Estimates of Soil Moisture for CYs 2000 and 2001 from the
Oklahoma Mesonet
Oklahoma Climatological Survey
Norman, OK 73019
February 2002
Version 1.0
Table of Contents
The variables provided in this data delivery include quantities measured
at 4 depths (5, 25, 60,
and 75 cm below the surface). For each depth, four variables are reported,
and each variable has
a separate quality assurance flag (Q). The definitions of the variables
are provided here. More
detailed explanations of the variables and quality control flags are provided
in Section V of this
document. Users will note that when a quality control flag is equal
to 0, the data are rated
good; a value greater than zero indicates that the data are
suspect, missing, or not checked.
The variable provided for each depth is:
TR: The DeltaT reference temperature. This is the value of DeltaT (which
is the quantity
directly observed by these sensors), but normalized for individual sensor
response. After
normalization, the quantity is referred to as the DeltaT reference temperature.
MP: Matric, or soil water potential (bars)
WC: Volumetric soil water content (m3water/m3soil)
ST: Pre-heating temperature (C)
Times shown are UTC. The naming convention for the variables is such that
the first two letters
refer to the quantity (TR) and the last two numbers refer to the depth of
the measurement for that
quantity. A quality control flag (Q) is provided after each datum.
The data provided in space delimited ascii format are:
ST05, Q, TR05, Q, MP05, Q, WC05, Q, ST25, Q, TR25, Q, MP25,
Q, WC25, Q,
ST60, Q, TR60, Q, MP60, Q, WC60, Q, ST75, Q, TR75, Q, MP75,
Q, WC75, Q, TREF
"TREF" is another quality control parameter, and is used to check the other values. It is defined in the quality assurance portion of this document.
0 Good Datum has passed all QA tests 1 Suspect There is concern about accuracy of the datum 2 Warning Datum is questionable but information can be extracted 3 Failure Datum is unusable 4 Not Installed Station awaiting installation of sensor 7 Not Checked Datum not checked by QA processes 8 Never Installed This station is not intended to measure this parameter 9 Missing Data Datum is missing for this station and parameter
Another QA indictor is implied with the value used to replace missing data:
-996 | Datum is missing | |
-997 | Datum is missing due to missing calibration value | |
-998 | Datum is missing due to no instrument installed | |
-999 | Datum is missing due to QA applied |
- QA1 Range Test (TREF)
Flags STxx, FTxx, and all derived parameters calculated from STxx and FTxx.
test: -30 deg-C < TREF < 55 deg-C
flag : 0 = good
3 = failure
- QA2 Range Test (STxx)
Flags STxx and all derived parameters.
tests: -30 deg-C < STxx < 55 deg-C
flag : 0 = good
3 = failure
- QA3 Range Test (FTxx)
Flags FTxx and all derived parameters.
tests: -30 deg-C < FTxx < 55 deg-C
flag : 0 = good
3 = failure
- QA4 Range Test (TRxx)
Flags TRxx and all derived parameters.
tests: 1.1667 deg-C < TRxx < 4.0 deg-C
flag : 0 = good
3 = failure
- QA5 Freeze test (FTxx)
Flags FTxx and all derived parameters.
tests: TREF > 1 deg-C
flag : 0 = good
1 = suspect
- QA6 Freeze test (STxx)
Flags STxx and all derived parameters.
tests: STxx > 1 deg-C
flag : 0 = good
1 = suspect
- QA7 Step test (TRxx)
Flags TRxx and all derived parameters from TRxx.
Tests the change in TRxx (dTRxx) between successive values.
tests: dTRxx > 0.15 deg-C
flag : 0 = good
2 = warning
- QA8 Qualparm Test (STxx and FTxx)
The Qualparm test assigns a QA flag that was manually entered into a database by the
Mesonet Quality Assurance Manager. A Qualparm flag may result after visual inspection
of the data or the report of a problem by Mesonet technicians. Currently, the Qualparm
QA value is the maximum QA value that will be assigned to an observation. For instance,
if other QA tests would have assigned an observation as suspect (2) and the Qualparm
QA value was bad (3), the resulting final QA flag for this observation would be bad (3).
Another possible source of sensor error has been identified in Basara and Crawford (2000). This
error is identified by the rapid wetting of the 60 cm and 75 cm sensors after a precipitation event,
due to preferential flow through the (refilled) trench dug to install the sensors. A potential
problem occurred with the installation of a subsurface sensor. It typically takes time for a
refilled trench to iohealld (the term applied to the development of good contact between the
disturbed soil in the trench and the undisturbed soil in which the sensor is placed). In some soils,
it is nearly impossible to avoid the development of permanent macropores near the interface
between the disturbed and undisturbed soils. Soils whose properties are conducive to the
development of large macropores upon drying (such as those with shrink/swell clays) are most
susceptible to preferential flow problems.
The most common condition when this type of problem occurs is when a heavy precipitation
event follows an extended dry period (i.e., the soil profile is dry throughout). The data pattern
characteristic of this problem is an immediate wetting of the deeper (60 cm and 75 cm) sensors
after a heavy rain event, followed by a rapid drying of these sensors, which returns the sensor to
its pre-wetted condition. When this problem occurs, the shape of the time series of the data is an
upside-down spike (an immediate decrease followed by a rapid increase in TR). The ihnormallw
response for a recently wetted-soil is a decrease in TR, followed by a few days of level,
unchanging values, then a slow increase in TR as the soil begins to dry.
It is difficult to codify this behavior in an automated QA routine; thus, the data in this delivery
were not "filtered" to remove this preferential flow problem.
The errant deep-layer values of soil moisture have been detected following extended dry periods
in soils consisting of high silt and clay fractions (such as the Norman Mesonet site). However, in
most cases and at most sites, these measurement errors do not occur.
It should be noted that this problem is an anomaly in the standard operation of soil moisture
sensors across Oklahoma. Of over three million observations of soil moisture conditions
between 1996 and 1999, the number of observations affected by this installation error account
for less than one percent.
B) Conversion of DeltaT to DeltaT reference (TR)
This conversion requires sensor-specific coefficients which are determined based on the
maximum and minimum observed DeltaT values for each individual sensor. The maximum
DeltaT is determined in the lab by placing the sensor in a sealed container and drying the sensor
completely using a desiccant pack. The minimum DeltaT is determined after the sensor has been
installed in the field and has undergone several wetting-and-drying cycles. The minimum DeltaT
is the lowest value of DeltaT to which the sensor drops after being completely wetted.
A linear regression is used to "normalize" the response of an individual sensor to that of an
idealized reference sensor having the following maximum and minimum DeltaT (dT) values:
dTmax = 3.96 C
dTmin = 1.38 C.
The linear regression used to normalize an individual sensor's response is of the form:
TR = m * dT + b
where TR is referred to as the DeltaT reference temperature.
The regression coefficients m and b are determined by substituting the maximum and minimum
dT values for an individual sensor and for the reference sensor into the regression equation, and
solving for m and b. This results in the equations:
m = ( dTmaxref - dTminref ) / ( dTmaxsensor - dTminsensor )
or
m = ( 3.96 - 1.38 ) / (dTmaxsensor - dTminsensor )
and
b = 3.96 - m * dTmaxsensor.
Each sensor, therefore, has its own unique coefficients for normalizing its response.
Determining coefficients for each sensor results in a table of sensor-specific coefficients used to
compute the DeltaT reference (TRxx) values provided in this data set.
C) Conversion of DeltaT reference (TR) values to Soil Water Potential (MP)
The following generalized equation was applied to all DeltaT reference values (TR):
MP = - (c * exp ( a * TR))/100
where
MP = matric potential (bars)
TR = DeltaT reference ( o C)
a = 1.788
c = 0.717
The limit of sensitivity for the sensor has been determined as -0.10 bars. Values of soil water
potential (MP) between 0.00 and -0.10 bars are not accurate. Because the lower limit of
observed values of DeltaT reference is approximately 1.4 deg C, the equation for computing MP
does not return values much more moist than -0.10 bars.
D) Conversion of Soil Water Potential Values to Soil Water Content
WC = WC r + ( WC s - WC r ) / ( 1 + ( a * -MP) ^ n ) ^ ( 1 - 1 / n )
where
WC = soil water content on a volume basis (m3water/m3soil).
WC r = residual water content (m3water/m3soil).
WC s = saturated water content (m3water/m3soil).
a , n = empirical constants
MP = matric (soil-water) potential (bars).
The four coefficients, WC r , WC s , a , and n, for each depth for each site are in a table of
coefficients in Appendix A. The empirical relationship to estimate volumetric water content
(section V. D.) and the latest coefficients (Appendix A) are provided. Users may obtain an
electronic version of these coefficients by contacting Jeff Basara (jbasara@ou.edu; (405-325-1760).
This data delivery is the product of a combined effort by the soil moisture
research team and the
Mesonet team at the Oklahoma Climatological Survey (OCS).
Additional processing to compute the volumetric water content was provided by Alan Robock and Haibin Li
of the Department of Environmental Sciences of Rutgers, the State University of New Jersey and Lifeng Luo of
the Environmental Engineering and Water Resource Department of Civil and Environemental Engineering,
Princeton University. The data was reformatted, as well, to be consistent with previous OCS soil moisture data sets.
The research team consisted of Jeff Basara (University of Oklahoma/OCS),
Ron Elliott
(Oklahoma State University), Ken Fisher (private consultant), Gary McManus
(OCS), and Karen
Humes (University of Idaho). The data processing team consisted of Jessica
Thomale (OCS),
David Demko (OCS), Gary McManus (OCS), Jeff Basara (University of Oklahoma/OCS),
Renee
McPherson (OCS), Brad Illston (University of Oklahoma/OCS), and Mike Wolfinbarger
(OCS).
For questions regarding the processing of the data, particularly the conversion
of raw variables to
soil water potential or soil water content, please contact Jeff Basara (jbasara@ou.edu;
405-325-
1760) or other members of the research team.
For any question about the QA procedures applied to the operational data
processing stream, or
questions relating to the format and content of the variables delivered,
please contact Gary
McManus of the Oklahoma Climatological Survey (gmcmanus@ou.edu;
405-325-3076).
References:
Basara, J.B., and T.M. Crawford, 2000. Improved installation procedures
for deep layer soil
moisture measurements. Journal of Atmospheric and Oceanic Technology, 17,
879-884.
Brock, F.V., K.C. Crawford, R.L. Elliott, G.W. Cuperus, S.J. Stadler, H.L.
Johnson, and M.D.
Eilts, 1995. The Oklahoma Mesonet: A technical overview. Journal of Atmospheric
and
Oceanic Technology, 12, 5-19.
Humes, K.S., J.B. Basara, R.L. Elliott, D.K. Fisher, and K.C. Crawford,
2002. Validation of soil
moisture observations from the Oklahoma Mesonet. To be submitted to the
Journal of
Hydrometeorology.
Schneider, J.M., D.K. Fisher, R.L. Elliott, G.O. Brown, and C.P. Bahrmann,
2002.
Spatiotemporal Variations in Soil Water: First Results from the ARM SGP
CART Network,
Submitted to Journal of Hydrometeorology. In Review.
Starks, P. J., 1999: A general heat dissipation sensor calibration equation
and estimation of soil
water content. Soil Sci., 164, 655-661.
Appendix A: Table of coefficients for conversion to soil water content
Version 8 - May, 2001
Sites with measured bulk density:
Site Depth Texture WCr WCs - n - cm * mm/mm mm/mm 1/bar - acme 5 SL 0.189 0.519 131.413 1.646 acme 25 SCL 0.221 0.428 37.376 1.756 acme 60 SCL 0.181 0.411 1384.677 1.215 acme 75 SL 0.212 0.411 38.497 1.803 adax 5 SL 0.188 0.462 272.847 1.463 adax 25 SL 0.180 0.342 65.528 1.603 adax 60 x x x x x adax 75 x x x x x apac 5 LS 0.176 0.464 33.705 2.597 apac 25 SL 0.162 0.422 1168.364 1.260 apac 60 CL 0.159 0.397 257.715 1.168 apac 75 CL 0.207 0.389 68.662 1.340 bixb 5 SL 0.170 0.660 126.685 1.717 bixb 25 SiL 0.000 0.424 1447.533 1.099 bixb 60 L 0.180 0.386 11.851 1.970 bixb 75 SL 0.222 0.513 13.893 1.783 blac 5 SiL 0.000 0.460 98.006 1.129 blac 25 CL 0.239 0.449 11.723 1.683 blac 60 CL 0.207 0.397 25.413 1.366 blac 75 CL 0.189 0.394 34.301 1.295 bowl 5 SL 0.180 0.418 51.011 1.534 bowl 25 SL 0.201 0.418 51.368 1.532 bowl 60 CL 0.206 0.431 195.526 1.249 bowl 75 CL 0.211 0.431 116.793 1.314 brec 5 SiL 0.148 0.457 90.267 1.248 brec 25 SiCL 0.268 0.438 6.008 1.846 brec 60 SiC 0.211 0.397 10.370 1.338 brec 75 x x x x x byar 5 LS 0.167 0.445 134.245 1.766 byar 25 SCL 0.185 0.347 285.978 1.310 byar 60 SCL 0.182 0.373 2826.528 1.198 byar 75 SCL 0.187 0.309 7313.215 1.241 calv 5 SL 0.178 0.459 20.657 1.962 calv 25 L 0.172 0.392 24.244 1.773 calv 60 x x x x x calv 75 x x x x x cato 5 SiCL 0.226 0.467 11.827 1.488 cato 25 SiCL 0.180 0.467 33.982 1.213 cato 60 C 0.243 0.466 37.712 1.180 cato 75 x x x x x chan 5 SCL 0.234 0.562 764.274 1.352 chan 25 C 0.192 0.373 323.736 1.089 chan 60 C 0.164 0.435 178.366 1.103 chan 75 C 0.226 0.409 1064.987 1.132 copa 5 L 0.175 0.510 47.692 1.464 copa 25 L 0.158 0.435 168.613 1.225 copa 60 x x x x x copa 75 x x x x x elre 5 SiL 0.224 0.535 12.847 1.878 elre 25 SiL 0.000 0.493 118.331 1.127 elre 60 SiCL 0.230 0.425 8.208 1.763 elre 75 SiCL 0.182 0.390 21.185 1.283 fair 5 SiL 0.000 0.455 354.067 1.110 fair 25 SiL 0.229 0.455 9.707 1.895 fair 60 CL 0.246 0.431 14.503 1.598 fair 75 SiCL 0.163 0.443 38.142 1.179 ftcb 5 LS 0.199 0.554 122.466 1.873 ftcb 25 SCL 0.197 0.376 591.041 1.434 ftcb 60 LS-SL 0.191 0.426 33.517 2.545 ftcb 75 LS 0.179 0.419 54.178 2.321 guth 5 SL 0.193 0.453 642.443 1.319 guth 25 L 0.158 0.364 364.040 1.158 guth 60 x x x x x guth 75 x x x x x hask 5 SiL 0.178 0.454 6.983 1.678 hask 25 SiL 0.152 0.455 19.741 1.391 hask 60 SiCL 0.253 0.443 6.954 1.685 hask 75 SiC 0.281 0.455 7.424 1.771 hect 5 L 0.024 0.442 520.328 1.127 hect 25 SL 0.143 0.408 193.180 1.312 hect 60 SL 0.181 0.389 99.877 1.621 hect 75 CL 0.226 0.430 382.277 1.170 hint 5 SL 0.178 0.462 34.267 2.177 hint 25 LS 0.175 0.408 30.834 2.651 hint 60 LS 0.178 0.447 30.412 2.658 hint 75 LS 0.179 0.442 27.414 2.547 ketc 5 L 0.000 0.576 1034.369 1.115 ketc 25 CL 0.191 0.415 75.840 1.237 ketc 60 C 0.193 0.416 417.889 1.141 ketc 75 CL 0.223 0.392 850.116 1.195 king 5 L 0.192 0.511 18.481 1.926 king 25 SiL 0.000 0.469 420.103 1.118 king 60 L 0.220 0.425 14.691 1.801 king 75 L 0.225 0.403 9.025 2.029 laho 5 SiL 0.000 0.464 387.322 1.110 laho 25 CL 0.242 0.424 7.858 1.985 laho 60 SiCL 0.166 0.386 31.183 1.227 laho 75 SiCL 0.134 0.412 8.867 1.233 mare 5 SCL 0.217 0.435 48.200 1.604 mare 25 L 0.222 0.449 25.893 1.819 mare 60 SCL 0.229 0.405 32.879 1.667 mare 75 SCL 0.218 0.380 45.967 1.641 mars 5 SiL 0.217 0.438 9.689 1.848 mars 25 SiC 0.220 0.463 13.572 1.328 mars 60 SiC 0.202 0.422 11.120 1.304 mars 75 SiCL 0.172 0.381 59.897 1.184 miam 5 SiL 0.140 0.531 13.635 1.510 miam 25 SiL 0.000 0.454 13.010 1.240 miam 60 SiC 0.192 0.459 18.968 1.188 miam 75 SiC 0.061 0.428 13.273 1.129 newk 5 SiL 0.232 0.558 11.289 1.956 newk 25 SiL 0.196 0.462 22.702 1.413 newk 60 SiCL 0.236 0.414 7.164 1.749 newk 75 x x x x x norm 5 SiL 0.000 0.480 56.590 1.133 norm 25 SiC 0.213 0.421 12.533 1.311 norm 60 SiC 0.205 0.412 16.542 1.300 norm 75 SiC 0.213 0.391 15.094 1.347 nowa 5 SiL 0.126 0.457 14.805 1.349 nowa 25 SiL 0.149 0.463 16.668 1.379 nowa 60 SiCL 0.187 0.419 26.313 1.218 nowa 75 C 0.236 0.391 13.260 1.362 oilt 5 SL 0.188 0.455 56.132 1.570 oilt 25 SiL 0.164 0.374 13.581 1.296 oilt 60 L 0.143 0.409 934.606 1.181 oilt 75 x x x x x okem 5 L 0.196 0.468 13.267 2.133 okem 25 L 0.150 0.445 462.370 1.185 okem 60 x x x x x okem 75 x x x x x paul 5 SiL 0.196 0.529 12.318 1.996 paul 25 SiL 0.208 0.472 10.279 1.816 paul 60 SiL 0.196 0.445 10.589 1.551 paul 75 x x x x x perk 5 L 0.190 0.452 30.602 1.767 perk 25 L 0.191 0.438 28.672 1.701 perk 60 L 0.196 0.422 74.670 1.303 perk 75 L 0.177 0.405 125.457 1.290 pryo2 5 SiL 0.140 0.467 8.341 1.513 pryo2 25 SiL 0.089 0.453 17.717 1.269 pryo2 60 x x x x x pryo2 75 x x x x x putn 5 L 0.201 0.442 14.543 1.932 putn 25 SiL 0.161 0.455 256.148 1.230 putn 60 SiL 0.232 0.431 8.604 2.022 putn 75 CL 0.238 0.431 11.954 1.836 redr 5 L 0.000 0.525 770.016 1.109 redr 25 C 0.197 0.452 120.224 1.165 redr 60 C 0.193 0.411 38.766 1.150 redr 75 x x x x x shaw 5 SiL 0.199 0.472 9.727 1.827 shaw 25 SiL 0.193 0.418 7.164 1.846 shaw 60 SiCL 0.144 0.390 20.915 1.175 shaw 75 x x x x x skia 5 SL 0.153 0.660 346.353 1.417 skia 25 SL 0.165 0.435 861.890 1.308 skia 60 SCL 0.197 0.420 1057.671 1.189 skia 75 SL 0.177 0.312 88.866 1.600 stil 5 SiCL 0.000 0.560 28.148 1.132 stil 25 L 0.217 0.456 19.104 1.636 stil 60 L 0.235 0.451 14.885 1.787 stil 75 L-CL 0.234 0.435 11.296 1.894 stua 5 LS 0.160 0.407 106.945 1.646 stua 25 SL 0.166 0.417 104.341 1.572 stua 60 LS 0.165 0.377 254.532 1.530 stua 75 SL 0.185 0.393 332.329 1.476 vini 5 SiL 0.184 0.495 12.981 1.668 vini 25 SiL 0.149 0.459 27.453 1.347 vini 60 SiCL 0.191 0.435 20.909 1.290 vini 75 x x x x x wyno 5 SiL 0.178 0.419 19.283 1.385 wyno 25 CL 0.230 0.439 11.954 1.643 wyno 60 x x x x x wyno 75 x x x x x - - - - - - - - Sites with estimated bulk density: Site Depth Texture WCr WCs - n cm * mm/mm mm/mm 1/bar altu 5 CL 0.233 0.454 37.179 1.343 altu 25 CL 0.267 0.455 14.652 1.729 altu 60 CL 0.246 0.431 25.271 1.389 altu 75 CL 0.271 0.431 13.179 1.723 alv2 5 CL 0.236 0.455 44.890 1.334 alv2 25 CL 0.237 0.455 78.598 1.216 alv2 60 x x x x x alv2 75 x x x x x antl 5 LS 0.142 0.407 3103.902 1.260 antl 25 LS 0.153 0.407 1339.638 1.338 antl 60 LS 0.118 0.383 16491.185 1.152 antl 75 LS 0.110 0.383 32782.609 1.135 ardm 5 L 0.209 0.440 29.441 1.488 ardm 25 C 0.181 0.490 55.583 1.151 ardm 60 C 0.228 0.466 25.965 1.230 ardm 75 C 0.023 0.466 68.781 1.079 arne 5 SL 0.188 0.419 25.859 1.785 arne 25 L 0.212 0.442 18.226 1.822 arne 60 L 0.188 0.417 44.093 1.397 arne 75 L 0.210 0.416 34.930 1.570 bbow 5 L 0.046 0.442 74.192 1.159 bbow 25 L 0.033 0.442 48.599 1.151 bbow 60 SiL 0.025 0.430 24.297 1.139 bbow 75 SiL 0.022 0.431 17.783 1.132 beav 5 L 0.209 0.442 25.547 1.796 beav 25 CL 0.246 0.455 16.076 1.803 beav 60 L 0.182 0.419 4026.084 1.161 beav 75 L 0.208 0.417 134.004 1.343 bess 5 SiL 0.169 0.445 11.746 1.608 bess 25 SiL 0.157 0.24 24.598 1.556 bess 60 x x x x x bess 75 x x x x x bois 5 CL 0.219 0.455 138.507 1.234 bois 25 CL 0.130 0.455 171.663 1.117 bois 60 SiCL 0.206 0.443 12.850 1.285 bois 75 SiCL 0.198 0.443 12.989 1.288 bris 5 SL 0.163 0.418 68.043 1.612 bris 25 SL 0.178 0.419 41.487 1.654 bris 60 L 0.142 0.419 66.595 1.272 bris 75 x x x x x buff 5 L 0.191 0.443 20.017 1.871 buff 25 SiL 0.218 0.455 10.392 2.032 buff 60 CL 0.235 0.431 11.563 1.797 buff 75 CL 0.245 0.431 11.564 1.762 burn 5 LS 0.165 0.399 95.350 1.782 burn 25 SL 0.171 0.412 76.916 1.809 burn 60 LS 0.167 0.378 60.599 1.852 burn 75 LS 0.166 0.376 76.211 1.881 butl 5 SiL 0.165 0.445 79.614 1.217 butl 25 SiCL 0.221 0.467 11.344 1.399 butl 60 SiCL 0.215 0.443 7.245 1.326 butl 75 SiCL 0.191 0.443 19.555 1.278 cama 5 L 0.177 0.441 21.78 1.87 cama 25 SL 0.172 0.419 20.127 1.875 cama 60 x x x x x cama 75 x x x x x cent 5 SL 0.181 0.419 31.996 1.706 cent 25 L 0.151 0.443 452.779 1.213 cent 60 CL 0.184 0.431 377.203 1.162 cent 75 CL 0.192 0.431 86.417 1.249 cher 5 L 0.186 0.443 16.449 1.891 cher 25 L 0.148 0.443 1293.875 1.209 cher 60 L 0.183 0.419 25.094 1.757 cher 75 L 0.181 0.419 16.856 1.800 chey 5 SL 0.201 0.419 38.474 1.643 chey 25 SL 0.191 0.419 30.910 1.785 chey 60 L 0.169 0.419 88.710 1.224 chey 75 L 0.192 0.419 55.930 1.312 clou 5 SiL 0.141 0.447 21.917 1.528 clou 25 SiL 0.171 0.452 20.902 1.461 clou 60 x x x x x clou 75 x x x x x cook 5 SiL 0 0.44 11.974 1.255 cook 25 x x x x x cook 60 x x x x x cook 75 x x x x x dura 5 SL 0.189 0.418 46.070 1.564 dura 25 CL 0.177 0.455 729.180 1.174 dura 60 C 0.263 0.467 46.929 1.303 dura 75 C 0.251 0.467 100.797 1.225 eric 5 LS 0.176 0.407 47.527 2.139 eric 25 LS 0.177 0.406 52.604 2.055 eric 60 SL 0.180 0.395 50.492 1.781 eric 75 SL 0.191 0.395 31.379 1.861 eufa 5 L 0.178 0.443 13.689 2.054 eufa 25 L 0.234 0.442 10.314 2.082 eufa 60 C 0.240 0.467 29.250 1.328 eufa 75 SiC 0.000 0.455 3.039 1.180 fora 5 SL 0.194 0.419 42.915 1.594 fora 25 SL 0.202 0.419 60.114 1.542 fora 60 SCL 0.223 0.429 38.309 1.709 fora 75 SCL 0.193 0.428 616.921 1.280 free 5 SiL 0 0.455 159.885 1.131 free 25 SiL 0 0.455 127.882 1.129 free 60 x x x x x free 75 x x x x x good 5 L 0.210 0.441 48.048 1.426 good 25 L 0.212 0.443 47.060 1.372 good 60 CL 0.199 0.431 49.771 1.279 good 75 CL 0.206 0.431 498.650 1.170 gra2 5 CL 0.233 0.455 12.079 1.584 gra2 25 SiCL 0.000 0.467 79.299 1.093 gra2 60 x x x x x gra2 75 x x x x x hoba 5 SiCL 0.000 0.467 7.723 2.022 hoba 25 SiC 0.237 0.479 8.416 1.282 hoba 60 SiC 0.195 0.455 83.300 1.641 hoba 75 SiC 0.175 0.455 46.705 1.175 holl 5 SiC 0.000 0.478 219.279 1.076 holl 25 C 0.207 0.490 123.181 1.146 holl 60 SiC 0.196 0.454 15.380 1.190 holl 75 C 0.006 0.464 181.149 1.057 hook 5 L 0.202 0.443 20.973 1.742 hook 25 L 0.196 0.443 48.54 1.422 hook 60 x x x x x hook 75 x x x x x hugo 5 L 0.179 0.442 17.74 1.792 hugo 25 L 0.125 0.441 197.674 1.18 hugo 60 x x x x x hugo 75 x x x x x idab 5 SiL 0.2 0.455 4.225 1.758 idab 25 SiCL 0.228 0.467 6.676 1.38 idab 60 x x x x x idab 75 x x x x x jayx 5 SiL 0.164 0.455 6.017 1.591 jayx 25 SiL 0.135 0.454 5.935 1.432 jayx 60 x x x x x jayx 75 x x x x x kent 5 L 0.105 0.436 1489.671 1.139 kent 25 L 0.168 0.436 1337.706 1.151 kent 60 x x x x x kent 75 x x x x x lane 5 SL 0.158 0.419 47.399 1.555 lane 25 SL 0.163 0.419 26.217 1.575 lane 60 SL 0.157 0.393 30.101 1.514 lane 75 L 0.176 0.419 29.672 1.514 mang 5 S 0.162 0.406 48.471 3.563 mang 25 S 0.168 0.406 41.177 3.767 mang 60 SCL 0.189 0.431 3527.601 1.215 mang 75 C 0.247 0.467 79.726 1.277 mayr 5 SL 0.195 0.419 25.861 1.774 mayr 25 L 0.233 0.443 19.910 1.877 mayr 60 SiCL 0.207 0.431 28.542 1.247 mayr 75 CL 0.207 0.431 21.332 1.282 mcal 5 LS 0.155 0.407 90.776 1.592 mcal 25 SCL 0.237 0.455 60.887 1.529 mcal 60 x x x x x mcal 75 x x x x x medi2 5 SL 0.127 0.415 130.341 1.248 medi2 25 SiL 0.157 0.240 24.598 1.556 medi2 60 x x x x x medi2 75 x x x x x minc 5 SiL 0.208 0.453 8.71 1.902 minc 25 SiL 0.199 0.455 7.73 1.78 minc 60 x x x x x minc 75 x x x x x okmu 5 L 0.185 0.441 13.781 1.926 okmu 25 SiL 0.188 0.451 11.29 1.701 okmu 60 x x x x x okmu 75 x x x x x pawn 5 SiCL 0.147 0.467 69.942 1.159 pawn 25 SiCL 0.184 0.464 41.754 1.188 pawn 60 CL 0.000 0.428 95.936 1.091 pawn 75 SiCL 0.000 0.442 34.878 1.087 port 5 SL 0.164 0.417 62.253 1.508 port 25 SL 0.179 0.418 57.974 1.538 port 60 SL 0.181 0.394 80.581 1.44 port 75 x x x x x pres 5 SL 0.190 0.418 30.602 1.767 pres 25 SL 0.194 0.418 29.572 1.914 pres 60 SL 0.184 0.391 74.609 1.704 pres 75 SL 0.177 0.391 88.643 1.731 ring 5 SL 0.172 0.418 32.25 1.888 ring 25 SCL 0.201 0.455 115.926 1.341 ring 60 x x x x x ring 75 x x x x x seil 5 L 0.209 0.442 20.924 1.795 seil 25 L 0.214 0.443 31.382 1.601 seil 60 SL 0.199 0.395 32.104 1.779 seil 75 SL 0.199 0.394 31.228 1.710 skia2 60 SL 0.207 0.395 47.771 1.787 slap 5 S 0.171 0.407 322.69 1.758 slap 25 SL 0.172 0.419 803.637 1.203 slap 60 x x x x x slap 75 x x x x x spen 5 SL 0.180 0.416 100.928 1.736 spen 25 SCL 0.222 0.451 863.802 1.334 spen 60 x x x x x spen 75 x x x x x stig 5 SiL 0.165 0.455 7.831 1.857 stig 25 SiL 0.173 0.455 8.199 1.836 stig 60 SiL 0.164 0.431 8.621 1.638 stig 75 x x x x x tahl 5 SiL 0.163 0.436 8.516 1.862 tahl 25 x x x x x tahl 60 x x x x x tahl 75 x x x x x tali 5 C 0.164 0.491 67.008 1.098 tali 25 C 0.154 0.49 59.135 1.097 tali 60 x x x x x tali 75 x x x x x tipt 5 SL 0.195 0.418 25.562 1.878 tipt 25 SL 0.194 0.418 25.217 1.888 tipt 60 SL 0.199 0.394 36.384 1.747 tipt 75 SL 0.186 0.395 1675.771 1.279 tish 5 SiL 0.127 0.455 18.808 1.408 tish 25 SiL 0.143 0.455 20.443 1.346 tish 60 x x x x x tish 75 x x x x x vano 5 SL 0.198 0.418 30.494 1.808 vano 25 L 0.183 0.443 636.554 1.212 vano 60 C 0.261 0.467 92.159 1.25 vano 75 C 0.217 0.466 1350.125 1.136 walt 5 SiL 0.221 0.455 6.260 2.244 walt 25 C 0.205 0.491 54.623 1.184 walt 60 C 0.183 0.467 121.985 1.150 walt 75 CL 0.201 0.430 41.815 1.250 wash 5 L 0.189 0.443 31.385 1.624 wash 25 SCL 0.23 0.454 36.432 1.764 wash 60 SL 0.196 0.395 36.608 1.729 wash 75 x x x x x wato 5 L 0.195 0.443 18.797 1.802 wato 25 L 0.213 0.443 14.489 1.860 wato 60 L 0.141 0.419 37.727 1.231 wato 75 L 0.147 0.419 68.541 1.208 waur 5 SL 0.184 0.419 81.654 1.712 waur 25 SL 0.194 0.419 107.525 1.617 waur 60 SL 0.195 0.395 83.300 1.641 waur 75 SL 0.191 0.395 89.635 1.605 weat 5 SiL 0.176 0.446 14.607 1.867 weat 25 L 0.183 0.438 18.742 1.74 weat 60 x x x x x weat 75 x x x x x west 5 SiL 0.000 0.449 53.026 1.158 west 25 SiCL 0.160 0.462 13.238 1.269 west 60 L 0.052 0.429 39.546 1.152 west 75 x x x x x wilb 5 SiL 0.105 0.453 22.208 1.297 wilb 25 SiL 0.138 0.45 25.27 1.358 wilb 60 x x x x x wilb 75 x x x x x wist 5 SiL 0.193 0.454 10.206 1.591 wist 25 SiL 0.198 0.454 10.593 1.544 wist 60 SiL 0.232 0.424 8.604 2.022 wist 75 SiC 0.127 0.454 26.026 1.147 wood 5 SL 0.194 0.419 27.379 1.907 wood 25 L 0.203 0.443 33.506 1.751 wood 60 L 0.142 0.419 1016.867 1.185 wood 75 L 0.145 0.419 1310.176 1.185 Note:
Textual Classifications Codes:
C clay CL clay loam L loam LS loamy sandy S sand SC sandy clay SL sandy loam SCL sandy clay loam Si silt SiL silt loam SiC silty clay SiCL sitly clay loam
Appendix B: Diagram and description of sensor operation
The sensor is a Model 229L Matric Potential Sensor, manufactured by Campbell Scientific, Inc.
of Logan, Utah. The sensor is designed to provide estimates of matric (or soil-water) potential,
and operates on a heat dissipation principle.
The sensor consists of a ceramic matrix, into which a hypodermic needle has been inserted.
Inside the hypodermic needle are a thermocouple junction and a resistance heater. A rigid plastic
body encases the body of the hypodermic needle and firmly attaches the ceramic matrix, the
thermocouple and heater wiring. A sketch of the 229L sensor is shown below.
The process by which temperature and estimates of soil-water potential and soil-water content
are calculated consists of several steps:
- Measure the initial sensor/soil temperature (ST) with the thermocouple
- Introduce a heat pulse into the sensor by running an electrical current through the
resistance heater
- Turn off the heating current and measure the sensor temperature (FT)
- Calculate the sensor temperature rise (DeltaT) by subtracting the initial temperature, before
heating (ST), from the temperature after heating (FT)
- Convert the sensor temperature rise to that of a "reference" sensor (TR)
- Estimate the soil-water potential (MP) as a function of "reference" sensor response (TR)
using the sensor calibration function
- Estimate the soil-water content (WC) as a function of soil-water potential (MP) using a soil-
water retention curve.