, temperature, dew point, and station elevation using the formula of Wallace and Hobbs (1977).
This WOW 5-minute QCF data set does not contain any Sea Level Pressures.
The University of Innsbruck Weather Station on Wheels (WOW) Five Minute QCF Data have not been Quality Controlled.
ASOS User's Guide, 1998 , ASOS Project Office, NOAA, National Weather Service, Washington D.C., June 1998. [Available online from http://www.nws.noaa.gov/asos/aum-toc.pdf ]
ASOS User's Guide Appendices, 1998 , ASOS Project Office, NOAA, National Weather Service, Washington D.C., June 1998. [Available online from http://www.nws.noaa.gov/asos/appen.pdf ]
Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396-409.
Bolton, D., 1980: The computation of equivalent potential temperature., Mon. Wea. Rev., 108, pp 1046-1053.
Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367-374.
De Wekker, S. F. J., and C. D. Whiteman, 2006: On the time scale of nocturnal boundary layer cooling in valleys and basins and over plains. J. Appl. Meteor., 45 (6), 813-820.
NCAR/EOL ISFF, cited 2006: NCAR Integrated Surface Flux Facility at T-REX [Available online from http://www.eol.ucar.edu/rtf/projects/trex/isff/]
NCAR/EOL ISS, cited 2006: NCAR Integrated Sounding System at T-REX [Available online from http://www.eol.ucar.edu/rtf/projects/t-rex/iss/]
NCAR/EOL, cited 2006: T-REX Master Table of Datasets [ Available online from http://data.eol.ucar.edu/master_list/?project=T-REX]
Wallace, J.M., P.V. Hobbs, 1977: Atmospheric Science, Academic Press, 467 pp. World Meteorological Organization (WMO), 1988: Manual on Codes Volume I, Part B - Binary Codes. WMO, Geneva, Switzerland.
Whiteman, C. D., J. M. Hubbe, and W. J. Shaw, 2000: Evaluation of an inexpensive temperature data logger for meteorological applications. J. Atmos. Oceanic Technol., 17, 77-81.
Whiteman, C. D., S. Zhong, W. J. Shaw, J. M. Hubbe, X. Bian, and J. Mittelstadt, 2001: Cold pools in the Columbia Basin. Weather and Forecasting, 16, 432-447.
Mayr, G. J., L. Armi, S. Arnold, R. M. Banta, L. S. Darby, D. D. Durran, C. Flamant, S. Gabersek, A. Gohm, R. Mayr, S. Mobbs, L. B. Nance, I. Vergeiner, J. Vergeiner, and C. D. Whiteman, 2004: GAP flow measurements during the Mesoscale Alpine Programme. Meteorology and Atmospheric Physics, 86, no. 1-2, 99-119.
Whiteman, C. D., T. Haiden, B. Pospichal, S. Eisenbach, and R. Steinacker, 2004: Minimum temperatures, diurnal temperature ranges and temperature inversions in limestone sinkholes of different size and shape. J. Appl. Meteor., 43 (8), 1224-1236.
Whiteman, C. D., S. Eisenbach, B. Pospichal, and R. Steinacker, 2004: Comparison of vertical soundings and sidewall air temperature measurements in a small Alpine basin. J. Appl. Meteor., 43 (11), 1635-1647.