ALPHA HELIX CRUISE HX274 (0900) Monday 30th June 2003 – (0900) Tuesday 8th July 2003 Teller - Nome BERING STRAIT CRUISE REPORT

FUNDING SOURCE:	NSF-OPP-0125082 (Grebmeier, U of TN) ONR: N00014-99-1-0345 (Aagaard & Woodgate, UW)
CHIEF SCIENTIST:	Rebecca Woodgate University of Washington, Applied Physics Laboratory 1013 NE 40th Street, Seattle, WA 98105-6698. Phone: 206-221-3268 Fax: 206-616-3142 Email: woodgate@apl.washington.edu

SCIENTIFIC PERSONNEL:

Rebecca Woodgate	APL, Moorings, Chief Scientist	(F)
Keith Magness	APL, Moorings	(M)
Terry Whitledge	UAF, Nutrients & Sampler	(M)
Sarah Thornton	UAF, Nutrients & Sampler	(F)
Sang Heon Lee	UAF, Nutrients & Sampler	(M)
Clara Deal	UAF, DMS sampling	(F)
Justin Denton	SUNY/UAF, DMS sampling	(M)
Anne Hess	MATE intern	(F)

SCIENTIFIC PURPOSE:

This cruise had two scientific goals.

The first (and foremost) was the recovery and redeployment of moorings in the Bering Strait. These moorings are part of a multi-year time-series (currently over 12 years long) of measurements of the flow through the Bering Strait. The properties of this flow not only influence the Chukchi and Beaufort seas, but can also be traced across the Arctic Ocean to the Fram Strait and beyond. The long-term monitoring of the inflow into the Arctic Ocean via the Bering Strait is important for understanding climatic change both locally and in the Arctic.

Three moorings (A2 and A4, in the eastern channel of Bering Strait, and A3, ca. 35nm north of Bering Strait), which were deployed from the Alpha Helix last year, were to be recovered and redeployed.

All the moorings carry conventional instrumentation - current meters (RCM or ADCP), temperature and salinity sensors (SBE16). In addition, moorings A2 and A3 carry Upward-Looking-Sonars (ULS). The mooring A4 carries an upward looking ADCP (instead of the RCM) to study the coastal jet. Mooring A3 also supports a nutrient sampler, and a transmissometer and a fluorometer (the latter two connected to the SBE16). These instruments are from UAF and the replacement mooring also carries these sensors. The current meters and ULSs allow the quantification of the movement of ice and water through the strait. The nutrient sampler, the transmissometer and fluorometer yield the first biophysical time series measurements in the region, greatly

advancing our understanding of the biological system in the Bering Strait and Chukchi Sea.

The second aim of the cruise was to conduct a hydrographic and ADCP survey of the Bering Strait and the southern part of the Chukchi Sea, concentrating on sections in the vicinity of the moorings and the region north of the mooring sites. These CTD and nutrient measurements will be used to calibrate the moored instruments and to give a framework for the analysis of the data. The hydrographic lines repeated and extended the sections from previous years, thus allowing an interannual comparison. (This year, no EEZ application was made to work in Russian waters, and all work took place in the US EEZ.) Post cruise data analysis will also draw on SeaWifs images kindly collected for us by Mike Schmidt, NASA.

In addition to maintaining the time series measurements in Bering Strait, this work also provides key boundary conditions for the Chukchi Shelf/Beaufort Sea region, the main work area of the NSF/ONR SBI (Shelf Basin Interaction) program, which is now in the second of its three field years. It also complements other NSF grants. Specifically the hydrography and O-18 sampling supports not only our analysis but also the sections taken by the Little Diomede Observatory (Cooper *et al*) and also student education by participation in this cruise of Justin Denton, (a chemistry student from SUNY, College of Environmental Science and Forestry, Chemistry Department, Syracuse, New York), and Anne Hess, (a trainee Marine Science Technician from the MATE Center, Monterey Peninsula College, California).

Pre-cruise, an invitation to take part in the cruise was extended to Sergey Pisarev (Shirshov Institute of Oceanology). However, due to visa issues, Sergey was unable to participate in the cruise.

CRUISE OBJECTIVES:

1. To recover moorings A2-02, A3-02 and A4-02 (see Table 1).

2. To deploy moorings A2-03, A3-03, and A4-03.

3. To run hydrographic casts (CTD and nutrients) and ADCP sections in the vicinity of the moorings and in the southern region of the Chukchi Sea (see Table 2 and Figure 1).

All the cruise objectives were successfully accomplished. The moorings were recovered and redeployed, and a total of 123 CTD stations, and corresponding ADCP lines were run. Sampling details are provided below.

CRUISE SCHEDULE:

Times are in AKDS (Alaskan Daylight) time, i.e. GMT-8hrs. The map in Figure 1 gives the location of the CTD and ADCP lines.

29th June 2003 Science party arrives in Nome. Weather too bad for Helix to come into port. Embarkation port changed to Teller (ca.3 hrs drive north of Nome).

30th June 2003 Transfer of Science Party to Teller to meet the ship at 5am on request of outgoing science party.

0530-0830 Small boat transfer of people and gear Due to bad weather, set-up of equipment while at anchor 2200 Sail for Bering Strait

1 st July 2003	0320-0710 ADCP section along BSL1 (from E to W) 0710-1300 CTD section along BSL1 (from W to E) Visit A-4 and A-2, but too foggy for mooring recovery 1430-1515 Productivity station at A2 Visit A-3, but too foggy for mooring recovery 1840-0150 CTD section along A3L (northeastwards to Chuk10)
2 nd July 2003	 0150-0930 ADCP section along A3L (southwestwards) 0930 1100 Recovery of A3-02 1100-1230 Productivity station at A3 1300-1330 Deployment of A3-03 1730-1800 Recovery of A2-03 1845-1905 Recovery of A4-02 2000-2030 Deployment of A4-03 2130-2200 Deployment of A2-02 2315-0220 CTD section along MBS (from W to E)
3 rd July 2003	0220-0600 ADCP section along MBS (from E to W) 0630-1300 ADCP section along NBS line (from W to E) 1300-2100 CTD section along NBS line (from E to W) (incl 1430 Productivity station at NBS12)
4 th July 2003	0145-1000 CTD section along Chuk & EEXT lines (from W to E) 1000-2015 ADCP section along Chuk & EEXT lines (from E to W) 2300-1100 CTD and ADCP section along PHL (from S to N) Many grey whales sighted on this line
5 th July 2003	1100-1515 Transit to Cape Lisburne 1515-2330 CTD and ADCP section along CPL (from E to W) Wind increasing and final station aborted to turn S onto CCL line
6 th July 2003	0045-1220 CTD section along CCL southwards. Progress slowed due to weather 1220 Productivity station at CCL-15 1300-1130 continue CTD section along CCL southwards Progress slowed and CCL7 omitted due to bad weather
7 th July 2003	1200-1600 CTD section along BSL2 (from W to E) 1600-1820 ADCP section along BSL2 (from E to W) Turn for Nome
8 th July 2003	Arrive Nome 0700, tie up for transfer of science party ashore 0800

SCIENCE PROGRAMS:

Although fog delayed mooring recoveries, prompt completion of the mooring work and subsequently reasonable weather allowed us to extend our CTD and ADCP sampling as far north as Cape Lisburne.

Mooring work:

All three moorings (see Table 1) were successfully and smoothly recovered and redeployed. Releases functioned well. All instrumentation was recovered in good condition. Fouling was moderate, with a strong predominance of barnacles, especially on the upper instruments. Unlike in previous years, A3-02 was the least fouled and A4 was the most fouled. Rotors were still turning and salinity cells were clear.

All current meters (RCM7, RCM11 and the ADCP) and seacats yielded complete year long records (see the appendices). Of the optics sensors on the A3 seacat, the fluorometer yielded a full year of data, whilst fouling of the lenses degraded the PAR and transmissometer data after 3 months. The ULSs were still working on recovery and yielded good data throughout the year. The NAS nitrate sensor contained almost 1500 data points which represents 150 days of data. The nitrate data was very clean for the first two months but an increased scatter appears in the latter half of the record. The summer drawdown and fall enrichment of nitrate was clearly observed in the record.

CTD and ADCP work:

A total of 123 CTD casts were taken along 8 different sections (see map, Figure 1, and sections in the appendices). The Bering Strait line (BSL) was CTDed twice, once at the start (BSL1) and once at the end (BSL2) of the cruise. At each major section (BSL, MBS, NBS, A3L, CHUK and EEXT) the CTD line was either preceded or followed immediately by an ADCP line run at 7 knots. The longer sections (PHL, CPL and CCL) could not be traversed twice and thus transit between CTD sections was undertaken at a compromise speed of ca. 8 knots, to acquire reasonable ADCP data whilst still maintaining quasi-synopticity of the line. In the shallow, changeable shelf system, the latter is important, as witnessed by the differences between BSL1 and BSL2 taken 6 days apart. Note also for example, section CCL took almost 36 hours to run, in part due to stormy weather conditions. During this storm, the mixed layer depth presumably deepened throughout the Chukchi Sea. However, since CCL was run from north to south the deeper mixed layer depths are only evident later in the section, (i.e. at the southern end).

The CTD package carried sensors for temperature, conductivity, fluorescence, PAR and the comparatively new ISUS nitrate sensor. Sections for these parameters are shown in the appendices. As a trial set-up, the ISUS nitrate sensor was mounted in place of one of the bottles, with its sensors pointing up. For a more permanent installation, the instrument should be mounted either below the bottles of the rosette or with its head down. The instrument was found to require an eight minute warming up period before deployment. Without this, spurious signals are evident in the upper part of the cast (see e.g. BSL1).

The sections show, for example, the warm fresh coastal current on the US coast. The strength of this current is seen qualitatively also by increased ship drift during CTD casts

in this area. The deviations of the nutrient-rich western waters into the eastern side of the Chukchi Sea are also evident. The high bottom maximum in nitrate on the PHL was associated with a concentration of grey whale sightings. The changes in the BSL section over just a few days indicates the fast response to wind forcing.

Nutrient Analysis work (Whitledge, Thornton, Lee):

A total of 485 nutrient samples were taken and analyzed on board for silicate, phosphate, nitrate, nitrite and ammonia by Whitledge, Thornton and Lee. Preliminary section plots are included in the appendices. In addition, at many stations samples were taken at surface, mid water column and bottom for chlorophyll, and at some stations samples were taken for size-fractionated chlorophyll, fractionated on 20um, 5um and GF/F filters. At the four sites A2, A3, NBS12 and CCL15, primary productivity stations (stable isotope nutrient enrichment primary productivity experiments with 15N-labeled nitrate and ammonia and 13C-labeled carbon) were also run.

Chromophoric Dissolved Organic Matter (CDOM) and DOC Analysis work and sampling (Deal, Denton):

A total of 233 CDOM samples and 176 DOC samples were taken at the 34 sites listed below. Some measurements of CDOM absorption spectra were made on board, while most of the measurements were made in the laboratory at the University of Alaska Fairbanks. The DOC samples will be analyzed post cruise by Celine Guegen, IARC/Frontier.

CDOM and DOC seawater profiles were taken at 34 sites, namely July 1: BSL-1,2,3,4,5 and 6,A2P July 2: A3,A2,A4 July 3: NBS-12,9,6 and 3 July 4: CHUK-1,4 and 8 July 5: PHL1,3,6,9 and 11, CPL2 and 6 July 6: CPL8,CCL20,15 and 10 July 7: CCL6,8 and 4, BSL1,3 and 5

Oxygen isotope sampling (Woodgate for Cooper, Tennessee):

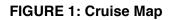
A total of 346 water samples were taken for O18 sampling. Samples were taken at bottom, 5m and (where appropriate) midwater column at all stations except some of the productivity stations (see bottle list in the appendices). These samples were sealed with parafilm and shipped to Lee Cooper at the University of Tennessee for later analysis. To ensure the integrity of the bottle samples, when possible salinity samples (ca. 200) were taken from the bottles used for O18 samples.

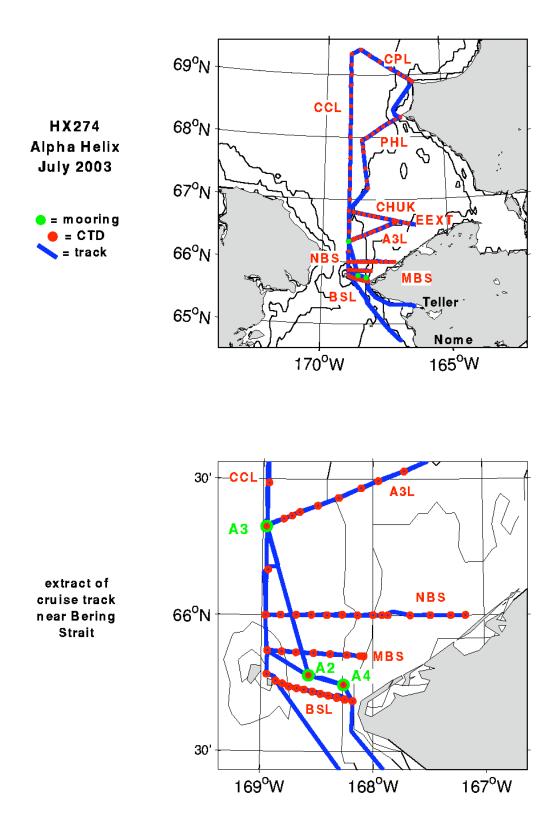
Underway sampling:

Seachest data and standard underway meteorological sampling was conducted for the duration of the cruise. These data will be combined with the CTD and ADCP data to elucidate spatial structures.

SEAWIFs imagery:

Mike Schmidt, NASA, kindly supplied to the cruise any Seawifs images collected during the science mission. Although extreme cloud cover prevented collection of a clear image of the entire work area, useful part-area images were collected. These 2-


dimensional images (see the appendices will aid analysis of the highly spatially variable water mass structures in the region.


Educational Outreach:

Two students took part in the cruise.

Justin Denton, (a chemistry student from SUNY, College of Environmental Science and Forestry, Chemistry Department, Syracuse, New York), assisted with the CDOM and DOC sampling (Deal, see above).

Anne Hess, (a trainee Marine Science Technician from the MATE Center, Monterey Peninsula College, California) gained experience of CTD and mooring work during the cruise, including running a CTD watch, O18 and salinity sampling and CTD operations.

ID	LATITUDE (N)	LONGITUDE (W)	WATER DEPTH /m	INST.
Recover A2-02	65° 46.77'	168° 34.53'	56	ULS RCM7 SBE16
A3-02	66° 19.56'	168° 58.03'	57	ULS RCM11 SBE+TF NAS-2E
A4-02	65° 44.70'	168° 15.78'	49	ADCP SBE16
Deploy A2-03	65° 46.76'	168° 34.51'	55	ULS RCM7 SBE16
A3-03	66° 19.57'	168° 58.03'	57	ULS RCM9 SBE+TF NAS-2E
A4-03	65° 44.70'	168° 15.78'	48	ADCP SBE16

TABLE 1: Mooring positions and instrumentation

ULS = APL Upward Looking Sonar

RCM7 = Aanderaa Mechanical Recording Current Meter RCM9 = Aanderaa Acoustic Recording Current Meter SBE16 = Seabird CTD recorder SBE+TF = Seabird CTD recorder including transmissometer and fluorometer NAS-2 = Nutrient Analyzer Microcat = Seabird CTD recorder ADCP = RDI Acoustic Doppler Current Profiler

TABLE 2: CTD Positions

Name	Date	GMT	Latitude	Longitude	Cast	Name D
hx274001	Jul 1 2003		65 45.56 N	168 52.04 W	001	bsl1 40
hx274002	Jul 1 2003		65 44.95 N	168 48.57 W	002	bsl1.5 50
hx274003	Jul 1 2003	16:31	65 44.26 N	168 45.05 W	003	bsl2 51
hx274004	Jul 1 2003	17:08	65 43.93 N	168 40.81 W	004	bsl2.5 50
hx274005	Jul 1 2003	17:39	65 43.63 N	168 36.89 W	005	bsl3 50
hx274006	Jul 1 2003	18:10	65 43.20 N	168 32.39 W	006	bsl3.5 53
hx274007	Jul 1 2003	18:39	65 42.69 N	168 28.11 W	006	bsl4 51
hx274008	Jul 1 2003	19:11	65 42.36 N	168 23.90 W	008	bsl4.5 51
hx274009	Jul 1 2003	19:47	65 41.83 N	168 19.27 W	009	bsl5 52
hx274010	Jul 1 2003	20:19	65 41.40 N	168 15.06 W	010	bsl5.5 43
hx274011	Jul 1 2003	20:47	65 41.06 N	168 10.86 W	011	bsl6 27
hx274012	Jul 1 2003	22:27	65 47.00 N	168 34.56 W	012	a2p 53
hx274013	Jul 1 2003	23:05	65 46.87 N	168 34.50 W	013	a2p 53
hx274014	Jul 2 2003	02:41	66 19.70 N	168 58.23 W	014	a3 54
hx274015	Jul 2 2003	03:18	66 21.26 N	168 48.52 W	015	a3l2 54
hx274016	Jul 2 2003	03:42	66 21.93 N	168 44.08 W	016	a3l2.5 49
hx274017	Jul 2 2003	04:05	66 22.74 N	168 39.94 W	017	a3l3 55
hx274018	Jul 2 2003	04:42	66 24.15 N	168 30.08 W	018	a3l4 52
hx274019	Jul 2 2003	05:21	66 25.89 N	168 18.65 W	019	a3l5 46
hx274020	Jul 2 2003	06:01	66 28.04 N	168 06.33 W	020	a3l6 26
hx274021	Jul 2 2003	06:33	66 29.63 N	167 56.93 W	021	a3l7 22
hx274022	Jul 2 2003	07:17	66 31.74 N	167 42.82 W	022	a3l8 23
hx274023	Jul 2 2003	08:08	66 34.64 N	167 25.46 W	023	a3l9 28
hx274024	Jul 2 2003	08:59	66 37.35 N	167 09.29 W	024	a3l10 31
hx274025	Jul 2 2003	09:33	66 38.97 N	167 00.80 W	025	chuk10 31
hx274026	Jul 2 2003	19:14	66 19.60 N	168 58.09 W	026	a3 54
hx274027	Jul 2 2003	19:59	66 19.58 N	168 58.05 W	027	a3 54
hx274028	Jul 2 2003	20:09	66 19.66 N	168 58.07 W	028	a3 54
hx274029	Jul 3 2003	03:31	65 44.82 N	168 15.69 W	029	a2 45
hx274030	Jul 3 2003	05:16	65 46.86 N	168 34.54 W	030	a4 52
hx274031	Jul 3 2003	07:13	65 52.26 N	168 56.73 W	031	mbs1 43
hx274032	Jul 3 2003	07:39	65 52.01 N	168 49.06 W	032	mbs2 50
hx274033	Jul 3 2003	08:06	65 51.82 N	168 41.29 W	033	mbs3 51
hx274034	Jul 3 2003		65 51.68 N	168 31.89 W	034	mbs4 52
hx274035	Jul 3 2003	09:09	65 51.48 N	168 22.98 W	035	mbs5 50
hx274036	Jul 3 2003	09:40	65 51.29 N	168 13.93 W	036	mbs6 45
hx274037	Jul 3 2003	10:07	65 51.07 N	168 06.83 W	037	mbs7 38
hx274038	Jul 3 2003	10:21	65 51.01 N	168 04.98 W	038	mbs8 29
hx274039	Jul 3 2003	21:06	66 00.01 N	167 10.02 W	039	nbs14 11
hx274040	Jul 3 2003	21:35	66 00.01 N	167 17.97 W	040	nbs13 13
hx274041	Jul 3 2003	22:12	66 00.04 N	167 28.97 W	041	nbs12 17
hx274042	Jul 3 2003	22:39	66 00.05 N	167 28.96 W	042	nbs12 17
hx274043	Jul 3 2003	23:24	66 00.03 N	167 39.88 W	043	nbs11 15
hx274044	Jul 4 2003	80:00	66 00.06 N	167 51.97 W	044	nbs10 10
hx274045	Jul 4 2003	00:27	66 00.09 N	167 55.09 W	045	nbs9 19
hx274046	Jul 4 2003			167 59.89 W	046	nbs8 31
hx274047	Jul 4 2003			168 08.27 W	047	nbs7 45
hx274048	Jul 4 2003	02:05	66 00.15 N	168 16.50 W	048	nbs6 51

hx274049	Jul 4 2003 02	:39 66 00.05 N	168 24.82 W	049	nbs5 54
hx274050	Jul 4 2003 03	:14 66 00.11 N	168 33.14 W	050	nbs4 53
hx274051	Jul 4 2003 03	:47 66 00.08 N	168 41.44 W	051	nbs3 52
hx274052	Jul 4 2003 04		168 49.76 W	052	nbs2 51
hx274053	Jul 4 2003 04		168 58.05 W	053	nbs1 51
hx274053	Jul 4 2003 04		168 58.15 W	055	chuk1 51
hx274055			168 46.08 W	055	chuk2 39
hx274056		:04 66 46.99 N	168 34.01 W	056	chuk3 30
hx274057		:42 66 45.84 N	168 22.08 W	057	chuk4 30
hx274058		:24 66 44.83 N	168 08.10 W	058	chuk5 28
hx274059		:57 66 43.83 N	167 57.04 W	059	chuk6 27
hx274060		:31 66 42.93 N	167 45.99 W	060	chuk7 27
hx274061		:20 66 41.49 N	167 27.89 W	061	chuk8 30
hx274062	Jul 4 2003 15	:10 66 40.01 N		062	chuk9 32
hx274063	Jul 4 2003 15	:44 66 38.98 N	167 00.93 W	063	chuk10 31
hx274064	Jul 4 2003 16	:34 66 37.57 N	166 43.66 W	064	eext1 30
hx274065	Jul 4 2003 17	:06 66 36.67 N	166 33.70 W	065	eext2 22
hx274066	Jul 4 2003 18	:06 66 35.01 N	166 11.85 W	066	eext3 15
hx274067		:05 67 11.02 N	168 12.16 W	067	phl1 38
hx274068		:09 67 18.00 N	168 15.08 W	068	phl2 46
hx274069		:36 67 29.99 N	168 19.09 W	069	phl3 45
hx274070		:23 67 45.61 N	168 23.61 W	070	phl4 47
hx274071		:06 67 50.97 N	168 25.11 W	071	phl5 50
hx274072		:54 67 57.04 N	168 28.01 W	072	phi6 57
hx274072		:40 67 59.97 N	168 13.95 W	072	
hx274074		:29 68 03.54 N	167 59.96 W	074	phl8 54
hx274075		:16 68 07.04 N	167 46.90 W	075	phl9 51
hx274076		:02 68 10.49 N	167 33.45 W	076	phl10 47
hx274077		:04 68 13.99 N	167 17.91 W	077	phl11 44
hx274078		:03 68 17.01 N	167 02.90 W	078	phl12 37
hx274079		:59 68 19.37 N	166 48.41 W	079	phl13 22
hx274080	Jul 5 2003 23		166 15.41 W	080	cpl0 16
hx274081	Jul 5 2003 23		166 19.82 W	081	cpl1 26
hx274082	Jul 6 2003 00	:10 68 55.99 N	166 26.29 W	082	cpl2 32
hx274083	Jul 6 2003 00	:58 68 58.58 N	166 37.90 W	083	cpl3 38
hx274084	Jul 6 2003 01	:51 69 01.46 N	166 50.86 W	084	cpl4 43
hx274085	Jul 6 2003 03	:07 69 05.92 N	167 11.85 W	085	cpl5 46
hx274086	Jul 6 2003 04	:37 69 12.93 N	167 41.92 W	086	cpl6 49
hx274087	Jul 6 2003 05	:59 69 18.93 N	168 08.81 W	087	cpl7 49
hx274088	Jul 6 2003 07	:14 69 24.39 N	168 32.07 W	088	cpl8 50
hx274089	Jul 6 2003 08			089	ccl24 50
hx274090	Jul 6 2003 09			090	ccl23 50
hx274091	Jul 6 2003 11		168 56.87 W	091	ccl22 51
hx274092	Jul 6 2003 12			092	ccl21 51
hx274093	Jul 6 2003 13			093	ccl20 51
hx274093	Jul 6 2003 15			094	ccl19 57
hx274094	Jul 6 2003 15		168 56.93 W	094 095	ccl18 54
hx274096		:45 68 09.97 N	168 56.93 W	096	ccl17 55
hx274097	Jul 6 2003 19		168 57.13 W	097	ccl16 55
hx274098	Jul 6 2003 20		168 56.92 W	098	ccl15 53
hx274099	Jul 6 2003 20	:55 67 49.97 N	168 57.03 W	099	ccl15 53

hx274100	Jul 6 2003	22:17	67 40.00 N	168 56.91 W	100	ccl14 49
hx274101	Jul 6 2003	23:34	67 30.01 N	168 56.86 W	101	ccl13 49
hx274102	Jul 7 2003	00:53	67 19.92 N	168 56.82 W	102	ccl12 48
hx274103	Jul 7 2003	02:11	67 10.08 N	168 56.84 W	103	ccl11 47
hx274104	Jul 7 2003	03:38	67 00.06 N	168 56.81 W	104	ccl10 46
hx274105	Jul 7 2003	05:16	66 49.00 N	168 57.94 W	105	ccl9 43
hx274106	Jul 7 2003	07:01	66 39.18 N	168 56.89 W	106	ccl8 41
hx274107	Jul 7 2003	09:18	66 29.18 N	168 56.91 W	107	ccl6 55
hx274108	Jul 7 2003	12:15	66 19.73 N	168 57.99 W	108	ccl5 53
hx274109	Jul 7 2003	15:19	66 10.02 N	168 56.85 W	109	ccl4 53
hx274110	Jul 7 2003	17:24	66 00.05 N	168 57.81 W	110	ccl3 50
hx274111	Jul 7 2003	18:40	65 52.20 N	168 56.75 W	111	ccl2 42
hx274112	Jul 7 2003	19:24	65 47.00 N	168 56.93 W	112	ld1 31
hx274113	Jul 7 2003	19:58	65 45.49 N	168 52.13 W	112	ccl1 39
hx274114	Jul 7 2003	20:36	65 44.90 N	168 48.38 W	114	bsl1.5 49
hx274115	Jul 7 2003	20:57	65 44.25 N	168 44.79 W	115	bsl2 50
hx274116	Jul 7 2003	21:16	65 43.91 N	168 40.69 W	116	bsl2.5 49
hx274117	Jul 7 2003	21:35	65 43.62 N	168 36.83 W	117	bsl3 49
hx274118	Jul 7 2003	21:56	65 43.17 N	168 32.35 W	118	bsl3.5 54
hx274119	Jul 7 2003	22:16	65 42.75 N	168 28.04 W	119	bsl4 50
hx274120	Jul 7 2003	22:37	65 42.31 N	168 23.79 W	120	bsl4.5 49
hx274121	Jul 7 2003	23:04	65 41.96 N	168 19.40 W	121	bsl5 50
hx274122	Jul 7 2003	23:33	65 41.56 N	168 15.04 W	122	bsl5.5 43
hx274123	Jul 7 2003		65 41.14 N	168 10.78 W	123	bsl6 25

D=approximate water depth in m

APPENDICES:

A) CTD sections for BSL1 BSL2 MBS NBS A3L CHUK + EEXT PHL CPL CCL

Each page shows temperature, salinity, sigma-theta, Fluorescence, PAR and ISUS nitrate. Vertical axis is pressure in dbar. This data is preliminary, post-cruise, without significant quality control. In the biological parameters, these results should be taken only qualitatively. The ISUS readings, especially, require significant work at the early sections, e.g. BSL1.

B) Nutrient sections for BSL1 BSL2 MBS NBS A3L CHUK + EEXT PHL CPL CCL

Each page shows phosphate, silicate, total nitrogen, nitrate and ammonia. Vertical axis is pressure in dbar. All other units are micromolar (uM). This data is preliminary, post-cruise, without significant quality control.

C) Preliminary Current Meter and SBE Results Results using rough calibrations only. All current directions are magnetic, i.e. not corrected for local declination.

D) SeaWifs images

E) O18 bottle logs (paper copy only)

F) Cruise photos (including instrument fouling)