Plains Elevated Convection at Night (PECAN)

10 Meter Flux Tower

A Component of

Millersville University Atmospheric Research and Aerostat Facility

(MARAF)

Author:

Dr. Richard Clark 717-871-7434 richard.clark@millersville.edu

1.0 Data Set Overview:

This dataset contains data from the Millersville University Flux Tower located at 38.9405°N, 99.5661°W at 646 meters above sea level from 1 June 2015 to 15 July 2015.

2.0 Daily Reports:

2.0 Daily Reports.				
Nothing Unusual to Report				
Nothing Unusual to Report				
Nothing Unusual to Report				
Nothing Unusual to Report				
Nothing Unusual to Report				
Nothing Unusual to Report				
Nothing Unusual to Report				
Report: Data Loss 20:16:46.6" - 22:14:59.9"				
Report: New Datalogger Program Was Installed				
Data Loss 17:42:52.4" - 18:00:24.9"				
Nothing Unusual to Report				
Nothing Unusual to Report				
Nothing Unusual to Report				
Report: Data Loss 00:07:49.4" - 00:31:59.9"				
Report: Data Loss 00:08:33" - 00:31:10.4"				
Report: Data Loss 00:02:21.5" - 00:27:52.9"				
Nothing Unusual to Report				
Nothing Unusual to Report				
Nothing Unusual to Report				
Nothing Unusual to Report				
Nothing Unusual to Report				
Nothing Unusual to Report				
Nothing Unusual to Report				
Nothing Unusual to Report				
Report: Data Loss 01:56:17.3" - 02:11:20.2"				
Nothing Unusual to Report				
Nothing Unusual to Report				

27 JUNE 2015	Nothing Unusual to Report
28 JUNE 2015	Nothing Unusual to Report
29 JUNE 2015	Nothing Unusual to Report
30 JUNE 2015	Report: Barometric Pressure Transducer Replaced;
	Data Loss 00:00:00" - 01:07:40.1" 19:16:48.8" - 19:55:59.9"
1 JULY 2015	Nothing Unusual to Report
2 JULY 2015	Nothing Unusual to Report
3 JULY 2015	Nothing Unusual to Report
4 JULY 2015	Nothing Unusual to Report
5 JULY 2015	Nothing Unusual to Report
6 JULY 2015	Nothing Unusual to Report
7 JULY 2015	Nothing Unusual to Report
8 JULY 2015	Nothing Unusual to Report
9 JULY 2015	Nothing Unusual to Report
10 JULY 2015	Nothing Unusual to Report
11 JULY 2015	Nothing Unusual to Report
12 JULY 2015	Report: Data Loss 08:51:42" - 23:59:59.9"
13 JULY 2015	Nothing Unusual to Report
14 JULY 2015	Nothing Unusual to Report
15 JULY 2015	Report: Power Was Lost; Data Loss 07:47:00"-23:59:59.9"

3.0 Instrument Description:

The Flux Tower is 30 feet or approximately 9.14 meters in height

The Flux Tower contained the following instruments:

- 1) One CSAT-3 3D Sonic Anemometer located at 8.5 meters
- 2) One CSAT-3 3D Sonic Anemometer located at 2 meters
- 3) One LI-7500 LICOR Carbon Dioxide and Water Vapor Sensor located at 8.5 meters
- 4) One Q7.1 Net Radiometer located at 2 meters
- 5) One HMP45C Temperature and Humidity Sensor located at 2 meters
- 6) One CR5000 Datalogger located at 2 meters
- 7) One CS100 Barometric Pressure Transducer (ranging from 600mb-1100mb) located inside the CR5000 Datalogger Box
- 8) One Lightning Rod located at 10 meters
- 9) Two Solar Panels as a back-up energy source located next to the flux tower

4.0 Data Collection and Processing:

The data was collected at a frequency of 10 Hz and averaged over 30 minutes through 9 June 2015. We downloaded a new data collection program on 9 June 2015 which averaged the 10 Hz data in one minute intervals through 15 July 2015.

Sensor	Manufacturer	Model	Parameter	Rate
3-D Sonic Anemometer	Campbell Scientific	CSAT3	$U,v,w-(m/s)$ $Tvs-(^{\circ}C)$	60 sps
Open-Path Gas Analyzer	LI-COR	LI-7500	H2O/CO2 Concentration	20 sps
Temperature and RH Sensor	Campbell Scientific	HMP45C	Temperature, RH	
Net Radiometer	Micromet Systems	Q*7	Net Radiation – W/m ²	1 Hz
Barometric Pressure Transducer	Setra	278	Pressure - mb	

5.0 Measured parameters:

Hs Sensible heat flux using sonic temperature [W / m^2]

Fc_wpl Carbon dioxide (LI-7500) flux, with Webb et al. term [mg / {m^2 s}]

LE_wpl Latent heat (LI-7500) flux, with Webb et al. term [W / m^2]

Hc Sensible heat calculated from Hs and LE wpl [W / m^2]

tau Momentum flux [kg / {m s^2}]

u_star Friction velocity [m / s]

Ts mean Average sonic temperature [C]

stdev_Ts Standard deviation of sonic temperature [C]

cov_Ts_Ux Covariance of sonic temperature and horizontal wind (x-axis) [m C / s] cov_Ts_Uy Covariance of sonic temperature and horizontal wind (y-axis) [m C / s]

cov_Ts_Uz Covariance of sonic temperature and vertical wind [m C / s]
CO2 mean Average carbon dioxide (LI-7500) density [mg / m^3]

stdev_CO2 Standard deviation of carbon dioxide (LI-7500) density [mg / m^3]

cov CO2 Ux Covariance of carbon dioxide (LI-7500) density and horizontal wind (x-axis)

 $[mg / \{m^2 s\}]$

cov_CO2_Uy Covariance of carbon dioxide (LI-7500) density and horizontal wind (y-axis)

 $[mg / \{m^2 s\}]$

cov_CO2_Uz Covariance of carbon dioxide (LI-7500) density and vertical wind [mg / {m^2 s}]

H2O_Avg Average water vapor (LI-7500) density [g / m^3] stdev_H2O Standard Deviation of water vapor (LI-7500) density [g / m^3]

cov_H2O_Ux Covariance of water vapor (LI-7500) density and horizontal wind (x-axis)

 $[g / \{m^2 s\}]$

cov_H2O_Uy Covariance of water vapor (LI-7500) density and horizontal wind (y-axis)

 $[g / \{m^2 s\}]$

cov H2O Uz Covariance of water vapor (LI-7500) density and vertical wind [g / {m^2 s}]

Ux_Avg Average horizontal wind (x-axis) [m / s]

stdev_Ux Standard deviation of horizontal wind (x-axis) [m / s] cov_Ux_Ux Variance of the horizontal wind (x-axis) [(m / s)^2]

cov_Ux_Uy Covariance of horizontal winds (x-axis and y-axis) [(m / s)^2] cov_Ux_Uz Covariance of horizontal wind (x-axis) and vertical wind [(m / s)^2]

Uy_Avg Average horizontal wind (y-axis) [m / s]

stdev_Uy Standard deviation of horizontal wind (y-axis) [m / s] cov_Uy_Uy Variance of the horizontal wind (y-axis) [(m / s)^2]

cov Uy Uz Covariance of horizontal wind (y-axis) and vertical wind [(m / s)^2]

Uz_Avg Average vertical wind [m / s]

stdev_Uz Standard deviation of vertical wind [m / s] cov_Uz_Uz Variance of the vertical wind [(m / s)^2] press_mean Average barometric pressure (LI-7500) [kPa] t_hmp_mean Average temperature from HMP45C [C]

H2O_hmp_mean Average water vapor density from HMP45C [g / m^3]

rh_hmp_mean Average relative humidity [percent] rho_a_mean Average air density [kg / m^3]

wnd_dir_compass Resultant wind direction using compass coordinate system [degrees]

wnd_dir_csat3 Resultant wind direction using the CSAT3's right handed coordinate system

[degrees]

Horizontal wind speed [m / s] wnd spd

rslt wnd spd Resultant horizontal wind speed [m / s] std wnd dir Standard deviation of wind direction [degrees]

Fc_irga Carbon dioxide (LI-7500) flux without the Webb et al. term [mg / {m^2 s}]

Latent heat (LI-7500) flux without the Webb et al. term [W / m^2] LE_irga

CO2_wpl_LE Carbon dioxide (LI-7500) Webb et al. term due to latent heat flux [mg / {m^2 s}] CO2_wpl_H

Carbon dioxide (LI-7500) Webb et al. term due to (sonic) sensible heat flux

 $[mg / \{m^2 s\}]$

H2O wpl LE Water vapor (LI-7500) Webb et al. term due to latent heat flux [W / m^2] H2O_wpl_H Water vapor (LI-7500) Webb et al. term due to (sonic) sensible heat flux

[W / m^2]

n Tot Number of samples in the statistics (fluxes, variances, means, etc.) [samples]

csat warnings Number of times any CSAT3 warning flag was set high [samples] Number of times any LI-7500 warning flag was set high [samples] irga_warnings del_T_f_Tot Number of delta temperature warnings from CSAT3 [samples] sig_lck_f_Tot Number of poor signal lock warnings from CSAT3 [samples] amp h f Tot Number of amplitude high warnings from CSAT3 [samples] amp_l_f_Tot Number of amplitude low warnings from CSAT3 [samples] chopper f Tot Number of chopper warnings from LI-7500 [samples] Number of chopper detector from LI-7500 [samples] detector f Tot

pll f Tot Number of chopper pll from LI-7500 [samples]

sync_f_Tot Number of chopper synchronization warnings from LI-7500 [samples]

agc_Avg Average AGC from LI-7500 [unitless]

Number times the LI-7500 AGC exceeded a fixed user defined threshold agc excded Tot

[samples]

Average datalogger panel temperature [C] panel_temp_Avg

batt_volt_Avg Average battery voltage [V] Rn meas Avg Average Rn measured [W/m^2] Average Rn corrected [W/m^2] Rn_corr_Avg Barometric pressure [mbar] press

Additional Parameters:

Specific Humidity The average water vapor density (H2O_hmp_mean) per average air density

(rho a mean)

TKE The turbulent kinetic energy calcuated with the sum of the variances of

horizontal wind (cov Ux Ux and cov Uy Uy) and vertical wind (cov Uz Uz)

multiplied by (1/2).

6.0 File Naming Convention:

surface.FP3 Millersville Flux.201506100000.Data

Data Remarks:

From 1 June 2015 through 9 June 2015 the datalogger program was averaging the 10 Hz data every 30 minutes. On 9 June 2015 starting at 18:00:25 UTC, a new datalogger program was installed averaging the 10 Hz data every minute. One minute averages for certain intervals during the dates of 1 June 2015 through 9 June 2015 can be obtained by request.

The tower was not exactly oriented true north. As a result, the horizontal components of the wind speed had to be adjusted with the following equations:

 $Ux_Avg = Y5*COS(0.185004901)-AE5*SIN(0.185004901)$

 $Uy_Avg = Y5*SIN(0.185004901) + AE5*COS(0.185004901)$

Due to the adjustment of the x and y components of the wind, the wind direction had to be adjusted by 10.6 degrees. Column AT kept all positive angles the same and added 360 degrees to any negative angles. Column AU added the 10.6 degree adjustment and subtracted 360 degrees if the adjustment made the angle greater than 360 degrees.

References: