

Data Synopsis for HLY0801

March 14 – March 25, 2008 Dutch Harbor to Dutch Harbor

Chief Scientist - Lee Cooper Healy Captain – Tedrick R. Lindstrom

ST LAWRENCE ISLAND POLYNYA PROJECT

Prepared by:

Tom Bolmer, David Forcucci, David Hassilev, & Steve Roberts

Table of Contents

Project Summary	6
Cruise Track	7
Personnel	8
Science Party Personnel	8
Ship's Crew	11
Science Components and their major sampling activities	12
Distribution Contents	13
Introduction to Data	13
Data Directories: 1_Minute_Averaged_Data: SCS_Data: Extra files in the directory SCS_Data: LDS_Data: Meta_Data: Raw: Images: ice_observations: Contents by directory:	14 14 15 15 17 17 17 18 18 18 18 18 18
Merged Data	20
LDEO Averaged One Minute Data File	20
File Formats of Data Collected Underweigh	23
./SCS_Data	23
Underway Data	23
Meteorology Data	23
R. M. Young Sensors	23
R.M. Young Air Temperatures	24
R.M. Young Air Temperatures, Fahrenheit (Derived)	25 25
R.M. Young Wind. Port	
R.M. Young Wind, Starboard R.M. Young Wind True Port (Derived)	26
R.M. Young Wind True, Port (Derived)	27
R.M. Young Wind True, Starboard (Derived)	28
Dew Point (Derived)	29
Jack Staff Meteorological Senors	29
Jack Staff Wind Sensors	30
Yard Arm Wind Senors	31
Solar Radiometers	32
Photosynthetic Active Radiation (PAR) Sensor	32
Solar Radiometers (Short and Long Wave), Pyranometer and Pyrgeometer	33
Oceanographic Data	34 34
Thermosalinograph / Fluorometer	
Forward Thermosalinograph / Fluorometer TSG A	34 35
TSG A TSG B	35
	36
Sea Surface Temperature Theromsalinograph Flowmeter A	30
Theromsalinograph Flowmeter B	37

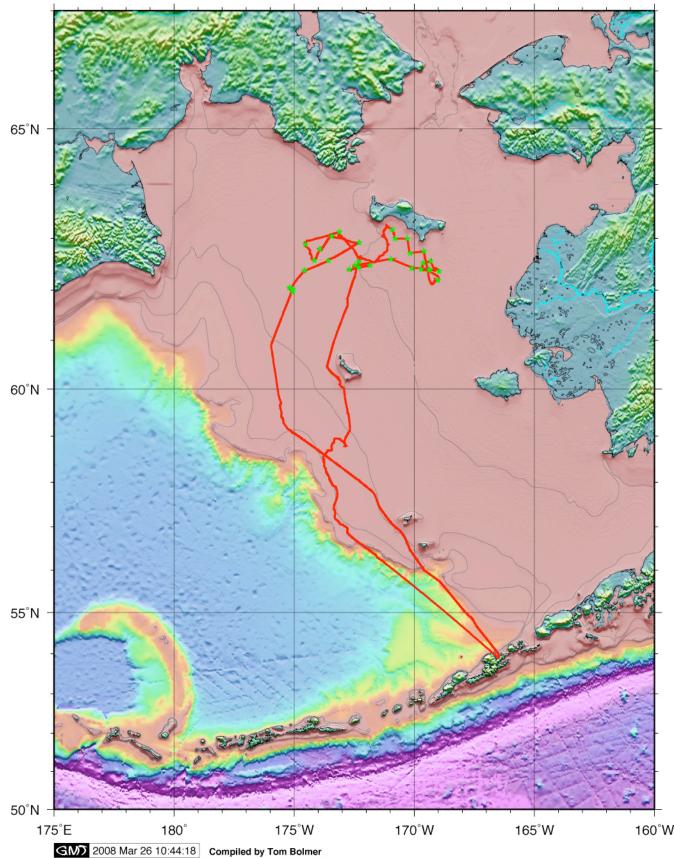
Oxygen Sensor A	38
Oxygen Sensor B	39
Theromsalinograph Flurometer A	40
Theromsalinograph Flurometer B	41
Transmissometer	42
ISUS Nitrate Sensor	43
Sonar Data	44
Seabeam 2112 Center Beam	44
Knudsen	45
3.5 kHz	45
Winch data	46
Starboard A-Frame Winch Data	46
Aft A-Frame Winch Data	47
Navigational Data	48
POSMV	48
POSMV GGA	48
POSMV Psuedo Noise	49
POSMV HDT	50
POSMV PASHR	51
POSMV VTG	52
POSMV ZDA	53
Ashtech GPS	55
Ashtech Attitude	54
Ashtech GGA	55
Ashtech GGL	55
Ashtech HDT	57
PCode	58
PCode AFT	58
PCode Aft GGA	58
PCode Aft GLL	59
PCode AFT VTG	57 60
PCode AFT ZDA	61
	62
PCode Bridge	62
PCode Bridge GGA	
PCode Bridge GLL	63
PCode Bridge VTG	64
Glonass	65
Glonass GGA	65
Glassnos GLL	66
Gyro	67
Gyro Heading	67
MK27 Gyro	67
MK39 Gyro	68
Waypoints	69
IBS Waypoints	69
Speed Log	70
Sperry Sped Log	70
Sound Velocimeter	70
SV2000	70
./Raw	71
75 KHz ADCP data	71
150 Khz ADCP data	72
KNUDSEN 320B/R	73
Seabeam	73
Thermosalinograph	74
Thermosalinograph FWD	74
CTD	74
Expendable Bathythermograph (XBT)	74
./LDS_Data	75

Navigation	75
ADU5 (Ashtech GPS)	75
Trimble AGGPS	76
PSOMV Attitude	76
POSMV GPS	77
POSMV Navigation for the SeaBeam	77
SeaBeam Data	78
SeaBeam Center Beam Data	78
Speed of Sound in the Surface Water for SeaBeam	78
Raw SeaBeam Files	79
Gyroscope data	80
MK27 Sperry Gyroscope	80
MK30 Sperry Gyroscope	80
All SIO TSG and MET Data	81
Gravity	82
BGM221	82
BGM222	82
Events in Running LDS	83
APPENDIX:	84
Acquisition Problems and Events	84
Underway Sensors and Calibrations	86
Sensors and Calibrations	86
HLY0801 Shipboard Sensors	86
HLY0801- CTD Sensors	88
HLY0801 Sensor Calculations	89
Calculating Temperature – ITS-90	89
Calculating Conductivity – ITS-90	89
Calculating Fluorometry Voltage	89
Calculating Transmittance	89
Calculating PAR for surface PAR	89
Calculating Pyrgeometer Values	90
Calibrations	91
Meteorology & Radiometers	91
R.M. Young Wind Bird, Starboard	91
R.M. Young Wind Bird Port	92
Barometer	93
Air Temperture / Relative Humidity	94
Shortwave Radiation Pyranometer	97
Longwave Radiation Pyrgeometer	98
Jack Staff MET Station	99
Underway Ocean Flow through Sensors	100
Seabird ThermoSalinograph	100
Temperature	100
Conductivity Remarks See Transmitters (See Chest)	101
Remote Sea Temperature (Sea Chest)	102
Fluorometer B CTD Sensors	103
Pressure Sensor	105 105
Temperature #1	105
Temperature #2	100
Conductivity #1	107
Conductivity #1	100
Oxygen	109
Flurometer	110
Transmisometer	111
PAR	112
Instrument Locations on the Healy	113
Insu unione locations on the licaly	114

SBE 21 SEACAT Thermosalinograph Data Output Formats	118
Table of Survey measurements	115
Layout plot of instrument locations	114

Project Summary

BEST Benthic Ecosystem Response to Changing Ice Cover in the Bering Sea


(National Science Foundation ARC-0802290)

The Healy 08-01 cruise is focused on patch dynamics of walruses and their food supplies on the shallow northern Bering Sea shelf. Patch dynamics is a conceptual approach to ecosystem and habitat analysis that emphasizes the dynamics of heterogeneity within a system. Benthic-oriented measurements have been taken in the northern Bering Sea for many years because the region is known to support highly productive benthic communities and food resources for benthic-feeding apex predators, including gray whales, bearded seals, walruses, and diving sea-ducks-all of which are important for subsistence hunting by local Bering Sea communities. Continued benthic sampling is planned in the St. Lawrence Island area to complement the planned field studies of walrus distributions. Recent studies (e.g. Grebmeier et al. (2006; Science 10 March 2006: Vol. 311. no. 5766, pp. 1461 - 1464) suggested that climate warming may change the present benthic-dominated northern Bering Sea ecosystem to one more pelagic in nature, similar to the southern Bering Sea-a direct result of changing trophic interactions. Specific evaluation of dominant infaunal prey of walrus (e.g., bivalves, gastropods, and polychaetes), will be undertaken during the benthic field component of this BSIERP-BEST walrus-prey patch dynamics study. These studies will be analyzed in the context of retrospective benthic data sets collected over the last 20 years in the region. Important considerations will be spatial heterogeneity of benthic infaunal populations and sediment tracers in oceanographic context at coarse scales (20 nm) to evaluate overall effects on ecological processes. Scaling strategies will be used from the small scale (3-5 nm) used for walrus-prey patch dynamics study to larger (10-20 nm) and even regional (50-100 nm) scales in order to evaluate information from the local ecosystem to overall northern Bering Sea regional scale in which the walrus reside.

Standard water column measurements are also being made, including salinity, temperature, water column optical characteristics, nutrients, chlorophyll, zooplankton distributions and sea ice biological features in addition to benthic sampling and walrus distribution studies. Marine mammal and seabird observations are also being made from the ship's bridge.

Cruise Track

HLY0801 03/14/08 - 03/26/08

Personnel

Science Party Personnel

<u>Name</u>	Institution	Position	<u>Phone</u>	<u>Email</u>	<u>Citizen.</u>
Jackie Grebmeier	U. of Tenn.	Scientist	865-974- 2592	jgrebmei@utk.edu	USA
Lee Cooper	U. of Md.	Scientist	410-326- 7359	cooper@cbl.umces.edu	USA
Jim Lovvorn	U. of Wyo.	Scientist	307-399- 7441	lovvorn@uwyo.edu	USA
Anthony Fischbach	Ak. Sci. C, USGS.	Scientist	907-786- 7145	afischbach@usgs.gov	USA
Joseph Bump	Mich. Tech. U.	Graduate student	906-483- 4938	jkbump@mtu.edu	USA
Ed Davis	U. of Tenn.	Technical support	865-384- 5783	edavis8@utk.edu	USA
Nora Deans	N. Pac. Res. Board	Public Outreach	907-644- 6707	nora.deans@nprb.org	USA
Karen Frey	Clark U.	Scientist	508-793- 7209	KFrey@clarku.edu	USA
Rolf Gradinger	U. of A, Fairbanks	Scientist	907-474 7407	rgradinger@ims.uaf.edu	Germany
Markus Janout	U. of A Fairbanks	Graduate Student	907-474- 5184	janout@sfos.uaf.edu	Germany
Chad Jay	Ak. Sci. C, USGS.	Scientist	907-786- 7414	cjay@usgs.gov	USA
Yutian Jiao	Ocean. U. of China	Chief Engineer	86-532- 6678-2097	jiaoyutian@ouc.edu.cn	China
Elizabeth Labunski	USFWS	Scientist	907- 7863865	Elizabeth_Labunski@fws.g ov	USA
Thomas Litwin	Smith College	IPY Education	413-585- 3801	tlitwin@email.smith.edu	USA
Sue Moore	Ak. Fisheries Sci. C.	Scientist	206-685- 2125	Sue.Moore@noaa.gov	USA
Rebecca Neumann	U. of A, Fairbanks	Scientist	907-474 7074	rebecca1509@gmx.de	Germany

<u>Name</u>	<u>Institution</u>	<u>Position</u>	<u>Phone</u>	<u>Email</u>	<u>Citizen.</u>
Clarence Pautzke	N. Pac. Res. Board	Scientist	907-644- 6702	cpautzke@nprb.org	USA
Gay Sheffield	Al. Dept. Fish and Game	Marine mammal Scientist	907-43- 2271	gay_sheffield@alaska.gov	USA
Boris Sirenko	Zoo. Inst. Russ. Acad. of S.	Scientist	7-812-328- 1311	marine@zin.ru	Russia
Sarah Story Manes	U of A, Fairbanks	Graduate student	978-884- 2119	story@sfos.uaf.edu	USA
Andrew Trites	U. of Brit. Col.	Scientist	604-822- 8182	a.trites@fisheries.ubc.ca	Canada
Jinping Zhao	Ocean. U. of China	Scientist	86-532- 6678-2096	jpzhao@ouc.edu.cn	China
Stephen De Vere	BBC	Public outreach	44-117- 974-2419	route e-mail through Jeff Wilson	UK
Lawrence Hott	Florentine Films/Hott Productions, Inc.	Film producer / IPY Education	413-268- 8300	hott@florentinefilms.org	USA
Craig Kasemodel	C. M. Sch. of Sci. Anchorage	Public outreach	907-729- 2540	kasemodel@mac.com	USA
David McKay	BBC	Aerial Cameraman	44-144- 286-3199	davidmckay@aol.com	UK
David Litz	David Litz Florentine Films/Hott Productions, Inc		216-952- 5532	dutch@litzfilms.com	USA
Christian Morel	Polar Planet Association / Our Polar Heritage	sociation / Project r Polar		christianmorel@freesurf.fr	France
Perry Pungowiyi	Nat. Village Savoonga	Public outreach	907-984- 6311 / 984- 6414	gnunguk@hotmail.com	USA
Jeff Wilson	BBC	Public outreach	44-117- 974-2419	jeff.wilson@bbc.co.uk	UK

<u>Name</u>	<u>Institution</u>	Position	<u>Phone</u>	<u>Email</u>	<u>Citizen.</u>
Tom Bolmer	WHOI	Scientist	508-289- 2628	tbolmer@whoi.edu	USA
Scott Hiller	SIO	Technical support	858-534- 1907	shiller@ucsd.edu	USA
Steve Roberts	UCAR	Scientist	303-497- 2637	sroberts@ucar.edu	USA
Dave Forcucci	USCG	Science Liaison	206-217- 6648	David.Forcucci@uscg.mil	USA
Donald Grahm	USCG/ESU / Seattle Science	IT2 / Comp. Tech.	206-217- 6588	Donald.E.Graham@uscg.m il	USA
Jeffery Doramus	USCG/ESU / Seattle Science	IT1 / Comp. Tech.	206-217- 6016	Jeffery.doramus@uscg.mil	USA
Mike Spink	Dept. Interior	Helo	541-219- 1818	rotorhead555@hotmail.co m	USA
Bill Springer	Maritime Helocopter	Helo Pilot	928-214- 8416	wspringer@hotmail.com	USA
Anthony Hickey	Maritime Helocopter	Helo Mechanic	352-223- 8920	Anthonywayne7@gmail.co m	USA

Ship's Crew

HEALY Sailing List for March 13, 2008.

Lindstrom, Tedric CAPT Bateman. Dale CDR Hammond, Mark LCDR Stewart, Jeffrey LCDR Angelo, James YNC Arakaki, Rebecca SK2 Ayers, Silas LT Bartlett, Charles MST1 Beasley, Corey HSCS Beckmann, Rachel LTJG Bender, Zachary ENS Berringer, Mike ETC Blas, Paul FN Brogan, John MKC Buford, Aimee BM2 Carr, Michael LTJG Carter, John FS2 Cole, Tyler SN Conroy, William BM3 Coombe, Jeffrey MK2 Dabe, Jeffrey IT2 Daem, Steven ET2 Davidson, Ash BM1 Davis, Jonathon ET2 Dull, Steven FS2 Dunning, Lara BM3 Elliott, Stephen LTJG Fernandez, Chelsey SN Finley, Nathan EM2 Ford, Angela SN

Galvez, Oscar R. LT Glenzer, William BM1 Gonzalez, Fernando MK2 Ghosn, Kathleen FN Hamilton, H. Mark FS3 Harbinsky, Mark ET2 Harris, Daniel SK1 Hurtado, Daniell EM1 Jacobs, Bryson ENS Johnston, Garrett SN Jones, Greg MKCS Kidd, Wayne BMC Kruger, Thomas MST3 Laisure, Jeremy SK2 Lambert, Douglas MK1 Layman, Rich MST1 Liebrecht, Brian ET1 Loftis, Jon MK1 Lyons, Sean R CWO3 Manangan, Sorjen OSC Mandrie, Montarno DC3 Marsden, George DCC Mastrota, Leigh FN McNally, Terence SK1 McManus, Gene SN Meadowcroft, Brian LTJG Merten, James SN Miller, Valerie CWO2 Murphy, Nicholas MK2 Meyer, Heather MK2 Newton, Elizabeth LTJG

Passalacqua, Joseph ETCM Pentecost, James DC1 Podhora, Curtis EMCM Quichocho, Robert MK1 Redd, Davion DC2 Rieg, Mark MSTC Rivera-Maldonado, Abner SKC Rocklage, Eric MST1 Rudibaugh, Kenneth MK1 Shaffer, Hans EM1 Siciak, Anthony MK3 Smith, Corey MK3 Smith, Josh LTJG Sullivan, Timothy BMCS Swanson, Shawn ET1 Thomas. Tasha ENS Thompson, Emily SN Tomlin, Mathew SN Travers, Cynthia LTJG Von Kauffmann, Daniel IT1 Wagner, Alexander FN Ward, John CWO3 Whiting, Allan, MK2 Williams, Tony FSCS Worrell, Kenneth EM1 Wright, Tiffany MST2 Yeckley, Andy BM3 Zitting, Arrene F

Component, PIs	Sampling activities	
Grebmeier & Cooper	BEST Benthic Ecosystem Response to Changing Ice Cover in the Bering Sea	
Trites & Jay	BSIERP: Patch Dynamics	
Gradinger, Bluhm, & Iken	BEST: Sea Ice Algae, a Major Food Source for Herbivorous Plankton and Benthos in the Eastern Bering Sea. Determine the biomass, diversity, production and fate of ice algae in the BEST study area.	
Grebmeier & Cooper	BSIERP Project: Epi-benthic survey	
Frey	Impacts of Sea Ice Variability and Polynya Formation on Biological Productivity in the Northern Bering Sea	
Lovvorn, Grebmeier, & Cooper	Climate-driven changes in impacts of benthic predators in the northern Bering Sea	
Kuletz & Irons	North Pacific Pelagic Seabird Observer Program	
Zhao	Optics under sea ice and heat absorption impacted by bioprocess	
Moore	National Marine Mammal Laboratory shipboard marine mammal observation program	
Litwin & Hott	<i>Thin Ice: An Exploration of the Bering Sea at the Dawn of Global Warming.</i> A public education legacy project developed for the International Polar Year-2007-2008	
Sheffield	Investigate ice seal stock structure, migration routes, and dispersal patterns of ice seals that occur in the Northern Bering Sea as well as assist in the NMML effort.	

Science Components and their major sampling activities

Distribution Contents

Introduction to Data

The Healy data acquisition systems continuously log data from the instruments used during the cruise. This document describes:

- The structure and organization of the data on the distribution media.
- The format and contents of the data strings.
- Formulas for calculating values.
- Information about the specific instruments in use during the cruise.
- A log of acquisition problems and events during the cruise that may affect the data.
- Scanned calibration sheets for the instruments in use during the cruise.

The data is distributed on a small USB disk drive.

IMPORTANT: Read the section, "Acquisition Problems and Events," for important information that may affect the processing of this data.

There are two logging system on the Healy. The ship (ESU) runs the SCS logging system and the LDEO support group runs the LDS logging system. This provides some redundancy in logging. The main purpose of LDS is to support the sonars and the output is saved in Raw.

The Scientific Computer System (SCS) is a data acquisition, and display system designed for Oceanographic, Atmospheric, and Fisheries research applications. It acquires sensor data from shipboard oceanographic, atmospheric, and fisheries sensors and provides this information to scientists in real time via text and graphic displays, while simultaneously logging the data to disk for later analysis. SCS also performs quality checks by monitoring I/O, providing delta/range checks and plotting data after acquisition.

The LDEO Data System is somewhat distant relative of the logging code that has grown through more than a decade of use at LDEO. It is a significant revision of the current (2004) code used on the R/V Ewing (the Ewing Data System) and is architecturally much different. Because of this, LDS is still growing and at the moment (2008) this is the only operational implementation.

Data

Data are received via RS-232 serial connections. In SCS a time tag is added at the beginning of each line of data in the form,

mm/dd/yyyy,hh:mm:ss.sss,[data stream from instrument] where:

Format	Value used
mm	2 digit month of the year
dd	2 digit ay of the year
уууу	4 digit year
hh	2 digit hour of the day
mm	2 digit minute
SS.SSS	seconds

An example string from the Seabeam Centerbeam file is:

04/13/2007,06:49:20.920,\$SBCTR,2007,4,13,06:49:09.437,57.158792,-165.664322,69.15,60*00

All times are reported in UTC. Each file type has it's own NEMA string name (\$SBCTR as an example).

The delimiters that separate fields in the raw data files are commas. Care should be taken when reprocessing the data that the field's separations are clearly understood.

Directories:

1_Minute_Averaged_Data:	This directory contains all of the under way data averaged over a 1 minute window in time.
SCS_Data:	This directory contains serial data collected by the SCS version 3.3b data collection system in different directories. Directory names are labeled by the instrument name and string type of the data collected. A description of the data contained in this directory is below.
LDS_Data:	This directory contains serial data collected by the Lamont LDS data collection system in different directories. Directory names are labeled by the instrument name and string type of the data collected. A description of the data contained in this directory is below.
Raw:	This directory contains raw data as recorded by individual instruments and put into different directories. Directory names are labeled by the instrument name and string type of the data collected. A description of the data contained in this directory is below.
Meta_data:	This directory contains documents useful in the post analysis of the data on this DVD media set. The data type are separated into different directories by type. A description of these directories is below.

1_Minute_Averaged_Data:

HLY0801_distance.csv.gz - Distance along track from port.

HLY0801_Averaged.csv.gz - All the Under way data averaged for 1 minute.

Shapefile - All of the 1 minute under way data averaged at 1 minute spacing in an ESRI GIS Shapefile.

SCS_Data:

- /aft_a_frame Wire tension, wire out, and wire speed for the Aft A frame sheaves.
- /air_temp_f Temperature data from the RM Young wind sensor in Fahrenheit. Data is derived from data from files in the rmyoung_air directory

/ashtech_attitude - Attitude in NMEA format from the Ashtech ADU5 GPS receiver

/ashtech_gga - Position data in NMEA GGA format from the Ashtech ADU5 GPS receiver

/ashtech_gll - Position data in NMEA GLL format from the Ashtech ADU5 GPS receiver

/ashtech_hdt - Heading data in NMEA HDT format from the Ashtech ADU5 GPS receiver

 $/dew_point_f$ - Dew point temperature derived from air temp

/flomet_a – Flow meter data just upstream of the A TSG and Fluorometer.

/flomet_b – Flow meter data just upstream of the B TSG and Fluorometer.

/fluro_a – Flurometer for A TSG sensor.

/fluro_b - Flurometer for B TSG sensor.

/glonass_gga - Position data in NMEA GGA format from the GLONASS GPS receiver.

/glonass_gll - Position data in NMEA GLL format from the GLONASS GPS receiver.

/gyro_mk27 - Heading data in NMEA HDT format from the Sperry MK27gyro compass

/gyro_mk39 - Heading data in NMEA HDT format from the Sperry MK39 gyro compass

/ibs_waypoints - Waypoints from the Healy's Integrated Bridge System

/isus -

/knudsen - Depth data in a proprietary PKEL format received from Knudsen 320 B/R serial output /met3a sen – Meterology data from the top of the Jackstaff.

/oxygen_a – Oxygen values from A TSG.

/oxygen_b - Oxygen values from A TSG.

- /pcode_aft_gga Position data in NMEA GGA format from the Trimble Centurion receiver located in the Computer lab
- /pcode_aft_gll Position data in NMEA GLL format from the Trimble Centurion receiver located in the Computer lab
- /pcode_aft_vtg Course and speed over ground in NMEA VTG format from the Trimble Centurion receiver located in the Computer lab

- /pcode_aft_zda Time and date data in the NMEA ZDA format. Data retrieved from the Trimble Centurion receiver located in the Computer lab
- /pcode_bridge_gga Position data in NMEA GGA format from the Trimble GPS receiver located on the bridge.
- /pcode_bridge_gll Position data in NMEA GLL format from the Trimble GPS receiver located on the bridge.
- /pcode_bridge_vtg Course and speed over ground data in NMEA VTG format from the Trimble GPS receiver located on the bridge.
- /posmv_gga Position data in NMEA GGA format from the POS/MV
- /posmv_gst Pseudorange error statistics in NMEA GST format from the POS/MV
- /posmv hdt Heading data in NMEA HDT format from the POS/MV
- /posmv_pashr Roll, pitch and heave from POS MV inertial navigation system.
- /posmv_vtg Course and speed over ground in NMEA VTG format from the POS/MV
- /posmv_zda Time and date data in NMEA ZDA format from the POS/MV
- /rmyoung_air Temperature, humidity, air pressure data in NMEA XDR format from the RM Young meteorological system
- /rmyportwind Wind speed and direction data in NMEA WMV format from the RM Young weather vane on the port side of the Healy.
- /rmystbdwind Wind speed and direction data in NMEA WMV format from the RM Young weather vane on the starboard side of the Healy.
- /samos_data Meterology data for SAMOS.
- /sbd_a_frame Wire tension, wire out, and wire speed for the starboard A frame sheaves.
- /seabeam_center Center depth data from the Seabeam 2112
- /solar_radiometers Solar Radiometer data for SW and IW.
- /sperry_speedlog ground/water speed data from the Sperry Speed Log
- /surface_par- Photosynthetic Active Radiation volts and Microeinstens/m2 se from the surface par sensor
- /sv2000 Sound Velocity data from the SV2000 sound velocimeter located in the ADCP BB150 sonar well
- /true_wind_port True wind speed data derived from gyro data and rmyportwind
- /true_wind_stbd True wind speed data derived from gyro data and rmystbdwind
- /tsg_a -Thermosalinograph and fluorometer data from the A TSG instruments in the Bio/Chem Lab.
- /tsg_b -Thermosalinograph and fluorometer data from the B TSG the instruments in the Bio/Chem Lab.
- /winch_data Line out and speed data from the winch system.
- /wind_sen_a Wind data from the Jack Staff.
- /wind_sen_b Wind data from the Yard.

Extra files in the directory SCS_Data:

ACQLOG.LOG - Contains the data as to what occurred with SCS data. It shows when data collection was started and stopped.

Incidents_YYYYMMDD-TTTTTT.DTM - Contains any incident data which were triggered in SCS 3.3b.

sensor_YYYYMMDD-TTTTTT.scf - Contains the configuration file for data collection as configured by SCS 3.3b.

LDS_Data:

/AloftConCam - Contains picture files separated by folders named by YearJulian (YYYYJJJ). The picture files are in 5 minute JPEG format.

/FantailCam - Contains picture files separated by folders named by YearJulian (YYYYJJJ).). The picture files are in 5 minute JPEG format.

- /adu5 Contains the data from the ADU5 GPS.
- /aggps Contains the data from the AG GPS.
- /bgm221 Contains the data from the BGM221 Gravimeter.
- /bgm222 Contains the data from the BGM222 Gravimeter.
- /events Contains the logs of event for different systems.
- /mk27 Contains the data from the MK27 Gravimeter.
- /mk30 Contains the data from the MK30 Gravimeter.
- /posatt Contains the attitude data from the POSMV GPS.
- /posnav Contains the navigation data from the POSMV GPS.

/posreform2sb - Contains the navigation data from the POSMV GPS reformatted for the SeaBeam.

- /sbctr Contains the center beam data from the SeaBeam.
- /sbsv Contains the surface sound velocity data for the SeaBeam.
- /seabeam Contains the data from the SeaBeam.
- /tsg_met Contains the all data from SIO TSG and Met sensors.

Meta_Data:

/elog - Contains the technician's narrative of important events, which occurred both to the network and to individual sensors.

/Systems_Calibration_Data - Contains calibration for various instruments.

/Bridge_Logs

DDMMMYY.doc - The "smooth log" containing events recorded by the bridge watch. DDMMMYYWX.xls - Weather log recorded by the watch. DDMMMYYNAV.xls - Navigation logs recorded by the watch.

Raw:

/adcp75 - 75 KHz ADCP data

/adcp150 - 150 Khz ADCP data

/ctd - CTD data in directories by Cast number.

/knudsenraw - Knudsen 320B/R data

 $/pos_mv$ - POS/MV and other navigation data

/xbt - Expendable Bathythermograph data.

Images:

/Satellite_Image - Contains satellite imagery in jpeg format /dmsp - dmsp folders labeled by Year, Month, Day /hrpt - hrpt folders labeled by Year, Month, Day

ice_observations:

Directories of the Ice Observations taken for each day March 14 to March 25.

Contents by directory:

SCS Data: aft a frame air temp f ashtech attitude ashtech gga ashtech gll ashtech hdt dew point f flomet a flomet b fluro a fluro b glonass gga glonass gll gyro mk27 gyro mk39 ibs waypoints isus knudsen met3a sen oxygen_a oxygen b pcode_aft_gga pcode aft gll pcode aft vtg pcode aft zda pcode bridge gga pcode bridge gll

pcode bridge vtg posmv gga posmv gst posmv hdt posmv pashr posmv vtg posmv zda rmyoung air rmyportwind rmystbdwind samos data seabeam center solar radiometers sperry speedlog stbd a frame surface par surface temp sv2000 true wind port true wind stbd tsg a tsg b wind sen a wind sen b Raw: adcp150 adcp75 ctd

knudsenraw xbt Images: Satellite Images Satellite Images/dmsp Satellite Images/hrpt LDS Data: AloftConnCam FantailCam adu5 aggps bgm221 bgm222 events mk27 mk30 posatt posnav posreform2sb sbctr sbsv seabeam tsg met Meta Data: Bridge Logs Systems_Calibration_Data elog

Merged Data

LDEO Averaged One Minute Data File

The data are summarized into an averaged one (1) minute data file by the LDEO technician. This file takes the average value centered around the minute, (30 seconds either side of the whole minute). The data are the raw values as they are logged. There has been no quality control done on these files. Those wishing more accurate and quality controlled values should process the data in the directories described below in the document.

From the start of HLY0801 until 3/22/8 at 20:11 UTC the "TRUE" winds for the Ultrasonic winds were calculated improperly. You will need to recalculate those. The words in Fields 34, 35, 36, and 39 are wrong until this date. In Fields 54 and 55 are the True winds calculated using the Starboard Ship's RM Young wind bird.

HLY0801_track.csv

6944,2008/03/18 16:08,62.7178957,-174.0047168,213.6,10.1,216.3,71.5,-1.731,-

1.275, 26.5602, 33.093, 0.699, 0.070, 0.000, 0.014, 1.704, 0.170, 0.589, 0.059, 2.93, 3.30, 0.16, 278.38, 257.36, 257.33, 3.31, -

15.87,94.39,1017.99,0.00,276.49,1.76,1.86,5.20,225.43,1.87,8.82,4.44,7.841,-

1.275,0.000,,0.000,0.000,2,-276,-7,0,1,-182,-1,0,99,99

6945,2008/03/18 16:09,62.7155853,-174.0082005,204.9,10.3,204.6,71.0,-1.731,-

1.276,26.5577,33.091,0.625,0.062,0.000,0.014,1.650,0.165,0.570,0.057,3.00,3.40,0.64,277.30,2 57.39,257.45,3.31,-

15.88, 94.30, 1018.03, 0.00, 284.64, 2.73, 2.19, 4.86, 235.55, 2.71, 2.45, 3.64, 7.842, -10.10, 10

1.276,0.000,,0.000,0.000,2,-275,-7,0,1,-183,-1,0,99,99

6946,2008/03/18 16:10,62.7128363,-174.0101985,196.9,10.6,197.2,67.1,-1.726,-

1.278,26.5468,33.078,0.624,0.062,0.000,0.014,1.632,0.163,0.555,0.055,2.94,3.30,1.20,278.48,2 57.45,257.44,3.31,-

15.89,94.21,1018.02,0.00,274.01,2.81,349.11,5.50,245.37,3.28,343.65,3.96,7.812,-

1.278,0.000,,0.000,0.000,2,-274,-7,0,1,-185,-1,0,99,99

Field	DATA	Example	UNITS
01	ID	6944	sample count
02	date	2008/03/18 16:08	date & time UTC (year/month/day hour:minute)
03	lat	62.7178957	POSMV Latitude (decimal degrees)
04	lon	-174.0047168	POSMV Longitude (decimal degrees)
05	cog	213.6	POSMV Course Over Ground (angular distance from 0 (North) clockwise through 360, 1 minute average)
06	sog	10.1	POSMV Speed Over Ground (Knots, 1 minute average
07	heading	216.3	POSMV ship heading(angular distance from 0 (North) clockwise through 360, 1 minute average)
08	depth	71.5	Seabeam centerbeam depth(meters, 1 minute average)
09	SST	-1.731	SBE3s RemoteTemperature, Sea Chest intake (Celsius, 1 minute average)
10	TSG InTemp	-1.275	SBE45 internal temperature (Celsius, 1 minute average)
11	TSG_Cond	26.5602	SBE45 Water Conductivity (millisiemens/centimeter, 1 minute average)
12	TSG Sal	33.093	SBE45 Water Salinity (PSU, 1 minute average)
13	SCF-FL	0.699	SCF Fluorometer (Ug/l, 1 minute average)
14	SCF-FL-V	0.070	SCF Fluorometer (Volts, 1 minute average)
15	SCF-Turb	0.000	SCF Turbidity (NTU, 1 minute average)
16	SCF-Turb-V	0.014	SCF Turbidity (Volts, 1 minute average)
17	SCUFA-FL	1.704	SCUFA Fluorometer (Ug/l, 1 minute average)
18	SCUFA-FL-V	0.170	SCUFA Fluorometer (Volts, 1 minute average)
19	SCUFA-Turb	0.589	SCUFA Turbidity (NTU, 1 minute average)
20	SCUFA-Turb-V	0.059	SCUFA Turbidity (Volts, 1 minute average)
21	tsg_flow_A	2.93	Flowmeter in-line with PSTSGA, PSOXA, PSFLA (LitersPerMinute, 1 minute average)
22	tsg_flow_B	3.30	Flowmeter in-line with PSFLB (LitersPerMinute, 1 minute average)
23	SWR	0.16	Short Wave Radiation (W/M ² , 1 minute average)
24	LWR	278.38	Long Wave Radiation (W/M ² , 1 minute average)
25	LWR_Dome_T	257.36	LWD Dome Temperature (Deg K, 1 minute average)
26	LWR_Body_T	257.33	LWD Body Temperature (Deg K, 1 minute average)
27	PAR	3.31	Surface PAR (uE/Sec/M ² , 1 minute average)
28	MET3A_Temp	-15.87	MET3A Air Temperature (Deg C, 1 minute average)
29	MET3A_RH	94.39	MET3A Relative Humidity (%, 1 minute average)
30	MET3A_Baro	1017.99	MET3A Barometric Pressure (millibars, 1 minute average)
31	MET3A Precip	0.00	MET3A Precipitation (mm, 1 minute average)
32	JS_WndDirR	276.49	Jackstaff Relative wind direction (deg, 1 minute average)
33	JS_WndSpdR	1.76	Jackstaff Relative wind speed (m/s, 1 minute average)
34	JS_WndDirT	1.86	Jackstaff True wind direction (deg, 1 minute average)
35	JS_WndSpdT	5.20	Jackstaff True wind speed (m/s, 1 minute average)
36	MM_WndDirR	225.43	Main Mast Relative wind direction (deg, 1 minute
27	MM W- 10 1D	1.07	average)
37	MM_WndSpdR	1.87	Main Mast Relative wind speed (m/s, 1 minute average)
38	MM_WndDirT	8.82	Main Mast True wind direction (deg, 1 minute average)

Field	DATA	Example	UNITS
39	MM_WndSpdT	4.44	Main Mast True wind speed (m/s, 1 minute average)
40	SBE_Oxy	7.841	SBE-43 Oxygen(ml/l, 1 minute average)
41	SBE_Oxy_T	-1.275	SBE-43 Oxygen Temperature(Deg C, 1 minute average)
42	Optode_Oxy	0.000	Optode Oxygen(ml/l, 1 minute average)
43	Optode_Oxy_T		Optode Oxygen Temperature(Deg C, 1 minute average)
44	Isus_1	0.000	Isus Aux 1(Volts, 1 minute average)
45	Isus_2	0.000	Isus Aux 2(Volts, 1 minute average)
46	WinchAft	2	Aft A-Frame Winch number
47	TensionAft	-276	Aft A-Frame Winch Wire tension(Pounds, 1 minute
			average)
48	WireOutAft	-7	Aft A-Frame Winch Wire out (Meters, 1 minute average)
49	SpeedAft	0	Aft A-Frame Winch Wire speed(Meters/minute, 1 minute
			average)
50	WinchSbd	1	Starboard A-Frame Winch number
51	TensionSbd	-182	Starboard A-Frame Winch Wire tension(Pounds, 1 minute
			average)
52	WireOutSbd	-1	Starboard A-Frame Winch Wire out (Meters, 1 minute
			average)
53	SpeedSbd	0	Starboard A-Frame Winch Wire speed(Meters/minute, 1
			minute average)
54	StbdWndSpdT	99	RMYoung Wind Speed, starboard(Knots, 1 minute
			average)
55	StbdWndDirT	99	RMYoung Wind Direction, starboard(angular distance
			from 0 (North) clockwise through 360,
			1 minute average)

File Formats of Data Collected Underweigh

In the sections below for each data type the directory name is listed, then an example file name, and then 3 lines from that file. This part is followed by a table that lists the data contained in the string.

./SCS_Data

The following data types are to be found in the SCS_Data directory.

Underway Data

Meteorology Data

R. M. Young Sensors

R.M. Young Air Temperatures

Temperature, humidity, air pressure data in NMEA XDR format from the RM Young meteorological system.

./rmyoung_air

RMYoung-Air_20070414-182437.Raw

04/14/2007,18:24:40.693,\$WIXDR,C, -6.62,C,1,H, 89,P,1,C, -8.06,C,1,P, 994.24,B,2,D,-35,M,3hh 04/14/2007,18:24:46.677,\$WIXDR,C, -6.49,C,1,H, 89,P,1,C, -7.93,C,1,P, 994.32,B,2,D,-35,M,3hh 04/14/2007,18:24:49.678,\$WIXDR,C, -6.49,C,1,H, 89,P,1,C, -7.93,C,1,P, 994.24,B,2,D,-35,M,3hh

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/14/2007	mm/dd/year
2	SCS logged Time GMT	18:24:49.678	hh:mm:ss.sss
3	NMEA header	\$WIXDR	ASCI text
4	Data type for field 5	С	Temperature
5	Air Temperature	-6.62	Celsius
6		С	
7		1	
8	Data Type for field 9	Н	ASCII character
9	Relative Humidity	89	Percent
10		Р	
11		1	
12	Data type for field 13	С	
13	Dew Point Temperature	-8.06	Celsius
14		С	
15		1	
16	Data type for field 17	Р	Pressure
17	Barometer	994.24	hPa
18		В	
19		2	
20	Data type for field 20	D	
21	Elevation	-35	Meters
22		M	
23		3hh	

R.M. Young Air Temperatures, Fahrenheit (Derived)

Temperature data from the RM Young wind sensor in Fahrenheit. Data is derived from data from files in the rmyoung_air directory.

./air_temp_f

AirTemp-F_20070413-000000.Raw

04/13/2007,00:00:02.074,\$DERIV,28.83,-1.76,

04/13/2007,00:00:05.074,\$DERIV,28.62,-1.88,

04/13/2007,00:00:08.074,\$DERIV,28.62,-1.88,

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/13/2007	mm/dd/year
2	SCS logged Time GMT	00:00:02.074	hh:mm:ss.sss
3	NMEA header	\$DERIV	ASCI text
4	Air Temperature	28.83	Fahrenheit
5	Air Temperature	-1.76	Celsius

R.M. Young Wind. Port

Wind speed and direction data in NMEA WMV format from the RM Young weather vane on the port side of the Healy.

./rmyportwind

RMYPortWind_20070414-182437.Raw

04/14/2007,18:24:38.490,\$WIMWV,033,R,028.1,N,A*36

04/14/2007,18:24:39.505,\$WIMWV,041,R,028.7,N,A*35

04/14/2007,18:24:40.521,\$WIMWV,034,R,029.4,N,A*35

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/14/2007	mm/dd/year
2	SCS logged Time GMT	18:24:38.490	hh:mm:ss.sss
3	NMEA header	\$WIMWV	ASCII text
4	Wind Direction	033	Degrees
5	R= Relative	R	ASCII character
6	Wind Speed	028.1	Knots
7	N= Knots	N	ASCII character
8	A= Valid Data	Α	ASCII character
9	Check sum	*36	ASCII text

R.M. Young Wind, Starboard

Wind speed and direction data in NMEA WMV format from the RM Young weather vane on the starboard side of the Healy.

./rmstbwind

RMYStbdWind_20070414-182437.Raw

04/14/2007,18:24:38.677,\$WIMWV,044,R,025.4,N,A*3E

04/14/2007,18:24:39.693,\$WIMWV,045,R,025.6,N,A*3D

04/14/2007, 18:24:40.724, \$WIMWV, 042, R, 025.2, N, A*3E

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/14/2007	mm/dd/year
2	SCS logged Time GMT	18:24:38.677	hh:mm:ss.sss
3	NMEA header	\$WIMWV	ASCII text
4	Wind Direction	044	Degrees
5	R= Relative	R	ASCII character
6	Wind Speed	025.4	Knots
7	N= Knots	N	ASCII character
8	A= Valid Data	А	ASCII character
9	Check sum	*3E	ASCII text

R.M. Young Wind True, Port (Derived)

True wind speed data derived from gyro data and rmyportwind.

./true_wind_port

PortWnd-T_20070415-000000.Raw

04/15/2007,00:00:03.927,\$DERIV,18.59,4.57,30.6,12,12.5,343.7,344.2, 04/15/2007,00:00:05.927,\$DERIV,19.69,10.28,31.4,16,12.5,344.2,344.2, 04/15/2007,00:00:07.927,\$DERIV,19.85,3.73,31.8,12,12.4,344.1,344.2,

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	,00:00:03.927	hh:mm:ss.sss
3	NMEA header	\$DERIV	ASCII text
4	Wind Speed derived	18.59	knots
5	Wind Directions derived	4.57	degrees
6	Wind Speed relative	30.6	knots
7	Wind Direction relative	12	direction
8	Speed over ground (pos mv)	12.5	knots
9	Course over ground (pos mv)	343.7	Degrees
10	Heading (pos mv)	344.2	Degrees

R.M. Young Wind True, Starboard (Derived)

True wind speed data derived from gyro data and rmystbdwind. ./true_wind_stbd

StbdWnd-T 20070415-000000.*Raw*

04/15/2007,00:00:03.396,\$DERIV,17.33,3.47,29.4,11,12.5,343.7,344.2,

04/15/2007,00:00:05.396,\$DERIV,17.05,15.29,28.5,18,12.5,344.2,344.2,

04/15/2007,00:00:07.396,\$DERIV,19.99,13.31,31.4,18,12.4,344.1,344.2,

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:07.396	hh:mm:ss.sss
3	NMEA header	\$DERIV	ASCI text
4	Wind Speed derived	19.99	knots
5	Wind Directions derived	13.31	degrees
6	Wind Speed relative	31.4	knots
7	Wind Direction relative	18	direction
8	Speed over ground (pos mv)	12.4	knots
9	Course over ground (pos mv)	344.1	Degrees
10	Heading (pos mv)	344.2	degrees

Dew Point (Derived)

Dew Point derived from rmyoung_air.

./dew_point_f

DewPt-F_20070414-182437.Raw 04/14/2007,18:24:41.099,\$DERIV,17.49,-8.06, 04/14/2007,18:24:44.099,\$DERIV,17.73,-7.93, 04/14/2007,18:24:47.099,\$DERIV,17.73,-7.93,

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/14/2007	mm/dd/year
2	SCS logged Time GMT	18:24:47.099	hh:mm:ss.sss
3	NMEA header	\$DERIV	ASCII text
4	Air Temperature	17.73	Fahrenheit
5	Air Temperature	-7.93	Celsius

Jack Staff Meteorological Senors

Weather Sensors on top of the Jack Staff. ./met3a_sen

MET3A-Sen_20080312-000000.Raw

03/12/2008,21:02:17.810,\$PSMEA,-6.29,83.89,1018.43,14.17*5C

03/12/2008,21:02:19.810,\$PSMEA,-6.28,83.90,1018.45,14.18*5C

03/12/2008,21:02:21.810,\$PSMEA,-6.28,83.90,1018.45,14.17*53

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/12/2008	mm/dd/year
2	SCS logged Time GMT	21:02:17.810	hh:mm:ss.sss
3	NMEA header	\$PSMEA	ASCII text
4	Air Temperature	-6.29	Celsius
5	Relative Humidity	83.89	%
6	Barometric Pressure	1018.45	milibars
7	Precipitation, total accumulation	14.17	milimeters
8	Check sum	*5C	ASCII text

Jack Staff Wind Sensors

Ultrasonic Wind Sensors on top of the Jack Staff.

From the start of HLY0801 until 3/22/8 at 20:11 UTC the "TRUE" winds for the Ultrasonic winds were calculated improperly. You will need to recalculate those.

./wind_sen_a

WIND-SEN-A_20080312-000000.Raw

03/12/2008,21:18:00.841,\$PSWDA,52.45,13.92,341.17,14.81*62

03/12/2008,21:18:02.856,\$PSWDA,53.55,14.15,333.55,15.14*64

03/12/2008,21:18:04.841,\$PSWDA,52.27,14.48,337.10,14.35*6F

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/12/2008	mm/dd/year
2	SCS logged Time GMT	21:18:00.841	hh:mm:ss.sss
3	NMEA header	\$PSWDA	ASCII text
4	True Wind Direction	-52.45	degrees
5	Relative Wind Speed	13.92	m/s
6	Relative Wind Direction	341.17	degrees
7	True Wind Speed	14.81	m/s
8	Check sum	*62	ASCII text

Yard Arm Wind Senors

Ultrasonic Wind Sensors on top of the Jack Staff.

From the start of HLY0801 until 3/22/8 at 20:11 UTC the "TRUE" winds for the Ultrasonic winds were calculated improperly. You will need to recalculate those

/wind_sen_b

WIND-SEN-B_20080312-000000.Raw

03/12/2008,21:49:48.919,\$PSWDB,45.64,15.53,325.29,14.45*68

03/12/2008,21:49:50.919,\$PSWDB,46.55,15.48,328.82,13.39*63

03/12/2008,21:49:52.919,\$PSWDB,46.36,15.48,326.14,14.68*64

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/12/2008	mm/dd/year
2	SCS logged Time GMT	21:49:48.919	hh:mm:ss.sss
3	NMEA header	\$PSWDB	ASCII text
4	True Wind Direction	45.64	degrees
5	Relative Wind Speed	15.53	m/s
6	Relative Wind Direction	325.29	degrees
7	True Wind Speed	14.45	m/s
8	Check sum	*68	ASCII text

Solar Radiometers

Photosynthetic Active Radiation (PAR) Sensor

Photosynthetic Active Radiation Microeinstens/m2 sec and volts from the surface PAR sensor on top of HCO.

./suface_par

Surface-PAR_20080312-000000.Raw

03/12/2008,22:02:46.872,\$PSSPA,1749.51,1.056*4C

03/12/2008,22:02:48.872,\$PSSPA,1755.43,1.060*47

03/12/2008,22:02:50.888,\$PSSPA,1755.43,1.060*47

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/12/2008	mm/dd/year
2	SCS logged Time GMT	22:02:46.872	hh:mm:ss.sss
3	NMEA header	\$PSSPA	ASCII text
4	Surface PAR	1749.51	MicroEinstiens sec /m*2
5	Surface PAR	1.056	Volts
6	Check sum	*4C	ASCII text

Solar Radiometers (Short and Long Wave), Pyranometer and Pyrgeometer

Solar Radiometers data from the sensors on top of HCO. The short wave radiometer is the Pyranometer and the Long wave radiometer is the Pyrgeometer.

/solar_radiometers

SRM 20080314-000000.Raw

03/14/2008,12:31:43.329,\$PSSRA,1.20,0.010,338.30,0.034,276.02,1.192,275.97,1.194*44 03/14/2008,12:31:45.329,\$PSSRA,1.20,0.010,338.30,0.034,276.02,1.192,275.97,1.194*44 03/14/2008,12:31:47.328,\$PSSRA,1.20,0.010,339.20,0.037,276.02,1.192,275.97,1.194*47

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/14/2008	mm/dd/year
2	SCS logged Time GMT	12:31:43.329	hh:mm:ss.sss
3	NMEA header	\$PSSRA	ASCII text
4	Short Wave Radiation	1.20	W/m*2
5	Short Wave Radiation, RAW	0.010	millivolts
6	Long Wave Radiation (LWR)	338.30	W/m*2
7	LWR, RAW	0.034	millivolts
8	LWR, Dome temperature	276.02	Degrees Kelvin
9	LWR, Some temp, RAW	1.192	volts
10	LWR, Body temperature	275.97	Degrees Kelvin
11	LWR, Body temp, RAW	1.194	volts
12	Check sum	*44	ASCII text

Oceanographic Data

Thermosalinograph / Fluorometer

Forward Thermosalinograph / Fluorometer

Thermosalinograph and sound velocity data from the seawater intake.

./tsg_fwd

TSGFWD_20080313-000000.

03/13/2008,03:11:07.183, 2.0196, 2.79254, 31.4173, 1453.481

03/13/2008,03:11:09.183, 2.0203, 2.79263, 31.4177, 1453.484

03/13/2008,03:11:11.168, 2.0210, 2.79274, 31.4184, 1453.489

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/13/2008	mm/dd/year
2	SCS logged Time GMT	03:11:07.183	hh:mm:ss.sss
3	RemoteTemperature (Sea Chest intake)	2.0196	Celsius
4	Conductivity	2.79254	Siemens/meter
5	Salinity	31.4173	PSU
6	Sound Velocity	1453.481	Meters per Second (m/s)

TSG A

Thermosalinograph data from the A TSG instruments in the Bio Chem Lab.

/tsg_a

TSG-A_20080313-000000.Raw

03/13/2008,04:46:03.355,\$PSTSA,2.565,28.4522,31.526,1456.01*7E 03/13/2008,04:46:05.340,\$PSTSA,2.566,28.4529,31.526,1456.02*75

03/13/2008,04:46:07.355,\$PSTSA,2.565,28.4519,31.525,1456.01*75

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/13/2008	mm/dd/year
2	SCS logged Time GMT	04:46:03.355	hh:mm:ss.sss
3	NEMA header	,\$PSTSA	ASCII text
4	Temperature	2.565	Celsius
5	Conductivity	28.4522	Siemens/meter
6	Salinity	31.526	PSU
7	Sound Velocity	1456.01	Meters per Second (m/s)
8	Check sum	*7E	ASCII text

TSG B

Thermosalinograph data from the B TSG instruments in the Bio Chem Lab.

/tsg_b

TSG-B_20080313-000000.Raw

03/13/2008,04:46:03.355,\$PSTSB,2.565,28.4522,31.526,1456.01*7E 03/13/2008,04:46:05.340,\$PSTSB,2.566,28.4529,31.526,1456.02*75 03/13/2008,04:46:07.355,\$PSTSB,2.565,28.4519,31.525,1456.01*75

FIELD	DATA	Example	UNITS	
1	SCS logged Date	03/13/2008	mm/dd/year	
2	SCS logged Time GMT	04:46:03.355	hh:mm:ss.sss	
3	NEMA header	,\$PSTSB	ASCII text	
4	Temperature	2.565	Celsius	
5	Conductivity	28.4522	Siemens/meter	
6	Salinity	31.526	PSU	
7	Sound Velocity	1456.01	Meters per Second (m/s)	
8	Check sum	*7E	ASCII text	

Sea Surface Temperature

Sea surface temperature from the Science sea water intake.. /Surface_temp

Sea-Surface_20080313-000000.Raw

03/13/2008,05:46:40.402,\$PSSTA,2.039,2945.900*7E

03/13/2008,05:46:42.402,\$PSSTA,2.039,2945.900*7E

03/13/2008,05:46:44.402,\$PSSTA,2.039,2945.900*7E

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/13/2008	mm/dd/year
2	SCS logged Time GMT	05:46:40.402	hh:mm:ss.sss
3	NEMA header	\$PSSTA	ASCII text
4	Surface temperature (Sea Chest)	2.039	Celsius
5	Temperature, RAW	2945.900	volts
6	Check sum	*7E	ASCII text

Theromsalinograph Flowmeter A

Flow meter A data from the A TSG instruments in the Bio/Chem Lab. /flomet_a

FlowMeter-A_20080314-000000.Raw

03/14/2008,13:44:44.640,\$PSFMA,2.51,38.000*44

03/14/2008,13:44:46.624,\$PSFMA,2.64,40.000*4D

03/14/2008,13:44:48.624,\$PSFMA,2.64,40.000*4D

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/14/2008	mm/dd/year
2	SCS logged Time GMT	13:44:44.640	hh:mm:ss.sss
3	NEMA header	\$PSFMA	ASCII text
4	Flow meter	2.51	Liters/minute
5	Flow meter, RAW	38.000	frequency
6	Check sum	*44	ASCII text

Theromsalinograph Flowmeter B

Flowmeter B data from the B TSG instruments in the Bio/Chem Lab. /flomet_b

TSG-B_20080313-000000.Raw

03/13/2008,02:51:49.277,\$PSFMB,2.91,15.000*44

03/13/2008,02:51:51.277,\$PSFMB,2.91,15.000*44

03/13/2008,02:51:53.261,\$PSFMB,2.91,15.000*44

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/13/2008	mm/dd/year
2	SCS logged Time GMT	02:51:49	hh:mm:ss.sss
3	NEMA header	\$PSFMB	ASCII text
4	Flowmeter	2.91	Liters/minute
5	Flowmeter, RAW	15.000	frequency
6	Check sum	*44	ASCII text

Oxygen Sensor A

Oxygen A data from the A TSG instruments in the Bio/Chem Lab. /oxygen_a

OXYGEN-A_20080313-000000.Raw

03/13/2008,05:25:28.371,\$PSOXA,7.265,2.922,2.576,2.576*58

03/13/2008,05:25:30.386,\$PSOXA,7.265,2.922,2.577,2.577*58

03/13/2008,05:25:32.371,\$PSOXA,7.268,2.923,2.576,2.576*54

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/13/2008	mm/dd/year
2	SCS logged Time GMT	05:25:28.371	hh:mm:ss.sss
3	NEMA header	\$PSOXA	ASCII text
4	Oxygen	7.265	ml/l
5	Oxygen, RAW	2.922	
6	Oxygen Temperature	2.576	Celsius
7	Oxygen Temperature, Raw	2.576	volts
8	Check sum	*58	ASCII text

Oxygen Sensor B

Oxygen B data from the B TSG instruments in the Bio/Chem Lab. NOT USED on HLY0801

/oxygen_b

OXYGEN-B 20080313-000000.Raw

03/13/2008,05:25:28.371,\$PSOXB,7.265,2.922,2.576,2.576*58

03/13/2008,05:25:30.386,\$PSOXB,7.265,2.922,2.577,2.577*58

03/13/2008,05:25:32.371,\$PSOXB,7.268,2.923,2.576,2.576*54

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/13/2008	mm/dd/year
2	SCS logged Time GMT	05:25:28.371	hh:mm:ss.sss
3	NEMA header	\$PSOXB	ASCII text
4	Oxygen	7.265	ml/l
5	Oxygen, RAW	2.922	
6	Oxygen Temperature	2.576	Celsius
7	Oxygen Temperature, Raw	2.576	volts
8	Check sum	*58	ASCII text

Theromsalinograph Flurometer A

Flurometer A data from the A TSG instruments in the Bio/Chem Lab. /fluro_a

Fluro-A_20080313-000000.Raw

03/13/2008,03:19:57.277,\$PSFLA,0.330,0.033,0.000, 0.010*49

03/13/2008,03:19:59.277,\$PSFLA,0.330,0.033,0.000,0.010*49

03/13/2008,03:20:01.277,\$PSFLA,0.360,0.036,0.000,0.010*49

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/13/2008	mm/dd/year
2	SCS logged Time GMT	03:19:57.277	hh:mm:ss.sss
3	NEMA header	\$PSFLA	ASCII text
4	Flurometer	0.330	Ug/l
5	Flrometer, RAW	0.033	volts
6	Turbidity	0.000	NTU
7	Turbidity, RAW	0.010	volts
8	Check sum	*49	ASCII text

Theromsalinograph Flurometer B

Flurometer B data from the B TSG instruments in the Bio/Chem Lab. /fluro_b

Fluro-B_20080313-000000.Raw

3/13/2008,03:24:49.293,\$PSFLB,0.910,0.091,0.200,0.020*4B

03/13/2008,03:24:51.293,\$PSFLB,0.910,0.091,0.200,0.020*4B

03/13/2008,03:24:53.308,\$PSFLB,0.910,0.091,0.200,0.020*4B

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/13/2008	mm/dd/year
2	SCS logged Time GMT	03:24:49.293	hh:mm:ss.sss
3	NEMA header	\$PSFLB	ASCII text
4	Flurometer	0.910	Ug/l
5	Flrometer, RAW	0.091	volts
6	Turbidity	0.200	NTU
7	Turbidity, RAW	0.020	volts
8	Check sum	*4B	ASCII text

Transmissometer

Transmissometer TSG instruments in the Bio/Chem Lab. /trans

Fluro-B 20080313-000000.Raw

3/13/2008,03:24:49.293,\$PSFLB,0.910,0.091,0.200,0.020*4B

03/13/2008, 03:24:51.293, \$PSFLB, 0.910, 0.091, 0.200, 0.020*4B

03/13/2008,03:24:53.308,\$PSFLB,0.910,0.091,0.200,0.020*4B

THIS IS YET TO BE FORMATTED AND LOGGED

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/13/2008	mm/dd/year
2	SCS logged Time GMT	03:24:49.293	hh:mm:ss.sss
3	NEMA header	\$PSFLB	ASCII text
4	Flurometer	0.910	Ug/l
5	Flrometer, RAW	0.091	volts
	Turbidity	0.200	NTU
	Turbidity, RAW	0.020	volts
6	Check sum	*4B	ASCII text

ISUS Nitrate Sensor

ISUS Nitrate Sensor TSG instruments in the Bio/Chem Lab. NOT USED on HLY0801

/isus

Isus_20080313-000000.Raw

03/13/2008,00:01:09.247,\$PSNTA,0.000,0.000*58

03/13/2008,00:01:11.247,\$PSNTA,0.000,0.000*58

03/13/2008,00:01:13.247,\$PSNTA,0.000,0.000*58

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/13/2008	mm/dd/year
2	SCS logged Time GMT	00:01:09.247	hh:mm:ss.sss
3	NEMA header	\$PSNTA	ASCII text
4	ISUS Aux 1	0.000	volts
5	ISUS Aux 2	0.000	volts
6	Check sum	*58	ASCII text

Sonar Data

Seabeam 2112 Center Beam

Center depth data derived from the Seabeam 2112 data on the POSMVNAV computer.

./seabeam_center

Seabeam-Centerbeam 20070414-182437.Raw

04/14/2007,18:24:38.427,\$SBCTR,2007,4,14,18:24:35.713,58.119110,-169.839278,70.70,60*00 04/14/2007,18:24:40.177,\$SBCTR,2007,4,14,18:24:37.213,58.119152,-169.839367,70.49,61*00 04/14/2007,18:24:40.615,\$SBCTR,2007,4,14,18:24:38.734,58.119193,-169.839452,70.92,60*00

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/14/2007	mm/dd/year
2	SCS logged Time GMT	18:24:40.615	hh:mm:ss.sss
3	NMEA header	\$SBCTR	ASCII text
4	Seabeam Date	2007,	Year
5	Seabeam Date	4	month
6	Seabeam Date	14	day
7	Seabeam Time	18:24:38.734	hh:mm:ss.sss
8	Latitude	58.119193	Degrees
9	Longitude	-169.839452	Degrees
10	Depth	70.92	meters
11	Number of Beams	60	
12	Check sum	*00	

Knudsen

3.5 kHz

Depth data in a proprietary PKEL format received from Knudsen 320 B/R serial output.

./knudsen

Knudsen_20070414-182437.Raw

04/14/2007,18:24:38.099,\$PKEL99, ,14042007,182524.248,00192,HF,00.00,0,+008.50, LF,73.24,1,+008.50,1500, , ,58 07.123897N,169 50.315830W,1060*12

04/14/2007,18:24:38.349,\$PKEL99,

,14042007,182525.759,00191,HF,00.00,0,+008.50,LF,73.22,1,+008.50,1500,-----, ,58 07.127267N,169 50.322883W,0565*1F

04/14/2007,18:24:39.865,\$PKEL99,

```
,14042007,182527.269,00191,HF,00.00,0,+008.50,LF,73.22,1,+008.50,1500, , ,58 07.128948N,169 50.326409W,1078*10
```

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/14/2007	mm/dd/year
2	SCS logged Time GMT	18:24:39.865	hh:mm:ss.sss
3	NMEA header	\$PKEL99	ASCII text
4	Record Number???		
5	Knudsen Date	14042007	DDMMYYYY
6	Knudsen Time	182527.269	HHMMSS.sss
7		00191	
8	HF Header (12 kHz)	HF	ASCII text
9	HF Depth to Surface	00.00	Meters *
10	HF Draft	,+008.50	Meters
11	LF Header	LF	ASCII text
12	LF Depth to Surface	73.22	Meters *
13	LF Depth Valid Flag	1	ASCII integer
14	LF Draft	+008.50	Meters
15	Sound Speed	1500	Meters Per Second**
18	Latitude	58 07.128948N	DD MM.MMMMM***
19	Longitude	169 50.326409W	DDD MM.MMMMMM***
20	Position Latency	1078	

HLY0801 Data Synopsis

	21	Checksum	*10	
*	Knudsen	depth is currently set for 2	XXXXXXX Meters	

** Knudsen default sound speed 1500 meters/sec.

*** Current GPS source is the POS/MV

Winch data

Starboard A-Frame Winch Data

1 second data from the Starboard A Frame winch data output.

./sbd_a_frame

Stbd-A-Frame_20070418-000000.Raw

04/18/2007,06:13:18.281,01, 890, , 36, , -27, ,0000

04/18/2007,06:13:19.250,01, 890, 35, -28, 0000

04/18/2007,06:13:20.235,01, 900, 35, -28, 0000

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/18/2007	mm/dd/year
2	SCS logged Time GMT	06:13:20.235	hh:mm:ss.sss
3	Winch number	01	
4	Wire tension	900	Pounds
5	Wire out	35	Meters
7	Wire speed	-28	Meters/minute

Aft A-Frame Winch Data

1 second data from the Aft A Frame winch data output.

./aft_a_frame

Aft-A-Frame_20070418-000000.Raw

04/18/2007,08:46:45.844,02, -160, , 31, , 58, ,0000

04/18/2007,08:46:46.844,02, -160, , 32, , 60, ,0000

04/18/2007,08:46:47.812,02, -160, , 33, , 60, ,0000

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/18/2007	mm/dd/year
2	SCS logged Time GMT	08:46:47.812	hh:mm:ss.sss
3	Winch number	02	
4	Wire tension	-160	Pounds
5	Wire out	33	Meters
7	Wire speed	60	Meters/minute

Navigational Data

POSMV

POSMV GGA

Position data in NMEA GGA format from the POS/MV.

./posmv_gga

POSMV-GGA_20070415-000000.Raw

04/15/2007,00:00:03.052,\$INGGA,000002.737,5830.47054,N,17012.64182,W,2,08,1.0,1.80,M,,,4,0297*07

04/15/2007,00:00:04.052,\$INGGA,000003.737,5830.47385,N,17012.64365,W,2,08,1.0,1.76,M,,,5,0297*0 A

04/15/2007,00:00:05.052,\$INGGA,000004.737,5830.47716,N,17012.64550,W,2,08,1.0,1.71,M,,,6,0297*07

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.052	hh:mm:ss.sss
3	NMEA header	\$INGGA	ASCII text
4	GPS time at position GMT	000004.737	hhmmss.sss
5	Latitude	5830.47716	ddmm.mmmmm
6	North (N) or South(S)	N	ASCII character
7	Longitude	17012.64550	dddmm.mmmmm
8	East (E) or West (W)	W	ASCII character
9	GPS Quality: 1 = GPS2=DGPS	2	
10	Number of GPS Satellites Used	08	
11	HDOP (horizontal dilution of precision)	1.0	
12	Antenna height	1.71	meters
13	M for Meters	М	
14	Geoidal Height		meters
15	M for Meters		
16	Differential reference station ID	0297	
17	Checksum	*07	1

POSMV Psuedo Noise

Psuedorange error statistics in NMEA GST format from the POS/MV.

./posmv_gst

POSMV-Pseudo-Noise_20070415-000000.Raw 04/15/2007,00:00:02.990,\$INGST,000002.737,,0.6,0.4,22.3,0.4,0.6,0.8*63 04/15/2007,00:00:03.990,\$INGST,000003.737,,0.6,0.4,22.3,0.4,0.6,0.8*62 04/15/2007,00:00:04.990,\$INGST,000004.737,,0.6,0.4,22.3,0.4,0.6,0.8*65

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.052	hh:mm:ss.sss
3	NMEA header	\$INGST	ASCII text
4	GPS time at position GMT	000004.737	hhmmss.sss
5			
6	Smjr.smjr	0.6	meters
7	Smnr.smnr	0.4	meters
8	000.0	22.3	
9	1.1	0.4	meters
10	y.y	0.6	meters
11	Standard deviation of altitude (a.a)	0.8	meters
12	Checksum	*65	ACII text

POSMV HDT

Heading data in NMEA HDT format from the POS/MV.

./posmv_hdt

POSMV-HDT_20070415-000000.Raw

04/15/2007,00:00:03.083,\$INHDT,344.2,T*24

04/15/2007,00:00:04.083,\$INHDT,344.2,T*24

04/15/2007,00:00:05.083,\$INHDT,344.2,T*24

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.083	hh:mm:ss.sss
3	NMEA header	\$INHDT	ASCII text
4	Heading	344.2	Degrees
5	True(T) or Magnetic(M)	Т	ASCII character
6	Checksum	*24	ASCII text

POSMV PASHR

Pitch and Roll data in NMEA PASHR format from the POS/MV.

./posmv_pashr

POSMV-PASHR_20070415-000000.Raw

04/15/2007,00:00:02.912,\$PASHR,000002.737,344.17,T,-0.21,0.10,-0.02,0.017,0.017,0.011,2,1*17 04/15/2007,00:00:03.912,\$PASHR,000003.737,344.19,T,-0.22,0.10,-0.02,0.017,0.017,0.011,2,1*1B 04/15/2007,00:00:04.912,\$PASHR,000004.737,344.20,T,-0.24,0.10,-0.02,0.017,0.017,0.011,2,1*10

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.052	hh:mm:ss.sss
3	NMEA header	\$PASHR	ASCII text
4	Time GMT	000004.737	hhmmss.sss
5	Heading	344.20	heading
6	True	Т	ASCII character
7	Roll	-0.24	Degrees
8	Pitch	0.10	Degrees
9	Heave	-0.02	Degrees
10	Accuracy roll	0.017	Degrees
11	Accuracy pitch	0.017	Degrees
12	Accuracy heading	0.011	Degrees
	Accuracy of heading 0-no aiding, 1-GPS	2	
13	2= GPS & GAMS		ASCII integer
14	IMU 0= out 1= satisfactory	1	ASCII character
15	Check Sum	*10	ASCI text

POSMV VTG

Course and speed over ground in NMEA VTG format from the POS/MV.

./posmv_vtg

POSMV-VTG_20070415-000000.Raw

04/15/2007,00:00:03.130,\$INVTG,343.7,T,,M,12.5,N,23.1,K*75

04/15/2007,00:00:04.130,\$INVTG,344.0,T,,M,12.5,N,23.1,K*75

04/15/2007,00:00:05.115,\$INVTG,344.2,T,,M,12.5,N,23.1,K*77

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.115	hh:mm:ss.sss
2	NMEA header	\$INVTG	ASCII text
3	Heading	344.2	Degrees
4	Degrees true (T)	Т	ASCII character
5	Heading		Degrees
6	Degrees magnetic	М	ASCII character
7	Ship Speed	12.5	knots
8	N=Knots	N	ASCII character
9	Ship Speed	23.1	km/hr
10	K=KM per hour	K	ASCII character
11	Check sum	*77	ASCII text

POSMV ZDA

Time and date data in NMEA ZDA format from the POS/MV.

./posm_zda

POSMV-ZDA_20070415-000000.Raw

04/15/2007,00:00:03.162,\$INZDA,000003.0016,15,04,2007,,*77

04/15/2007,00:00:04.162,\$INZDA,000004.0016,15,04,2007,,*70

04/15/2007,00:00:05.162,\$INZDA,000005.0016,15,04,2007,,*71

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.162	hh:mm:ss.sss
2	NMEA header	\$INZDA	ASCII text
3	Time UTC	000005.0016	HHMMSS.ssss
4	Day	15	DD
5	Month	04	MM
6	Year	2007	Year
7	??		??
8	??	00	??
9	Checksum	*71	ASCII text

Ashtech GPS

Ashtech Attitude

Attitude in NMEA format from the Ashtech ADU5 GPS receiver.

./ashtech_attiude

Ashtech-Attitude_20070415-000000.Raw

04/15/2007,00:00:03.490,\$GPPAT,000003.00,5830.44196,N,17012.62728,W,00030.21,344.3730,000.25,-000.01,0.0015,0.0074,0*42

04/15/2007, 00:00:04.490, \$GPPAT, 000004.00, 5830.44527, N, 17012.62914, W, 00030.23, 344.3537, 000.20, -000.06, 0.0015, 0.0071, 0*4A

04/15/2007, 00:00:05.490, \$GPPAT, 000005.00, 5830.44859, N, 17012.63099, W, 00030.23, 344.3431, 000.22, -000.07, 0.0014, 0.0077, 0*41

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.490	hh:mm:ss.sss
3	NMEA header	\$GPPAT	ASCII text
4	GPS time at position GMT	000005.00	hhmmss.ss
5	Latitude	5830.44859	ddmm.mmmmm
6	North (N) or South(S)	N	ASCII character
7	Longitude	17012.63099	dddmm.mmmmm
8	East (E) or West (W)	W	ASCII character
9	Altitude	00030.23	Meters
10	Heading	344.3431	Degrees
11	Pitch	000.22	Degrees
12	Roll	-000.07	degrees
13	Attitude phase measurement rms error, MRMS	0.0014	meters
14	Attitude baseline length rms error, BRMS	0.0077	meters
15	Attitude reset flag (0:good attitude, 1:rough estimate or bad attitude)	0	ASCII integer
16	Check sum	*41	ASCII text

Ashtech GGA

Position data in NMEA GGA format from the Ashtech ADU5 GPS receiver.

./ashtech_gga

Ashtech-GGA_20070415-000000.Raw

04/15/2007,00:00:02.333,\$GPGGA,000002.00,5830.43864,N,17012.62542,W,1,13,0.7,20.74,M,9.47,M,,* 73

04/15/2007,00:00:03.333,\$GPGGA,000003.00,5830.44196,N,17012.62728,W,1,13,0.7,20.75,M,9.47,M,,* 7E

04/15/2007,00:00:04.333,\$GPGGA,000004.00,5830.44527,N,17012.62914,W,1,13,0.7,20.76,M,9.47,M,,* 75

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:04.333	hh:mm:ss.sss
3	NMEA header	\$GPGGA	ASCII text
4	GPS time at position GMT	000004.00	hhmmss.ss
5	Latitude	5830.44527	ddmm.mmmmm
6	North (N) or South(S)	N	ASCII character
7	Longitude	17012.62914	dddmm.mmmmm
8	East (E) or West (W)	W	ASCII character
9	GPS Quality: 1 = GPS 2=DGPS	1	ASCII integer
10	Number of GPS Satellites Used	13	
11	HDOP (horizontal dilution of precision)	0.7	
12	Antenna height	20.76	meters
13	M for Meters	M	ASCII character
14	Geoidal Height	9.47	meters
15	M for Meters	M	ASCII character
16	Differential reference station ID (no data in sample string)		
17	Checksum	*75	ASCCII text

Ashtech GGL

Position data in NMEA GLL format from the Ashtech ADU5 GPS receiver.

./ashtech_ggl

Ashtech-GLL 20070415-000000.Raw

04/15/2007,00:00:03.271,\$GPGLL,5830.44196,N,17012.62728,W,000003.00,A,A*74 04/15/2007,00:00:04.255,\$GPGLL,5830.44527,N,17012.62914,W,000004.00,A,A*7C 04/15/2007,00:00:05.255,\$GPGLL,5830.44859,N,17012.63099,W,000005.00,A,A*74

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.255	hh:mm:ss.sss
3	NMEA header	\$GPGLL	ASCI text
4	Latitude	5830.44859	ddmm.mmmmm
5	North or South	N	ASCII character
6	Longitude	17012.63099	dddmm.mmmmm
7	East or West	W	ASCII character
8	GMT of Position	000005.00	hhmmss.ss
9	Status of data (A=valid)	Α	ASCII character
10	???	А	
11	Checksum	*74	ASCII text

Ashtech HDT

Heading data in NMEA HDT format from the Ashtech ADU5 GPS receiver.

./ashtech_hdt

Ashtech-HDT_20070415-000000.Raw

04/15/2007,00:00:03.505,\$GPHDT,344.373,T*31

04/15/2007,00:00:04.505,\$GPHDT,344.354,T*34

04/15/2007,00:00:05.505,\$GPHDT,344.343,T*32

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.505	hh:mm:ss.sss
3	NMEA header	\$GPHDT	ASCII text
4	Heading	344.343	Degrees
5	True(T) or Magnetic(M)	T	ASCII character
6	Checksum	*32	ASCII text

PCode

PCode AFT

PCode Aft GGA

Position data in NMEA GGA format from the Trimble Centurion receiver located in the Computer lab.

./pcode_aft_gga

PCode-AFT-GGA_20070415-000000.Raw

04/15/2007,00:00:03.443,\$GPGGA,000002.522,5830.4417,N,17012.6249,W,1,04,1.5,019.8,M,-008.9,M,,*51

04/15/2007,00:00:04.427,\$GPGGA,000003.522,5830.4450,N,17012.6267,W,1,04,1.5,019.8,M,-008.9,M,,*5F

04/15/2007,00:00:05.427,\$GPGGA,000004.522,5830.4483,N,17012.6286,W,1,04,1.5,019.8,M,-008.9,M,,*59

FIELD	DATA	Examples	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.427	h:mm:ss.sss
3	NMEA header	\$GPGGA	ASCII text
4	GPS time at position GMT	000004.522	hhmmss.ss
5	Latitude	5830.4483	ddmm.mmmm
6	North (N) or South(S)	N	ASCII character
7	Longitude	17012.6286	dddmm.mmmm
8	East (E) or West (W)	W	ASCII character
9	GPS Quality: 1 = GPS 2=DGPS	1	ASCII integer
10	Number of GPS Satellites Used	04	
11	HDOP (horizontal dilution of precision)	1.5	
12	Antenna height	019.8	meters
13	M for Meters	М	ASCII character
14	Geoidal Height	-008.9	meters
15	M for Meters	М	ASCII character
16	Differential reference station ID (no data in sample string)	·	
17	Checksum	*59	ASCII text

PCode Aft GLL

Position data in NMEA GLL format from the Trimble Centurion receiver located in the Computer lab.

./pcode_aft_gll

Pcode-AFT-GLL_20070415-000000.Raw

04/15/2007,00:00:03.474,\$GPGLL,5830.4417,N,17012.6249,W,000002.522,A*25 04/15/2007,00:00:04.474,\$GPGLL,5830.4450,N,17012.6267,W,000003.522,A*2 04/15/2007,00:00:05.490,\$GPGLL,5830.4483,N,17012.6286,W,000004.522,A*2D

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.490	hh:mm:ss.sss
3	NMEA header	\$GPGLL	ASCI text
4	Latitude	5830.4483	ddmm.mmmm
5	North or South	N	ASCII character
6	Longitude	17012.6286	dddmm.mmmm
7	East or West	W	ASCII character
8	GMT of Position	000004.522	hhmmss.sss
9	Status of data (A=valid)	A	ASCII character
10	Checksum	*2D	ASCVII text

PCode AFT VTG

Course and speed over ground in NMEA VTG format from the Trimble Centurion receiver located in the Computer lab.

./pcode_aft_vtg

Pcode-AFT-VTG_20070415-000000.Raw

04/15/2007,00:00:03.537,\$GPVTG,343.7,T,331.4,M,012.4,N,023.0,K*4E 04/15/2007,00:00:04.537,\$GPVTG,343.6,T,331.3,M,012.5,N,023.1,K*48 04/15/2007,00:00:05.537,\$GPVTG,343.6,T,331.3,M,012.4,N,023.0,K*48

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.537	hh:mm:ss.sss
2	NMEA header	\$GPVTG	ASCI text
3	Heading	343.6	Degrees
4	Degrees true (T)	Т	ASCII character
5	Heading	331.3	Degrees
6	Degrees magnetic	М	ASCII character
7	Ship Speed	012.4	knots
8	N=Knots	N	ASCII character
9	Ship Speed	023.0	km/hr
10	K=KM per hour	K	ASCII character
11	Check sum	*48	ASCII text

PCode AFT ZDA

Time and date data in the NMEA ZDA format. Data retrieved from the Trimble Centurion receiver located in the Computer lab.

./pcode_aft_zda

Pcode-AFT-ZDA_20070415-000000.Raw

04/15/2007,00:00:03.224,\$GPZDA,000003.00,15,04,2007,00,00,*4C

04/15/2007,00:00:04.224,\$GPZDA,000004.00,15,04,2007,00,00,*4B

04/15/2007,00:00:05.224,\$GPZDA,000005.00,15,04,2007,00,00,*4A

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.537	hh:mm:ss.sss
2	NMEA header	\$GPZDA	ASCII text
3	Time UTC	000005.00	hhmmss.sss
4	Day	15	DD
5	Month	04	MM
6	Year	2007	Year
7	??	00	??
8	??	00	??
9	Checksum	*4A	ASCII text

PCode Bridge

PCode Bridge GGA

Position data in NMEA GGA format from the Trimble GPS receiver located on the bridge.

./pcode_bridge_gga

PCode-Bridge-GGA_20070415-000000.Raw

04/15/2007,00:00:03.037,\$GPGGA,000002.00,5830.469,N,17012.644,W,1,04,2.666,32.15,M,8.930,M,,*4 D

04/15/2007,00:00:05.037,\$GPGGA,000004.00,5830.476,N,17012.648,W,1,04,2.667,31.82,M,8.930,M,,*4 5

04/15/2007,00:00:07.052,\$GPGGA,000006.00,5830.482,N,17012.651,W,1,04,2.668,31.55,M,8.930,M,,*4

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:07.052	hh:mm:ss.sss
3	NMEA header	\$GPGGA	ASCII text
4	GPS time at position GMT	000006.00	hhmmss.ss
5	Latitude	5830.482	ddmm.mmm
6	North (N) or South(S)	N	ASCII character
7	Longitude	17012.651	dddmm.mmm
8	East (E) or West (W)	W	ASCII character
9	GPS Quality: 1 = GPS 2=DGPS	1	ASCII integer
10	Number of GPS Satellites Used	04	
11	HDOP (horizontal dilution of precision)	2.668	
12	Antenna height	31.55	meters
13	M for Meters	М	ASCII character
14	Geoidal Height	8.930	meters
15	M for Meters	М	ASCII character
16	Differential reference station ID (no data in sample string)		
17	Checksum	*41	ASCII text

PCode Bridge GLL

Position data in NMEA GLL format from the Trimble GPS receiver located on the bridge.

./pcode_bridge_gll

Pcode-Bridge-GLL_20070415-000000.Raw

04/15/2007,00:00:03.099,\$GPGLL,5830.469,N,17012.644,W,000002.00,A*12 04/15/2007,00:00:05.099,\$GPGLL,5830.476,N,17012.648,W,000004.00,A*16 04/15/2007,00:00:07.099,\$GPGLL,5830.482,N,17012.651,W,000006.00,A*17

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:07.099	hh:mm:ss.sss
3	NMEA header	\$GPGLL	ASCII text
4	Latitude	5830.482	ddmm.mmm
5	North or South	N	ASCII character
6	Longitude	17012.651	dddmm.mmm
7	East or West	W	ASCII character
8	GMT of Position	000006.00	hhmmss.ss
9	Status of data (A=valid)	A	
10	Checksum	*17	ASCII text

PCode Bridge VTG

Course and speed over ground data in NMEA VTG format from the Trimble GPS receiver located on the bridge.

./pcode_bridge_vtg

Pcode-Bridge-VTG_20070415-000000.Raw

04/15/2007,00:00:03.162,\$GPVTG,343.9,T,333.8,M,12.46,N,23.08,K*40 04/15/2007,00:00:05.162,\$GPVTG,343.8,T,333.8,M,12.49,N,23.12,K*45 04/15/2007,00:00:07.146,\$GPVTG,343.9,T,333.8,M,12.48,N,23.11,K*46

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:07.146	hh:mm:ss.sss
2	NMEA header	\$GPVTG	ASCII text
3	Heading	343.9	Degrees
4	Degrees true (T)	Т	ASCII character
5	Heading	333.8	Degrees
6	Degrees magnetic	М	ASCII character
7	Ship Speed	12.48	knots
8	N=Knots	N	ASCII character
9	Ship Speed	23.11	km/hr
10	K=KM per hour	K	ASCII character
11	Check sum	*46	ASCII text

Glonass

Glonass GGA

Position data in NMEA GGA format from the GLONASS GPS receiver.

./glonass_gga

Glonass-GGA_20070415-000000.Raw

04/15/2007,00:00:02.412,\$GPGGA,000002.00,5830.472078,N,17012.636881,W,1,09,0.9,22.999,M,9.46, M,,*49

04/15/2007,00:00:03.396,\$GPGGA,000003.00,5830.475412,N,17012.638716,W,1,09,0.9,23.000,M,9.46, M,,*40

04/15/2007,00:00:04.412,\$GPGGA,000004.00,5830.478732,N,17012.640527,W,1,09,0.9,22.932,M,9.46, M,,*4D

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:04.412	hh:mm:ss.sss
3	NMEA header	\$GPGGA	ASCII text
4	GPS time at position GMT	000004.00	hhmmss.ss
5	Latitude	5830.478732	ddmm.mmmmmm
6	North (N) or South(S)	N	ASCII character
7	Longitude	17012.640527	dddmm.mmmmmm
8	East (E) or West (W)	W	ASCII character
9	GPS Quality: 1 = GPS 2=DGPS	1	ASCII integer
10	Number of GPS Satellites Used	09	
11	HDOP (horizontal dilution of precision)	0.9	
12	Antenna height	22.932	meters
13	M for Meters	М	ASCII character
14	Geoidal Height	9.46	meters
15	M for Meters	М	ASCII character
16	Differential reference station ID (no data in sample string)		
17	Checksum	*4D	ASCII text

Glassnos GLL

Position data in NMEA GLL format from the GLONASS GPS receiver.

./glassnos_gll

Glonass-GLL_20070415-000000.Raw

04/15/2007,00:00:03.240,\$GPGLL,5830.475412,N,17012.638716,W,000003.00,A*12 04/15/2007,00:00:04.255,\$GPGLL,5830.478732,N,17012.640527,W,000004.00,A*16 04/15/2007,00:00:05.255,\$GPGLL,5830.482216,N,17012.642424,W,000005.00,A*11

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.255	hh:mm:ss.sss
3	NMEA header	\$GPGLL	ASCII text
4	Latitude	5830.482216	ddmm.mmmmmm
5	North or South	N	ASCII character
6	Longitude	17012.642424	dddmm.mmmmmm
7	East or West	W	ASCII character
8	GMT of Position	000005.00	hhmmss.ss
9	Status of data (A=valid)	A	ASCII character
10	Checksum	*74	ASCII text

Gyro

Gyro Heading

MK27 Gyro

Heading data in NMEA HDT format from the Sperry MK27 gyrocompass.

./gyro_mk27

Gyro-MK27_20080314-000000.Raw

03/14/2008,00:00:01.467,\$HEHDT,53.94,T*24

03/14/2008,00:00:01.577,\$HEHDT,53.94,T*24

03/14/2008,00:00:01.671,\$HEHDT,53.94,T*24

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/14/2008	mm/dd/year
2	SCS logged Time GMT	00:00:01.467	hh:mm:ss.sss
3	NMEA header	\$HEHDT	ASCII text
4	Heading	53.94	degrees
5	True (T) or Magnetic (M)	Т	ASCII character
6	Check sum	*24	ASCII text

MK39 Gyro

Heading data in NMEA HDT format from the Sperry MK39 gyrocompass.

./gyro_mk39

Gyro-MK39_20080314-000000.Raw

03/14/2008,00:00:01.327,\$INHDT,53.70,T*24

03/14/2008,00:00:01.436,\$INHDT,53.70,T*24

03/14/2008,00:00:01.530,\$INHDT,53.70,T*24

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/14/2008	mm/dd/year
2	SCS logged Time GMT	00:00:01.327	hh:mm:ss.sss
3	NMEA header	\$HEHDT	ASCII text
4	Heading	53.70	degrees
5	True (T) or Magnetic (M)	Т	ASCII character
6	Check sum	*24	ASCII text

Waypoints

IBS Waypoints

Waypoints from the Healy's Integrated Bridge System (IBS).

./ibs_waypoints

IBS-WayPoints_20070415-000000.Raw

04/15/2007,00:00:03.193,\$NVWPL,6152.68,N,17402.58,W,62*51

04/15/2007,00:00:04.193,\$NVWPL,6156.58,N,17422.68,W,63*56

04/15/2007,00:00:05.193,\$NVWPL,6202.16,N,17439.96,W,64*52

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.193	hh:mm:ss.sss
3	NMEA header	\$NVWPL	ASCII text
4	Latitude	6202.16	ddmm.mm
5	North or South	Ν	ASCII character
6	Longitude	17439.96	dddmm.mm
7	East or West	W	ASCII character
8	Waypoint number	64	
9	Checksum	*52	ASCII text

Speed Log

Sperry Sped Log

Ground/water speed data from the Sperry Speed Log.

./sperry_speedlog

Sperry-Speedlog_20070415-000000.Raw 04/15/2007,00:00:02.755,\$VDVBW,12.32,0.85,A,12.43,0.66,A*5A 04/15/2007,00:00:03.271,\$VDVBW,12.33,0.80,A,12.44,0.66,A*59 04/15/2007,00:00:03.771,\$VDVBW,12.34,0.78,A,12.45,0.68,A*56

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:03.771	hh:mm:ss.sss
2	NMEA header	\$VDVBW	ASCII text
3	Fore-aft Water Speed - = astern	12.34	knots
4	Port-Stbd Water Speed - = port	0.78	knots
5	A= Data Valid V=Invalid	A	ASCII character
6	Fore-aft Bottom Speed - = astern	12.45	knots
7	Port-Stbd Bottom Speed - = port	0.68	knots
8	A= Data Valid V=Invalid	A	ASCII character
9	Checksum	*56	ASCII text

Sound Velocimeter

SV2000

Sound Velocity data from the SV2000 sound velocimeter.

./sv2000

Sound-Velocimeter 20080314-000000.Raw

03/14/2008,00:00:24.999, 1470.87

03/14/2008,00:00:55.030, 1470.87

03/14/2008,00:01:25.045, 1470.87

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/14/2008	mm/dd/year
2	SCS logged Time GMT	00:00:24.999	hh:mm:ss.sss
2	NMEA header	1470.87	Meters/sceond

./Raw

The following sections are in the Raw data directory.

75 KHz ADCP data

./adcp75

The shipboard ADCP system measures currents in the depth range from about 30 to 300 m -- in good weather. In bad weather or in ice, the range is less, and sometimes no valid measurements are made. ADCP data collection occurs on the Healy for the benefit of the scientists on individual cruises and for the long-term goal of building a climatology of current structure in the Ocean.

The ADCP data set collected during this cruise are placed in the directory ./Raw/adcp75. The archive consists of a single file for each day of data collection. The files are named by the cruise HLY0801, a three place number of the sequence in the files, then an extra "_000000", and then an extent for the kind of data in the file. An example of the files for one set is:

FILE NAME	FILE EXTENSION	DEFINITION	
HLY0703022_000000	.ENR	Raw Binary ADCP Data	
HLY0703022_000000	.ENS	Binary Adcp Data	
HLY0703022_000000	.ENX	Binary Ensemble Data	
HLY0703022_000000	.STA	short term average	
HLY0703022_000000	.LTA	long term average	
HLY0703022_000000	.N1R	Raw NMEA ASCII	
HLY0703022_000000	.N2R	Raw NMEA ASCII	
HLY0703022_000000	.NMS	Averaged Nav Data	
Cruise Name_000008 Copy of .ini			
	·		

150 Khz ADCP data

./adcp150

NOT used on HLY0801

The shipboard ADCP system measures currents in the depth range from about 30 to 300 m -- in good weather. In bad weather or in ice, the range is less, and sometimes no valid measurements are made. ADCP data collection occurs on the Healy for the benefit of the scientists on individual cruises and for the long-term goal of building a climatology of current structure in the Ocean.

The ADCP data set collected during this cruise are placed in the directory ./Raw/adcp150. The archive consists of a single file for each day of data collection. The files are named by the cruise HLY0801, a three place number of the sequence in the files, then an extra "_000000", and then an extent for the kind of data in the file. An example of the files for one set is:

FILE NAME	FILE EXTENSION	DEFINITION
HLY0703022_000000	.ENR	Raw Binary ADCP Data
HLY0703022_000000	.ENS	Binary Adcp Data
HLY0703022_000000	.ENX	Binary Ensemble Data
HLY0703022_000000	.STA	short term average
HLY0703022_000000	.LTA	long term average
HLY0703022_000000	.N1R	Raw NMEA ASCII
HLY0703022_000000	.N2R	Raw NMEA ASCII
HLY0703022_000000	.NMS	Averaged Nav Data

HLY0801 Data Synopsis

KNUDSEN 320B/R

The Knudsen 320B/R depth sounder can record depth in both 3.5 and 12 kHz mode. The Healy records the 3.5 kHz data (Sub Bottom Profile) underweigh. This data is saved in all of the formats that the Knudsen can record data in. These files are in both ASCII and BINARY format (see the table below). This data is also saved as depth in Datalog/Knudsen.

./knudsenraw

FILENAME	FORMAT	DEFINITION
2007_102_0005_004.keb	Binary	Knudsen Playback File
2007_102_0005_008.kea	Ascii	Log of depth, settings and environmental data
2007_102_0005_HF_001.sgy	Binary	SEG-Y extended Seismic format

Seabeam

The raw Seabeam 2112 files are in this directory. The naming convention uses the year, month, Julian day, and the start hour and minute in it. For year 2007 on day 110 starting at 11:12 the name would be sb20071101112.mb41. mb41 is the MB-System multibeam format number for the Seabeam 2112. These files can best be accessed and used by using the MB-System software.

./Seabeam

sb20071091600.mb41

Thermosalinograph

Thermosalinograph FWD

./tsg_fwd

HLY08TSGFwd0801-2.CON HLY08TSGFwd0801-2.hex

CTD

Data for the each CTD cast are contained here. These files are in SeaBird software's format. Each cast is in a separately numbered subdirectory.

./ctd

FILENAME	FORMAT	DEFINITION	
021.BL	ASCII	Bottle firing information	
021.CON	ASCII	The configuration file for the cast	
021.HDR	ASCII	Header information for the cast	
021.btl	ASCII	Averaged Bottle firing information	
021.cnv	ASCII	The data	
021.dat	Binary	The data	
021.jpg	Binary	Plotted JPEG image of the cast	
021.ros	ASCII	Data from when bottles fire	
021avg.cnv	ASCII	Meaned 1 meter down cast of the data	

Expendable Bathythermograph (XBT)

The file names use the probe type and the sequence number of the XBT or Expendable Sound Velocimeter (XSV in the series used for the cruise.

./xbt

FILENAME	EXTENSION	DEFINITION	PROGRAM REQUIRED to read the file
T5_00014.rdf	.RDF	Raw Data Format	Sippican Software
T5_00014.edf	.EDF	Exportable Data Format	Any text/spreadsheet

./LDS_Data

The Lamont Data Logging System (LDS) outputs it's file to LDS_Data. Below are directories in which data is written to.

Navigation

Navigation data are logged in the format they come from the device with a data source stamp and a time stamp added to them in several directories in LDS_Data. These data strings are in NEMA (National Marine Electronics Association) format. You will need a copy of NMEA 183, Standard for Interfacing Marine Electronics Devices, Version 2.3, March 1, 1998, to help you understand the data formats used. These data are also in the SCS_Data directories that are described above in formats that are explained. The web-site http://www.gpsinformation.org/dale/nmea.htm might help you understand these formats. Example files will be shown below but no formats will be given.

ADU5 (Ashtech GPS)

Data from the Ashtech GPS is written here as it is from the GPS receiver.

./adu5

HLY0801-adu5.y2008d082

- adu5 2008:082:00:00:00.2942 \$GPGGA,000000.00,6222.52645,N,16922.29346,W,1,11,0.8,18.49,M,7.53,M,,*73 adu5 2008:082:00:00:00.3542 \$GPVTG,165.20,T,154.20,M,002.86,N,005.29,K,A*23
- adu5 2008:082:00:00:00.4152 \$GPPAT,000000.00,6222.52645,N,16922.29346,W,00026.02,150.5834,000.30,001.12,0.00
 - 15,0.0093,0*62
- adu5 2008:082:00:00:00.4241 \$GPHDT,150.583,T*3F
- adu5 2008:082:00:00:01.1731 \$GPGLL,6222.52568,N,16922.29301,W,000001.00,A,A*75
- adu5 2008:082:00:00:01.2901 \$GPGGA,000001.00,6222.52568,N,16922.29301,W,1,11,0.8,18.50,M,7.53,M,,*75
- adu5 2008:082:00:00:01.2920 \$GPVTG,164.37,T,153.37,M,002.96,N,005.47,K,A*2C
- adu5 2008:082:00:00:01.4110 \$GPPAT,000001.00,6222.52568,N,16922.29301,W,00026.03,150.7601,000.28,001.23,0.00 17,0.0118,0*6C
- adu5 2008:082:00:00:01.4200 \$GPHDT,150.760,T*30

Trimble AGGPS

Navigation data from the AGGPS receiver is written here as it is from the GPS receiver.

./aggps

HLY0801-aggps.y2008d082	
aggps 2008:082:00:00:00.2252 \$GPGGA,000000.00,6222.525857,N,16922.290938,W,2,07,1.2,21.02,M,8.08,M,5.0,0297*5 4	
aggps 2008:082:00:00:00.2832 \$GPGLL,6222.525857,N,16922.290938,W,000000.00,A,D*75	
aggps 2008:082:00:00:00.3412 \$GPVTG,165.5,T,,,002.89,N,005.35,K,D*42	
aggps 2008:082:00:00:00.3992 \$GPGSV,2,1,07,31,23,093,44,32,25,079,45,23,22,190,46,20,66,229,50*78	
aggps 2008:082:00:00:00.4572 \$GPGSV,2,2,07,11,51,173,50,14,20,043,42,17,41,279,50,,,,*46	
aggps 2008:082:00:00:00.5172 \$GPGSA,A,3,31,32,23,20,11,14,17,,,,,,2.6,1.2,2.3*37	
aggps 2008:082:00:00:5752 \$GPZDA,000000.10,22,03,2008,00,00*6E	
aggps 2008:082:00:00:00.6332 \$GPRMC,000000,A,6222.525857,N,16922.290938,W,002.89,165.5,220308,13.9,E,D*03	
aggps 2008:082:00:00:00.6631 \$GPGST,000000.00,0.4,1.1,0.9,52.2,1.0,1.0,2.7*6A	
aggps 2008:082:00:00:01.2320 \$GPGGA,000001.00,6222.525073,N,16922.290454,W,2,07,1.2,20.94,M,8.08,M,3.6,0297*5 2	

aggps 2008:082:00:00:01.2902 \$GPGLL,6222.525073,N,16922.290454,W,000001.00,A,D*7D

PSOMV Attitude

The Attitude data from the POSMV is written here.

./posatt

HLY0801-posatt.y2008d082

posatt 2008:082:00:00:00.0082 :06000C -0004F 0105 0013

posatt 2008:082:00:00:00.1082 :010007 -0003F 0105 0013

posatt 2008:082:00:00:00.2082 :0A0007 -0003F 0105 0013

posatt 2008:082:00:00:00.3082 :01000C -0004F 0105 0013

posatt 2008:082:00:00:00.4082 :09011E -0003F 0105 0013

posatt 2008:082:00:00:00.5081 :0A000C -0003F 0105 0013

posatt 2008:082:00:00:00.6081 :04011E -0003F 0105 0013

POSMV GPS

The data from the POSMV GPS is written here.

./posnav

HLY0801-posnav.y2008d082 posnav 2008:082:00:00:00.0502 \$INZDA,000000.0043,22,03,2008,,*78 posnav 2008:082:00:00:00.1922 \$PASHR,000000.069,150.36,T,1.05,0.13,-0.03,0.019,0.019,0.011,2,1*35 posnav 2008:082:00:00:00.1923 \$PRDID,0.13,1.05,150.36*7E posnav 2008:082:00:00:00.2502 \$INGST,000000.069,,0.7,0.5,18.0,0.7,0.5,1.1*6F posnav 2008:082:00:00:00.3112 \$INGGA,000000.069,6222.50218,N,16922.26144,W,2,09,0.9,-2.73,M,,,4,0297*23 posnav 2008:082:00:00:00.3642 \$INHDT,150.4,T*25 posnav 2008:082:00:00:00.3643 \$INVTG,169.7,T,,M,3.0,N,5.5,K*7A posnav 2008:082:00:00:01.0501 \$INZDA,000001.0043,22,03,2008,,*79 posnav 2008:082:00:00:01.1920 \$PASHR,000001.069,150.53,T,1.04,0.13,-0.03,0.019,0.011,2,1*36

POSMV Navigation for the SeaBeam

The SeaBeam only needs specific navigation data. So the POSMV data is reformatted SeaBeam and sent to the SeaBeam for use by it.

./posreform2sb

HLY0801-posreform2sb.y2008d082

posreform2sb	2008:082:00:00:00.366	\$NVVBW,3.0,0.1,A,3.0,0.1,A*5B
posreform2sb	2008:082:00:00:00.366	\$NVHDT,150.36,T*0B
posreform2sb	2008:082:00:00:00.366	\$NVGLL,6222.5022,N,16922.2614,W,000000.07,A*10
posreform2sb	2008:082:00:00:01.366	\$NVVBW,3.1,0.1,A,3.1,0.1,A*5B
posreform2sb	2008:082:00:00:01.366	\$NVHDT,150.53,T*08
posreform2sb	2008:082:00:00:01.366	\$NVGLL,6222.5014,N,16922.2611,W,000001.07,A*11
posreform2sb	2008:082:00:00:02.368	\$NVVBW,3.2,0.1,A,3.2,0.1,A*5B

SeaBeam Data

SeaBeam Center Beam Data

The data from the SeaBeam's center beam is stripped out of the data file and used for displays around the ship. This data is also available as described above.

./sbctr

HLY0801-sbctr.y2008d082

sbctr	2008:082:00:00:03.8623	\$SBCTR,2008,3,22,00:00:01.222,62.375023,-169.371017,33.82,43*00
sbctr	2008:082:00:00:05.3697	\$SBCTR,2008,3,22,00:00:02.742,62.375000,-169.371010,33.92,51*00
sbctr	2008:082:00:00:07.7156	\$SBCTR,2008,3,22,00:00:04.252,62.374975,-169.371002,36.19,40*00
sbctr	2008:082:00:00:08.1426	\$SBCTR,2008,3,22,00:00:05.762,62.374957,-169.370990,33.32,40*00
sbctr	2008:082:00:00:09.8221	\$SBCTR,2008,3,22,00:00:07.272,62.374932,-169.370985,31.89,46*00
sbctr	2008:082:00:00:11.6578	\$SBCTR,2008,3,22,00:00:08.992,62.374903,-169.370970,32.48,42*00
sbctr	2008:082:00:00:13.5820	\$SBCTR,2008,3,22,00:00:10.502,62.374870,-169.370955,34.15,48*00
sbctr	2008:082:00:00:16.1493	\$SBCTR,2008,3,22,00:00:13.522,62.374817,-169.370927,34.30,45*00
sbctr	2008:082:00:00:17.6985	\$SBCTR,2008,3,22,00:00:15.032,62.374790,-169.370912,33.82,43*00
sbctr	2008:082:00:00:19.5798	\$SBCTR,2008,3,22,00:00:16.552,62.374760,-169.370890,33.47,55*00

Speed of Sound in the Surface Water for SeaBeam

The SeaBeam needs the Speed of Sound at the surface. This is calculated from the Sea Chest intake water temperature and the TSG Salinity. The water temperature and Salinity are also in this file.

./sbsv

HLY0801-sbsv.y2008d082

sbsv	2008:082:00:00:00.4142	1439.5, -1.72, 0033.7,0
sbsv	2008:082:00:00:02.4138	1439.5, -1.72, 0033.7,0
sbsv	2008:082:00:00:04.4146	1439.5, -1.72, 0033.7,0
sbsv	2008:082:00:00:06.4222	1439.5, -1.73, 0033.7,0
sbsv	2008:082:00:00:08.3860	1439.5, -1.73, 0033.7,0
sbsv	2008:082:00:00:10.4126	1439.5, -1.73, 0033.7,0
sbsv	2008:082:00:00:12.4142	1439.5, -1.73, 0033.7,0
sbsv	2008:082:00:00:14.4140	1439.5, -1.73, 0033.7,0
sbsv	2008:082:00:00:16.3947	1439.5, -1.73, 0033.7,0
sbsv	2008:082:00:00:18.3864	1439.5, -1.73, 0033.7,0

Raw SeaBeam Files

The Raw SeaBeam data files are here. These are in the SeaBeam 2112 format. To use these files you will need a toll such as the MB-System Software package that can be found at LDEO. The files are named using the year, day in gthe year and time.

./seabeam

sb20080812300.mb41 sb20080820000.mb41 sb20080820100.mb41 sb20080820200.mb41 sb20080820300.mb41 sb20080820400.mb41 sb20080820500.mb41 sb20080820600.mb41 sb20080820800.mb41 sb20080820900.mb41

Gyroscope data

There are 2 Sperry Gyroscopes running the MK27 and the MK30 on the ship. These contain heading of the ship.

MK27 Sperry Gyroscope

./mk27

0801-mk27.y2008d082

mk27	2008:082:00:00:0.0556	\$HEHDT,150.94,T*16
mk27	2008:082:00:00:0.1452	\$HEHDT,150.95,T*17
mk27	2008:082:00:00:0.1876	\$HEROT,7.07,A*1B
mk27	2008:082:00:00:0.3013	\$HEXDR,A,150.95,D,HDG,A,-0.97,D,ROLL,A,-0.24,D,PITCH*48
mk27	2008:082:00:00:0.3432	\$HEHDT,150.97,T*15
mk27	2008:082:00:00:0.3855	\$HEHDT,150.98,T*1A
mk27	2008:082:00:00:0.4516	\$HEHDT,151.00,T*1A
mk27	2008:082:00:00:0.5452	\$HEHDT,151.02,T*18
mk27	2008:082:00:00:0.6495	\$HEHDT,151.03,T*19
mk27	2008:082:00:00:0.6936	\$HEROT,8.06,A*15
mk27	2008:082:00:00:0.7453	\$HEHDT,151.05,T*1F

MK30 Sperry Gyroscope

./mk30

HLY0801-mk30.y2008d082

mk30	2008:082:00:00:00.0159	\$INHDT,150.68,T*1F
mk30	2008:082:00:00:00.0666	\$INROT,9,A*36
mk30	2008:082:00:00:00.1142	\$INHDT,150.69,T*1E
mk30	2008:082:00:00:00.1602	\$INROT,9,A*36
mk30	2008:082:00:00:00.2205	\$INHDT,150.71,T*17
mk30	2008:082:00:00:00.2646	\$INROT,9,A*36
mk30	2008:082:00:00:00.3142	\$INHDT,150.72,T*14
mk30	2008:082:00:00:00.3623	\$INROT,10,A*0E
mk30	2008:082:00:00:00.4186	\$INHDT,150.74,T*12
mk30	2008:082:00:00:00.4633	\$INROT,10,A*0E
mk30	2008:082:00:00:00.5142	\$INHDT,150.76,T*10
mk30	2008:082:00:00:00.5725	\$INROT,10,A*0E
mk30	2008:082:00:00:00.6166	\$INHDT,150.77,T*11

All SIO TSG and MET Data

All of the data from the SIO TSG and Meteorological Sensors are sent in one serial line. All of these data have different NEMA strings and formats. These are listed above. This is a single file for all these data.

./tsg_met

HLY0801-tsg met.y2008d082

tsg met 2008:082:00:00:00.3272 \$PSSRA,501.80,4.190,349.54,0.257,261.02,1.951,261.51,1.922*4E tsg met 2008:082:00:00:00.3275 \$PSSPA,1665.98,1.006*43 tsg met 2008:082:00:00:00.3542 \$PSMEA,-11.56,87.90,1022.45,0.03*51 tsg met 2008:082:00:00:00.3543 \$PSWDA,240.50,11.88,243.30,11.08*5C tsg met 2008:082:00:00:00.3872 \$PSWDB,234.33,10.31,233.57,11.74*57 tsg met 2008:082:00:00:00.4142 \$PSSTA,-1.721,2708.200*52 tsg met 2008:082:00:00:00.4143 \$PSTSA,-1.274,27.0231,33.728,1441.48*5C tsg met 2008:082:00:00:00.4432 \$PSTSB,,,,*46 tsg met 2008:082:00:00:00.4432 \$PSOXA,7.350,2.768,-1.274,-1.274*5F tsg met 2008:082:00:00:00.4433 \$PSOXB,...,*56 tsg_met 2008:082:00:00:00.4732 \$PSFLA,0.300,0.030,0.000,0.013*4A tsg met 2008:082:00:00:00.5012 \$PSFLB,1.150,0.115,0.430,0.043*4B tsg met 2008:082:00:00:00.5013 \$PSNTA,0.000,0.000*58 tsg met 2008:082:00:00:00.5311 \$PSFMA,3.04,46.000*4C tsg met 2008:082:00:00:00.5313 \$PSFMB,3.30,17.000*4C tsg met 2008:082:00:00:00.5371 \$GPZDA,000000.00,22,03,2008,00,00*6F

Page 81 of 119

Gravity

Two Gravimeters are being recorded from the IC no-Gyro room.

BGM221

./bgm221

HLY0801-bgm221.y2008d082

bgm221 2008:082:00:00:00.5731 04:025278 00

bgm221 2008:082:00:00:01.5661 04:025279 00

bgm221 2008:082:00:00:02.5661 04:025279 00

FIELD	DATA	Example	UNITS
1	Data Stream Name	bgm221	ASCII text
2	LDS logged Time GMT	2008:082:00:00:00.5731	yyyy:jjj:hh:mm:ss.sss
	measurement period in quarters of a second		quarters of a second
4	"counts" proportional to observed gravity	025278	counts
5	status flags	00	0 = OK

BGM222

./bgm222

HLY0801-bgm222.y2008d082

 $bgm222 \ \ 2008:082:00:00:00.4962 \ \ 04:025332 \ 00$

bgm222 2008:082:00:00:01.5071 04:025333 00

bgm222 2008:082:00:02.4960 04:025332 00

FIELD	DATA	Example	UNITS
1	Data Stream Name	bgm222	ASCII text
2	LDS logged Time GMT	2008:082:00:00:00.4962	yyyy:jjj:hh:mm:ss.sss
3	measurement period in quarters of a second		quarters of a second
4	"counts" proportional to observed gravity	025332	counts
5	status flags	00	0 = OK

Events in Running LDS

The files here are logs of LDS start and stops of different data loggers.

./events

Some examples files here are:

HLY0801-ev-adcp_nav.y2008d073

HLY0801-ev-adcp_nav.y2008d081

HLY0801-ev-adcp_rph.y2008d073

HLY0801-ev-adcp_rph.y2008d081

HLY0801-ev-adu5.y2008d073

HLY0801-ev-aggps.y2008d073

HLY0801-ev-bgm221.y2008d073

HLY0801-ev-bgm222.y2008d073

This file HLY0801-ev-posreform2sb.y2008d073 contains:

posreform2sb 2008:073:20:22:50.0857 LOGGER_STARTUP N/A starting up...

posreform2sb 2008:073:20:22:50.0857 OTHER N/A succeeded in locking in memory

APPENDIX:

Acquisition Problems and Events

This table summarizes problems with acquisition noted during this cruise including instrument failures, data acquisition system failures and any other factor affecting this data set. Times are reported in GMT. You should look for more complete details for these events in the ELOG accounts.

Date	Time (UTC)	Event
03/13/08	20:39	Start LDS for HLY0801
03/13/08	21:35	Start SCS ACQ for HLY0801
03/14/08	01:15	Leaving Dock start SeaBeam
03/14/08	01:15	Leaving Dock start Knudsen 3.5
03/14/08	01:29	Science seawater and forward SIO MET sensors turned on
03/14/08	03:10	SRD-500 turned off and pulled in
03/14/08	04:11	Start ActiveXperts
03/14/08	05:41	Start ADCP 75 with
		"Less_Than_600Meter_Shallow_Water_High_ResolutionWtrigger.txt" configure file
03/14/08	05:59	Stopped Knudsen, start writing files to SeaVenture, restart Knudsen
03/14/08	06:26	Note that Gyro heading to ADCP75 frozen
03/14/08	08:33	Note that Gyro heading to ADCP75 is working again
03/14/08	09:10	Climate Control Chamber's recording paper changed
03/14/08	22:14	New SVP using XBT T7_00006 and mblevitus
03/15/08	00:31	Ashtech HDT & GPPAT drop out
03/15/08	08:06	Stop and start ADCP75 to get primary GGA and VTG again
03/16/08	14:30	Note SIO Winds diverge from RMYoung data. Relative and True words crossed.
03/16/08	19:08	New SVP hly0801_00101.svp from CTD station entered
03/17/08	17:50	Ashtech reset, HDT & GPPAT data back
03/17/08	14:36	New SVP hly0801 00301.svp from CTD station entered
03/19/08	03:11	restart SeaBeam after power outage, new 8mm tape? No SSV old SVP
03/19/08	03:13	Synchro converter to ADCP75 reset about 01:00
03/19/08	03:21	SeaBeam getting SSV now
03/20/08	00:48	Knudsen, ADCP75, ek60, and Knudsen have been very weak. Ice blockage?
03/20/08	00:56	Knudsen, ADCP75, ek60, and Knudsen are now showing good returns
03/20/08	04:40	Noted that on 3/14 the SIO true and relative winds become about the same
03/20/08	05:02	SVP hly0801_00301.svp used for SeaBeam, restarted wrong after shutdown
03/20/08	07:02	New SVP hly0801_01001.svp from CTD station entered
03/20/08	07:42	Science Seawater to BioChem shutdown, no TSG data from BioChem
03/20/08	08:05	SeaBeam to Manual SSV
03/20/08	13:13	Sea Water intake shut off to Bio Chem. Problems with discharge over the side.
03/20/08	13:19	Sea Beam SSV to Manual
03/21/08	00:03	Aloft Con images have stopped around
03/21/08	00:03	Aloft Con images were off 03/19/08 23:45 – 03/20 00:05

HLY0801 Data Synopsis

Date	Time (UTC)	Event
03/21/08	01:17	Aloft Con Cam timeserver reset
03/21/08	07:46	ADCP 75 VMDAS program restarted, try to clear up nav warning light
03/21/08	08:02	Stop ADCP 75 VMDAS, stop and restart LDS adcp_rph" and "adcp_nav"
		loggers, restart VMDAS
03/21/08	20:18	ADCP 75 VMDAS stopped 45 minutes ago, restarted.
03/21/08	22:26	Starting about 3/20/8 01:00 ADU randomly gives -999 heading
03/21/08	23:29	Reset ADU
03/22/08	09:30	Logged that Ultrasonic winds are not giving proper "True" values for most of the leg.
03/22/08	19:08	SeaBeam 8m tapes are ejected. Can not keep them in. Will use disks for the rest of the cruise.
03/22/08	10:12	"True" calculation for Ultrasonic winds is corrected.
03/22/08	21:53	Adjust get_elements in Terascan laptop to get DMSP data.
03/23/08	00:03	Stop and start ADCP75 VMDAS
03/23/08	21:48	Adjust cables into Terascan laptop to get DMSP better data.
03/23/08	01:04	Aloft Conn Camera stopped
03/23/08	01:27	Aloft Conn Camera working
03/24/08	01:50	Logged note cover for ship humidity/Temperature is missing.
03/24/08	08:48	Stop and restart ADCP 75.
03/24/08	13:40	Stop and restart LDS adcp_rph" and "adcp_nav", loggers.
03/24/08	13:46	StopADCP75 VMDAS, stop and restart LDS adcp_rph" and "adcp_nav" loggers, restart ADCP75 VMDAS
03/25/08	23:47	SeaBeam SVP from XBT T7 00006 on 3/14/8 at 21:57
03/26/08	00:28	Gyro synchro converter reset?, gyro heading back in ADCP75.
03/26/08	01:21	ADCP75 writing to local disk. "Too much data" message gone.
03/26/08	01:57	Port and Starboard Time servers not working.
03/26/08	05:53	SRD-500 back in the water for speed log.
03/26/08	06:27	New SVP from Argo Float R4900806_038, 56.221N, -172.645E, 2008/03/24 1500
03/26/08	06:55	Aft PCODE antenna now used for Time servers. ADCP75 red light on as a result
03/26/08	07:23	SRD-500 turned off ¹ / ₂ hour ago due to interference with fish finder.
03/26/08	16:17	New SVP from Argo Float R4900843_016 created 3/13/8
03/26/08	17:36	SSV did a shift from 1438 – 1455 just now.
03/26/08	22:20	SeaBeam control GUI on skimmer just disappeared but still getting data
03/26/08	22:22	stop ADCP75 VMDAS and copied file to V drive for Dutch arrival
03/26/08	22:25	stop SCS Acquisition.
03/26/08	22:32	Science sea water secured.
03/26/08	22:43	Stop and shutdown SeaBeam.
03/26/08	22:44	Stop Knudsen.
03/26/08	22:47	Stop LDS foe END of HLY0801.

Underway Sensors and Calibrations

Sensors and Calibrations

HLY0801 Shipboard Sensors

Sensor	Description	Serial #	Last Calibration Date	Status
Meteorology & Radiomete	rs			
Port Anemometer	RM Young 09101	L001	02/06/07	Collected
Stbd Anemometer	RM Young 09101	L003	03/07/07	Collected
Barometer	RM Young 612011	BP01643	02/22/08	Collected
Air Temp/Rel. Hum.	RM Young 41382V	13352	02/22/08	Collected
Helo shack PAR	BSI QSR-2200	20270	01/09/07	Collected
Shortwave Radiation	Eppley labs - PSP	35032F3	08/01/07	Collected
Longwave Radiation	Eppley labs - PIR	34955F3	08/17/07	Collected
Barometer	Paroscientific MET3A	101757	06/27/07	Collected
Bow Temperature	Paroscientific MET3A	101757	06/27/07	Collected
Precipitation	Paroscientific MET3A	101757	06/27/07	Collected
Relative Humidity	Paroscientific MET3A	101757	06/27/07	Collected
Jack Staff Ultrasonic Anemometer	RM Young 85004	00703	09/20/07	Collected
Yard Arm Stb Ultrasonic Anemometer	RM Young 85004	00704	09/20/07	Collected
Underway Ocean		I		
TSG	SeaBird SBE45	0215	08/01/07	Collected
Remote Sea Temp	SeaBird SBE3S	4063	12/13/07	Collected
Fluorometer B	Turner SCUFA	0600	12/15/07	Collected
Fluorometer A	Seapoint SCF	SCF2957	12/15/07	Collected
Oxygen Sensor A	SeaBird SBE-43	1307	09/28/07	Collected
Oxygen Optode- B	Aanderaa Optode 3835	719	11/21/07	Not Collected
Nitrate Sensor	MBARI ISUS v3	141	10/11/07	Not Collected

HLY0801 Data Synopsis

Sensor	Description	Serial #	Last Calibration Date	Status
Flowmeter A	Flocat C-ES45-B003	09061005	01/07/08	Collected
Flowmeter B	Flocat C-ES45-B003	02030692	01/07/08	Collected
Sonars		-		L
Knudsen- subbottom	320 B/R	K2K-00-0013	N/A	Collected
ADCP 150 kHz	Broad Band (BB150)	80	N/A	Not Collected
ADCP 75 kHz	Ocean Surveyor	172	N/A	Collected
Multibeam	Seabeam 2112	?	N/A	Collected
Speed log	Sperry	?	N/A	Collected some
Navigation				
P-Code GPS (aft)	Trimble Centurion	0220035469	N/A	Collected
Attitude GPS	Ashtech ADU5	AD52003351 3	N/A	Collected
DGPS	Trimble AGGPS- AG132	0224016199	N/A	Collected
POSMV	Model- MV V4	2306	N/A	Collected
P-Code GPS (fwd)	Rockwell	?	N/A	Collected
Glonass	?	?	N/A	Collected
GYRO 1	Sperry MK39 PN 03956-1982416-2	340	?	Collected
GYRO 2	Sperry MK27A 4800880-1	025	N/A	Collected

HLY0801- CTD Sensors

Sensor	Comments	Serial #	Last service/ Calibration Date	Status
CTD fish	SBE 911plus	639	01/18/08	
Pressure Sensor #1	Digiquartz with TC	83012	01/18/08	Collected
Temperature #1	SBE3- Primary	2855	01/21/08	Collected
Temperature #2	SBE3- Secondary	2796	01/27/08	Collected
Conductivity #1	SBE4- Primary	2619	12/14/07	Collected
Conductivity #2	SBE4- Secondary	2545	12/14/07	Collected
Pump	SBE5 Primary	3115	01/08	NA
Pump	SBE5 Secondary	3112	01/08	NA
Deck Unit	SBE 11-Plus V2	0417	12/07	NA
Altimeter	PSA916	843	01/08	Collected
Oxygen	SBE43	459	12/12/07	Collected
Fluorometer	Chelsea-Aquatrack3	088234	03/07	Collected
Transmisometer	Wetlabs	CST-390DR	01/08	Collected
PAR	Bioshperical QSP2300	70115	01/07	Collected
Carousel	SBE32- 12 place	347	01/08	NA

HLY0801 Sensor Calculations

The coefficients for temperature, conductivity, fluorometer and turbidity sensors can be found in the calibrations sheets below in the Appendix.

Calculating Temperature – ITS-90

```
 \begin{array}{l} T = \mbox{decimal equivalent of bytes 1-4} \\ Temperature \mbox{Frequency:} \ f = T/19 \ +2100 \\ Temperature = 1/{g \ + \ h[ln(f_0/f)] \ + \ i[ln^2(f_0/f)] \ + \ j[ln^3(f_0/f)]} \ - 273.15 \ (^{\circ}C) \end{array}
```

Calculating Conductivity – ITS-90

```
C = decimal equivalent of bytes 5-8
Conductivity Frequency f = sqrt(C*2100+6250000)
Conductivity = (g + hf<sup>2</sup> + if<sup>3</sup> + jf<sup>4</sup>)/[10(1 + \deltat + \epsilonp)] (siemens/meter)
t = temperature (°C); p = pressure (decibars); \delta = Ctcor; \epsilon = CPcor
```

Calculating Fluorometry Voltage

f = decimal equivalent of bytes 15-17
Fluorometry Voltage = f/819

Calculating Transmittance

```
V_dark = 0.058 V
V_ref = 4.765 V
t = decimal equivalent of bytes 18 - 20
Transmissometer Voltage (V<sub>signal</sub>) = t/819
% Transmittance = (V<sub>signal</sub> - V<sub>dark</sub>) / (V<sub>ref</sub> - V<sub>dark</sub>)
```

Calculating PAR for surface PAR

```
raw data = mV
calibration scale = 6.08 \text{ V}/(\mu\text{Einstiens/cm}^2\text{sec})
offset (V<sub>dark</sub>) = 0.3 \text{ mV}
(raw mV - V<sub>dark</sub>)/scale x 10^4 \text{ cm}^2/\text{m}^2 \text{ x } 10^{-3} \text{ V/mV}= \mu\text{Einstiens/m}^2\text{sec}
or
(data mV - 0.3 \text{ mV}) x 1.65 (\mu\text{Einstiens/m}^2\text{sec})/\text{mV} = \mu\text{Einstiens/m}^2\text{sec}
```

Calculating Pyrgeometer Values

- V = Eppley PIR Thermopile voltage
- S = Sensitivity (Calibration factor from Eppley Cal sheet)
- S = 3.32
- J = Stefan-Boltzmann Constant
- J = 5.6697e-8
- B = [absorption constant (for Eppley Black paint formula) 0.985 / dome glass IR transmission 0.5]
- B= 3.5 for Stock Eppley PIR
- Tb = Eppley Body Temperature in degrees Kelvin
- Td = Eppley Dome Temperature in degrees Kelvin
- Tb and Td calculated as follows:
- $T = 1/(a + \ln(Vo/Irt)*(b + c*(\ln(Vo/Irt)**2)));$
- Irt = (Vref-Vin)/R1
- On Healy R1 = 82500 Vref = 5.0
- a= 0.0010295 b= 0.0002391 c = 1.568e-7
- •
- $W/M2 = V/S + (J * Tb^4) + (B*J*(Tb^4 Td^4))$

HLY0801 Data Synopsis

Calibrations

The following pages are replicas of current calibration sheets for the sensors used during this cruise.

Meteorology & Radiometers

R.M. Young Wind Bird, Starboard

Serial # L001

М	odel # 09	101, S/N L As per Young Me	bird Calibration 003 (Starboard teorological Instruments Calibration Manual	Windbi			
Date: 07 Mar 07	7 Technician: ET1 Berringer / ETC Rodda						
Wind spe	ed torque: Pa	ssed					
	Maximum toque Test re: ection torque:	sults: CW CCW	0.7 0.7				
I	Maximum toque	e = 30 gm/cm					
	Test re	sults:					
		CW CCW	20 gm/cm 22 gm/cm				
Wind spe	ed signal:						
r	Maximum % eri	or = 1%					
	Test re	sults: Passed					
		Actual RPM	Actual Wind Speed	Measured	% Error		
		200	1.90	1.9	0.21		
		500		4.8	0.84		
		1200		11.4	0.21		
		3600		34.3	0.08		
		5000	47.60	47.6	0.00		
	ection signal:	-	ots = 0.00952 * shaft RP	М			
1	Maximum error	= +/- 2 degrees					
_	Test re	sults: Failed – off	by 1 degree				
	Actual Me	eaured Error					

Tes	t results: Fail	ed – off by 1
Actual	Meaured	Error
0	358	-2
30	27	3
60	58	2
90	88	-2 3 2 2 2
120	118	2
150	149	1
180	178	2
210	207	3
240	238	2
270	268	2
300	297	1 2 3 2 2 3 3 3
330	327	3

HLY0801 Data Synopsis

R.M. Young Wind Bird Port

Serial # L001

R. M. Young Wind bird Calibration Results Model # 09101, S/N L001 (Port Windbird)

As per Young Meteorological Instruments Wind System Calibration Manual

> 10gm/cm 10gm/cm

Date: 06 Feb 07

Technician: ET3 Daem / ET2 Davis

Wind speed torque: Passed

Maximum toque =2.40 gm/cm

Test results:	
CW	.2 gm/cm
CCW	.2 gm/cm

Wind direction torque: Passed

Maximum toque = 30 gm/cm

Test results:	
CW	
CCW	

Wind speed signal: Passed

Maximum % error = 1%

Test results:

Actual RPM	Actual Wind Speed	Measured	% Error
200	1.90	1.9	0.21
500	4.76	4.8	0.84
1200	11.42	11.4	0.21
3600	34.27	34.3	0.08
5000	47.60	47.6	0.00

Note; Wind speed in knots = 0.00952 * shaft RPM

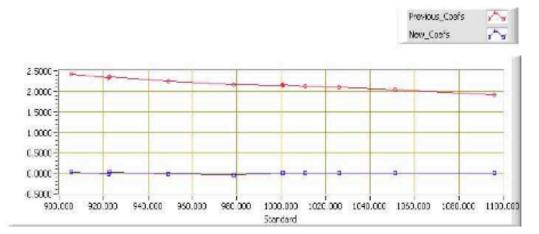
Wind direction signal: Passed

Maximum error = +/- 2 degrees

Test results:					
Actual	Meaured	Error			
0	359	-1			
30	29	1			
60	59	1			
90	90	0			
120	120	0			
150	150	0			
180	180	0			
210	210	0			
240	240	0			
270	269	1			
300	298	2			
330	330	0			

Barometer

Serial # BP01643


Baro Pres Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: BP01643 CALIBRATION DATE: 22-Feb-08 SENSOR ID: BPR80 Mfg: RM Young Model: 612011 Previous Cal Date: 01-Jan-00 Calibration Tech: CM CALIBRATION AT 25.0 DegC

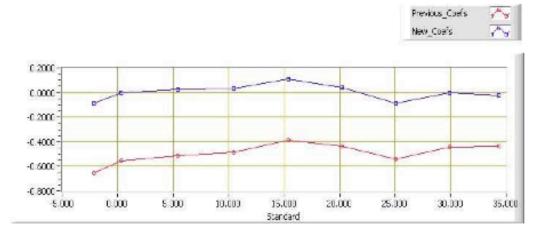
A= 5.98528E+1 B= 8.02635E+2

Calibration Standard: Mfg: Paroscientific Model: 765-16B s/n: 101778 Polynomial Order = 1 Xcalc = A*X+B

SENSOR	STANDARD	SENSOR	SPRT-INST	SPRT-INST
VOLTS	DATA	New_Coefs	Prev_Coefs	New_Coefs
4.901	1095.960	1095.953	1.920	0.007
4.151	1051.090	1051.086	2.028	0.004
3.731	1025.970	1025.963	2.092	0.007
3.475	1010.640	1010.645	2.118	-0.005
3.306	1000.490	1000.479	2.159	0.011
3.314	1000.990	1000.986	2.151	0.004
2.939	978.480	978.517	2.165	-0.037
2.445	948.980	949.001	2.254	-0.021
2.004	922.570	922.555	2.355	0.015
1.998	922.190	922.205	2.326	-0.015
1.713	905.210	905.180	2.413	0.030

Air Temperture / Relative Humidity

Serial # 13352

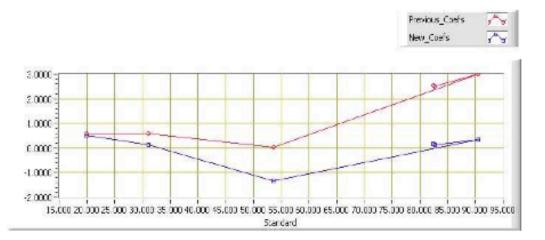

Air Temperature Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 13352 CALIBRATION DATE: 22-Feb-08 SENSOR ID: HRH17 Mfg: RM Young Model: 41382V Previous Cal Date: 01-Jan-2000 Calibration Tech: CM

A= 1.01413E+2 B= -5.07642E+1

Calibration Standard: Mfg: Seabird Model: SBE35 s/n: 0006 Polynomial Order = 1 Xcalc = A*X+B

SENSOR	STANDARD	SENSOR	SPRT-INST	SPRT-INST
	DATA	New_Coefs	Prev_Coefs	New_Coefs
0.480	-2.122	-2.035	-0.652	-0.087
0.504	0.337	0.338	-0.557	-0.001
0.554	5.421	5.398	-0.513	0.023
0.603	10.448	10.418	-0.485	0.030
0.651	15.345	15.235	-0.386	0.110
0.699	20.190	20.154	-0.439	0.036
0.748	25.029	25.113	-0.539	-0.084
0.796	29.914	29.920	-0.442	-0.006
0.840	34.361	34.382	-0.439	-0.021


HUMIDITY Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 13352 CALIBRATION DATE: 24-Feb-08 SENSOR ID: HRH17 Mfg: RM Young Model: 41382V Previous Cal Date: 01-Jan-2000 Calibration Tech: CM

A= 1.04836E+2 B= -6.79727E-1

Calibration Standard: Mfg: GE Sensing Model: Humilab s/n: 0240507 Polynomial Order = 1 Xcalc = A*X+B

SENSOR	STANDARD	SENSOR New Coefs	SPRT-INST Prev Coefs	SPRT-INST New Coefs
0.791	82.450	82,266	2,539	0.184
0.794	82.710	82.560	2.516	0.150
0.866	90.460	90.108	2.994	0.352
0.530	53.570	54.904	0.020	-1.334
0.301	31.000	30.876	0.599	0.124
0.192	19.920	19.396	0.579	0.524

PAR Serial # 20270

Biospherical Instruments Inc.

CALIBRATION CERTIFICATE

Calibration Date	1/9/2007				
Model Number	QSR-2200				
Serial Number	20270				
Operator	TPC				
Standard Lamp	F-863				
Probe Excitation Vo	Itage Range:	6	to	18	VDC(+)
Output Polarity:	Positive				

Probe Conditions at Calibration(in air):

Calibration Voltage:	6	VDC(+)
Probe Current:	4.0	mA

Probe Output Voltage:

Probe Illuminated	95.87	mV
Probe Dark	1.32	mV
Probe Net Response	94.55	mV

Corrected Lamp Output:

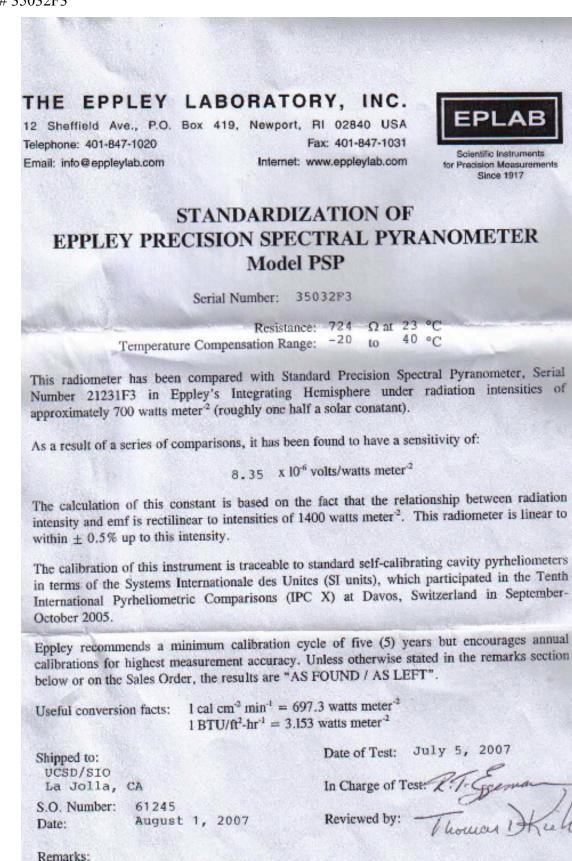
Output In Air (same condition as calibration):

9.43E+15	quanta/cm ² sec
0.01566	uE/cm ² sec

Calibration Factor:

(To calculate irradiance, divide the net voltage reading in Volts by this value.)

Notes:


1. Annual calibration is recommended.

- Calibration is performed using a Standard of Spectral Irradiance traceable to the National Institute of Standards and Technology (NIST).
- The collector should be cleaned frequently with alcohol.
- 4. Calibration was performed with customer cable, when available.

QSR240R 05/24/95

Shortwave Radiation Pyranometer

Serial # 35032F3

Longwave Radiation Pyrgeometer

Serial # 34955F3

THE EPPLEY LABORATORY, INC.

12 Sheffield Ave., P.O. Box 419, Newport, RI 02840 USA Telephone: 401-847-1020 Fax: 401-847-1031 Email: info@eppleylab.com Internet: www.eppleylab.com

Scientific Instruments for Precision Measurements Since 1917

STANDARDIZATION OF EPPLEY PRECISION INFRARED RADIOMETER Model PIR

Serial Number: 34955F3

Resistance	: 708	Ω at	23	°C	
Temperature Compensation Range	-20	to	40	°C	

This pyrgeometer has been compared against Eppley's Blackbody Calibration System under radiation intensities of approximately 200 watts meter² and an average ambient temperature of 25°C as measured by Standard Omega Temperature Probe, RTD#1.

As a result of a series of comparisons, it has been found to have a sensitivity of:

3.32 x 10⁶ volts/watts meter²

The calculation of this constant is based on the fact that the relationship between radiation intensity and emf is rectilinear to intensities of 700 watts meter². This radiometer is linear to within $\pm 1.0\%$ up to this intensity.

The calibration of this instrument is traceable to the International Practical Temperature Scale (IPTS) through a precision low-temperature blackbody.

Eppley recommends a minimum calibration cycle of five (5) years but encourages annual calibrations for highest measurement accuracy. Unless otherwise stated in the remarks section below or on the Sales Order, the results are "AS FOUND / AS LEFT".

Shipped to:			Date of Test: May 31, 2007
UCSD/SIO La Jolla, CA	N.		In Charge of Test P.T. Syman
S.O. Number: Date:	61272 August 17	7, 2007	Reviewed by: Thomas Kub

Remarks:

Jack Staff MET Station

Serial # 101757

1: 101757 Part :	Number: 1539-004 Mod	del: MET3A Port:
alibration Date	a: 27-Jun-07 Report M	No: 7238 Technician: WMR
		emperature Range: -50 to -60
ustomer: Scrip;	os Inst. of Oceanograp	phy Report Date: 27-Jun-
	Biological Grade	Sales Order: 24387
	la, CA 92037 USA	S/R Number :
Con	figuration	Calibration Coefficients
BL: 0	PT: N	U0: 5.766908 µsec
BR: 9600	QD: -	Y1: -4015.975 deg C / µsec
DD: -	QD: -	Y2: -17065.37 deg C / µsec?
DL: -	SL: -	Y3: -140256.4 deg C / µsec*
DM: -	SN: 101757	C1: 94.87589 psi
D0: -	ST: -	C2: 3.545282 psi / µsec
DP :	SU: -	C3: -114.9551 psi / usec*
ID: 01	TI: -	D1: 0.0345157
IM: -	TR: 00952	D2: 0.0000000
LL: -	TU: -	T1: 28.00064 µsec
LH : -	UF: 1.000000	T2: 0.837535 µsec / µsec
MC: Y	UL: -	T3: 16.78157 µsec / µsec?
MD: 0	UM: -	T4: -150.7085 μsec / μsec*
MN: -	UN: 3	T5: -129.729 µsec / µsec*
OP: -	US: -	TC: 0.6782145
PF: -	VR: M1.02	PA: 0.0000000
PI: -	ZI: -	PM: 1.0000000
PL: -	ZS: -	
PO: -	ZL: -	
PR: 00238	ZV: -	
PS: -		

Met3/3A C	oefficients
E1: -0.551136	E2: 0.84
F1: -264.3591	F2: 3.152
G1: 12.56743	G2: 0.00216
H1: RHTB94	H2: 0.0036
K1: 01842	K2: 0.00511
M1: 1	M2: 1
Z1: 0	Z2: 0

Faroscientific, Inc. 4500 148th Ave. N.E. Redmond, MA 98052 Phone: (425)883-8700 Fax: (425)857-5607 Web:http://www.paroscientific.com Email: support@paroscientific.com

Page 1 of 1

Underway Ocean Flow through Sensors

Seabird ThermoSalinograph

51 (

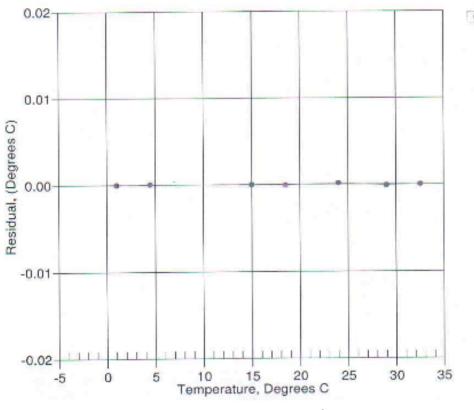
Serial # 0215

Temperature

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0215 CALIBRATION DATE: 01-Aug-07		SBE 45 TEMPERATURE CALIBRATION DAT. ITS-90 TEMPERATURE SCALE	
ITS-90 COEFFICIENTS			
a0 = -1.277283e-000			
al = 2.800988c-004	1 - y		
a2 = -2.767325e-000	;		
a3 = 1.635307e-007			
BATH TEMP (ITS-90)	INSTRUMENT	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	657810.8 562392.3	0.9939 4.5000	-0.0000 0000.0


4.3000	20222222	110000	
15,0000	358334.1	14,9999	-0.0000
18,5001	310251.4	18,5000	-0.0001
24,0000	248855.2	24,0001	0.0002
29.0001	204884.7	29.0000	-0.0001
32.4399	179404.2	32,5000	0.0000

Temperature ITS-90 = $1/(a0 + a1[in(n)] + a2[in^{2}(n)] + a3[in^{3}(n)]] - 273.15$ (°C)

Residual = instrument temperature - bath temperature

Date, Delta T (mdeg C)

01-Aug-07 -0.00

Page 100 of 119

Conductivity

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0215 CALIBRATION DATE: 01-Aug-07 SBE 45 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

 $\begin{array}{l} g = -9.817728e{-}001\\ h = -1.408375e{-}001\\ i = -1.671624e{-}004\\ j = -3.431539e{-}005 \end{array}$

CPcor = -9.5700e-008 CTcor = 3.2500e-005 WBOTC = 2.4202e-005

BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22,0000	0.0000	0.00000	2641.45	0.00000	0.00000
1.0000	34.8934	2.98192	5363.53	2.38193	0.00001
4.5000	34.8731	3.28955	5504.48	3.28955	-0.00000
15.0000	34.8297	4.27308	6101.73	4.27307	-0.00001
18.5001	34.8207	4.61890	5297,94	4.61889	-0.00001
24.0000	34.8111	5,17793	5502.44	5,17794	0.00001
29.0001	34.8062	5.70086	\$874.67	5.70088	0.00002
32.4999	34.8046	6.07417	7062.34	6.07415	-0.00002

f = INST FREQ * sqit(1.0 + WBOTC * t) / 1000.0

$$\begin{split} Conductivity &= \langle g + hf^2 + if^3 + jf^4 \rangle / (1 + \delta t + \epsilon p) \ \text{Siemens/meter} \\ t &= temperature[°C)]; \ p &= pressure[decibars]; \ \delta = CTcor, \ \epsilon = CPcor; \end{split}$$

Residual = instrument conductivity - bath conductivity

0.002 01-Aug-07 1.0000000 0.001 Residual, (S/m) 0.000 -0.001 -0.002 F 1. 1.1 0 2 3 1 6 4 5 7 Conductivity (Siemens/m)

Date, Slope Correction

Remote Sea Temperature (Sea Chest)

Serial # 4063

SEA-BIRD ELECTRONICS, INC.

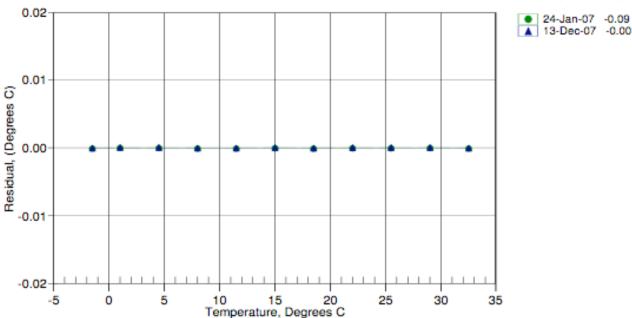
1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4063 CALIBRATION DATE: 13-Dec-07

SBE3 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

ITS-90 COEFFICIENTS


g = 4.29921671e-003 h = 6.36406488e-004 i = 2.06912541e-005 j = 1.52019386e-006 f0 = 1000.0

IPTS-68 COEFFICIENTS a = 3.68121265e-003 b = 5.99688417e-004 c = 1.61521904e-005 d = 1.52164480e-006 f0 = 2721.791

BATH TEMP (ITS-90)	INSTRUMENT FREO (Hz)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
-1.5000	2721.791	-1.5000	-0.00002
1.0000	2878.781	1.0000	0.00003
4.5000	3109.455	4.5000	0.00002
8.0000	3353.176	8.0000	-0.00001
11.5000	3610.316	11.5000	-0.00001
15.0000	3881.236	15.0000	0.00002
18.5000	4166.278	18.5000	-0.00004
22.0000	4465.803	22.0000	0.00000
25.5000	4780.134	25.5000	0.00003
29.0000	5109.596	29.0000	0.00002
32.5000	5454.501	32.5000	-0.00002

Temperature ITS-90 = $1/{g + h[ln(f_0/f)] + i[ln^2(f_0/f)] + j[ln^3(f_0/f)]} - 273.15$ (°C) Temperature IPTS-68 = $1/{a + b[ln(f_0/f)] + c[ln^2(f_0/f)] + d[ln^3(f_0/f)]} - 273.15$ (°C)

Following the recommendation of JPOTS: T_{68} is assumed to be 1.00024 * T_{90} (-2 to 35 °C) Residual = instrument temperature - bath temperature

Page 102 of 119

Date, Offset(mdeg C)

Fluorometer **B**

Serial # 0600

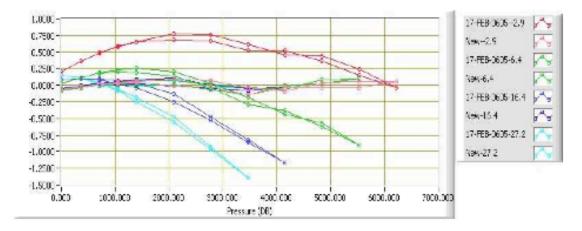
rence TD130059 Scut	a (TM) Test	Procedure				
Electrical test					The second second	and the second second
IN IN		0600				
late:		1/22/07	1		A COLORADO	
nitial.		110			The second second	
VN	2000-006	20	00-007	2000-008	2000-005 2000-010	
fin		R.5			and the strength of	12.5V
ower		1216				12.2+/-0.2V
+5.5V"		5.47				5.5+0-0.3V
3.3V"	1111	328				3.3V +/-0.1V
/cc		327				3.3V +/-0.1V
/at		498			a man and a second	5+/-0.1V
/a-		-5.09			the second s	"-5 */- 0.2V"
J19, offset		0.92				<15 mV
J29, offset	N/A	206		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	N/A	<15 mV
Signal offset		13				<+/-50 <+/-50
furb. Offset	N/A	25			N/A	
Current cons. Power ON		40		100000000000000000000000000000000000000		<60 mA
Over-V threshold		153	-	and the second		15-15.5 V <20 mV p-p
Signal offset noise		HAN /A	Timple			
Turb. Offset noise	N/A	Hm	11		N/A	<20 mV p-p Ambient +/- 1° C
Temp Readout check			and the second second			Ampient - r c
A REAL PROPERTY OF	Unit Config	uration. Tal	ble #1	The state of the state	States States	and a difference
Turbidity	No.	(Yes	Contractor and	Yes	NO.	
Temp. Compensation	Yes.	Yes		Yes	No.	
Internal Data Logger	Yes.	Yes)		Yes.	No.	
Construction of the	Calibration	-			100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	
	Blank %	Range	Standard %	Range		
CHL	0988	0-0.03	2,1	2.2-4.5		
TRB	0.011	0-0.03	5172	43-70		
RWT		0-0.09		7.0-15.0		
TRB		0-0.05		20.5-70.0		
PC		0-0.03	2	0.5-1.2		
TRB						
FLU		0-0.05		2.0-10.0		
TRB		0-0.05		1.0-6.0		
Internal Data Logger Test	IDL: (ON 0	r OFF (Cir	de one)		
	IDL	Tested O	Contraction of the local division of the loc			
あってのこうで	Analog out	out calibrat	ian	1		1 /
Analog Out 1		22			and a second second	(*
Analog Out 2	2	161				1
Pressure test	& Burn In					
Date:	01/2	3/04	T			
Initial:		MAN	-			
Dramerina	\$7 \$12	ugu?	ST #15	ST #20	ST 423 1000 -	
Preserve PSI	1000	~	970	1000	1000	
Pre test weight	VIGT	819	. 1			
After test weight	aga's	0				
Difference		1000				<0.5 gram
1) NOTES: Analog out:	1) Rhod an	d TRB : 2	5 +/-D.1			
Thorea. Analog out.	2) CHL: 0.0	525 +/- 0.05	5V			
	3) FLU: 0.2	250 +/- 0.05	SV .			
	A) Chile and	One of the	oduct Developm	ent		

HLY0801 Data Synopsis

		SCUPA(IM)			and the second second
		USE PEN	ONLY		
Burn In Test					
	1 . 16	inish /			
start		ate: 01/24			
Date: Time:	OI 23 D		100000000000000000000000000000000000000		
nitial		itial: "Wes	100000000000000000000000000000000000000		10 10 10 10 10 10
- 9,161.	1 441 1.	1	10.000	and the second	
Check / configura	tion test				
Configuration	2000-006	/ 2000-007	2000-008	2000-005 200	0-010
Date:	the second se	the second s	2000-000		
lime:		01/200	and a president of the second		Bik-0.013
nitial		647			Tur = 48.924
Fluorescence (Black Rod)		0.021			
Turbidity (Black Rod)		0.000		N/A	
Fluorescence (Solid Std)	[(0.00)			
Tubidity (Solid Std)	N/A	2.91) 100		N/A	
Sig. Pre-amp. Out	K	57			<+/-50
Turb. Pre-amp. Out	N/A (S) #24883		N/A	<+/-50
Analog Out 1		622)			(1)
Analog Out 2	01 -6	(2a) 246	011	OFF	(1)
DL	ON	ON	ON	OFF	
Temp Comp	UN	1000	UN	UTT	Ambient +/- 1°C 13
Temp Readout check	12	GURATION (FOR CUST			Participant of The The
Shop Order #: 2000-010	IDL ON	Temp Comp	Turbidity	Date: Initial(1) Initial	al (2)
И	URN-IN: DATE IN DATE OUTO	EL # SO # EL # SO # 2(23) TIME 9 1240 TIME 9 EST LOG)			
		(TEST LOG)			
	LABEL:	819.7	_		
TD13006(TD130117 Rev. A			Page 3 of 2

CTD Sensors

Pressure Sensor


Serial # 83012

Pressure Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 639 CALIBRATION DATE: 18-JAN-2008 Mfg: Seabird Model: SBE9P CTD Prs s/n: 83012

C1= -3.841449E+4 C2= 4.630485E-1 C3= 1.014581E-2 D1= 3.051116E-2 D2= 0.000000E+0 T1= 3.019016E+1 T2= -1.746821E-4 T3= 4.517296E-6 T4= -9.087207E-9 T5= 0.000000E+0 AD590M= 1.27551E-2 AD590B= -9.09133E+0 Slope = 1.0 Offset = 0.0

Calibration Standard: Mfg: Ruska Model: 2400 s/n: 34336 t0=t1+t2*td+t3*td*td+t4*td*td*td w = 1-t0*t0*f*f Pressure = (0.6894759*((c1+c2*td+c3*td*td)*w*(1-(d1+d2*td)*w)-14.7)

Temperature #1

Serial # 2855

Temperature Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 2855 CALIBRATION DATE: 21-JAN-2008 Mfg: Seabird Model: SBE3Plus Previous Cal Date: 24-Jan-07 Calibration Tech: CM

g= 4.35951439E-3 h= 6.45648951E-4 i= 2.38075037E-5 j= 2.35385504E-6 f0 = 1000.0 Slope = 1.0 Offset = 0.0

Calibration Standard: Mfg: ASL Model: F18 s/n: 245-5149 Temperature ITS-90 = 1/{g+h[in(f0/f)]+i[in2(f0/f)]+j[in3(f0/f)]} - 273.15 (°C)

SBE3		SBE3	SPRT-SBE3	SPRT-SBE3
Freq	SPRT	New_Coefs	Prev_Coefs	New_Coefs
5479.6760	28.1875	28.1875	0.00140	0.00002
5798.0010	31.2142	31.2142	0.00189	-0.00002
5174.8630	25.1737	25.1737	0.00101	0.00002
4839.0220	21.7073	21.7073	0.00066	-0.00000
4563.9390	18.7410	18.7410	0.00045	-0.00003
4313.5900	15.9306	15.9306	0.00036	-0.00000
4062.6960	12.9964	12.9964	0.00029	0.00002
3819.2680	10.0242	10.0242	0.00019	-0.00001
3580.6660	6.9771	6.9771	0.00011	-0.00001
3359.2520	4.0167	4.0167	0.00007	0.00004
3216.0510	2.0264	2.0264	-0.00010	-0.00004
3143.3570	0.9916	0.9916	-0.00010	0.00002
3042.0950	-0.4792	-0.4792	-0.00018	0.00003
3003.6410	-1.0471	-1.0471	-0.00029	-0.00003
2934.0140	-2.0888	-2.0888	-0.00036	-0.00001

Temperature #2

Serial # 2796

Temperature Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 2796 CALIBRATION DATE: 21-JAN-2008 Mfg: Seabird Model: SBE3Plus Previous Cal Date: 27-Jan-07 Calibration Tech: CM

g= 4.30545772E-3 h= 6.41541965E-4 i= 2.26535491E-5 j= 2.15838215E-6 f0 = 1000.0 Slope = 1.0 Offset = 0.0

Calibration Standard: Mfg: ASL Model: F18 s/n: 245-5149 Temperature ITS-90 = 1/{g+h[in(f0/f)]+i[in2(f0/f)]+j[in3(f0/f)]} - 273.15 (°C)

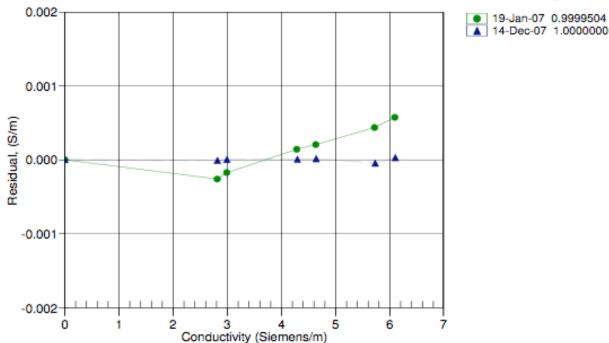
SBE3		SBE3	SPRT-SBE3	SPRT-SBE3
Freq	SPRT	New_Coefs	Prev_Coefs	New_Coefs
5034.9080	28.1869	28.1869	0.00129	-0.00001
5327.3120	31.2134	31.2134	0.00145	0.00001
4754.9570	25.1736	25.1736	0.00117	-0.00003
4446.4900	21.7075	21.7075	0.00113	0.00003
4193.8400	18.7414	18.7414	0.00105	0.00000
3963.9100	15.9311	15.9311	0.00097	-0.00004
3733.4680	12.9969	12.9969	0.00098	0.00001
3509.8970	10.0249	10.0248	0.00098	0.00005
3290.7460	6.9777	6.9777	0.00087	-0.00002
3087.3980	4.0175	4.0175	0.00082	-0.00001
2955.8690	2.0273	2.0273	0.00077	-0.00001
2889.1220	0.9928	0.9928	0.00074	-0.00001
2796.0920	-0.4783	-0.4783	0.00068	-0.00002
2760.7580	-1.0463	-1.0463	0.00070	0.00001
2696.7970	-2.0881	-2.0881	0.00067	0.00003

Conductivity #1

Serial # 2619

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com


SENSOR SERIAL NUMBER: 2619 CALIBRATION DATE: 14-Dec-07	SBE4 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Seimens/meter			
GHIJ COEFFICIENTS	ABCDM COEFFICIENTS			
g = -1.00741707e+001	a = 6.03443989e-005			
h = 1.37979635e+000	b = 1.37916951e+000			
i = -2.57491131e-004	c = -1.00729173e+001			
j = 9.90906263e-005	d = -8.34718673e-005			
CPcor = -9.5700e-008 (nominal)	m = 4.1			

CTcor = 3.3	2500e-006 ((nominal)	CPcor	= -9.5700e-	008 (nominal)
BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (kHz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
0.0000	0.0000	0.00000	2.70205	0.00000	0.00000
-1.0000	34.9912	2.81735	5.26230	2.81734	-0.00001
1.0000	34.9914	2.98950	5.37926	2.98950	0.00000
15.0000	34.9917	4.29084	6.19186	4.29085	0.00001
18.5000	34.9910	4.63903	6.39166	4.63905	0.00001
29.0001	34,9873	5.72717	6.97891	5.72713	-0.00005
32.5001	34.9789	6.10114	7.16957	6.10117	0.00003

 $\begin{aligned} & \text{Conductivity} = (g + hf^2 + if^3 + jf^4) / 10(1 + \delta t + \epsilon p) \text{ Siemens/meter} \\ & \text{Conductivity} = (af^m + bf^2 + c + dt) / [10 (1 + \epsilon p) \text{ Siemens/meter} \end{aligned}$

 $t = temperature[^{\circ}C)$; p = pressure[decibars]; $\delta = CTcor$; $\epsilon = CPcor$;

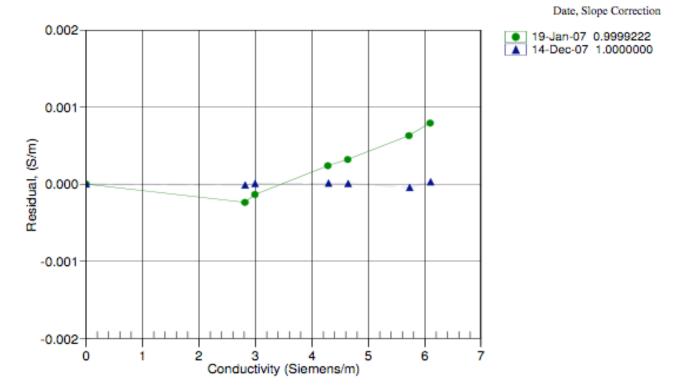
Residual = (instrument conductivity - bath conductivity) using g, h, i, j coefficients

Date, Slope Correction

Conductivity # 2

Serial # 2545

SEA-BIRD ELECTRONICS, INC.


1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 2545			SBE4 CONDUCTIVITY CALIBRATION DATA			
CALIBRATION DATE: 14-Dec-07			PSS 1978: C(35,15,0) = 4.2914 Seimens/meter			
GHU COEFFICIENTS			ABCDM COEFFICIENTS			
g = -1.06684896e+001			a = 6.45257403e-005			
h = 1.63895801e+000			b = 1.63830537e+000			
i = -3.57219293e-004			c = -1.06677871e+001			
j = 1.35481442e-004			d = -8.65358367e-005			
CPcor = -9.5700e-008 (nominal)			m = 4.2			
CTcor = 3.2		,			008 (nominal)	
BATH TEMP	BATH SAL	BATH COND	INST FREO	INST COND	RESIDUAL	
(ITS-90)	(PSU)	(Siemens/m)	(kHz)	(Siemens/m)	(Siemens/m)	
0.0000 -1.0000 1.0000 15.0000	34.9914	0.00000 2.81735 2.98950 4.29084		2.81733	0.00000 -0.00001 0.00001 0.00001	

15.0000	34.9917	4.29084	5.71345	4.29086	0.00001
18.5000	34.9910	4.63903	5.89581	4.63904	0.00001
29.0001	34.9873	5.72717	6.43217	5.72713	-0.00004
32.5001	34.9789	6.10114	6.60640	6.10117	0.00003
	2 3	4			

Conductivity = $(g + hf^2 + if^3 + jf^4)/10(1 + \delta t + \epsilon p)$ Siemens/meter Conductivity = $(af^m + bf^2 + c + dt)/[10(1 + \epsilon p)$ Siemens/meter t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ϵ = CPcor;

Residual = (instrument conductivity - bath conductivity) using g, h, i, j coefficients

Oxygen

Serial # 0459

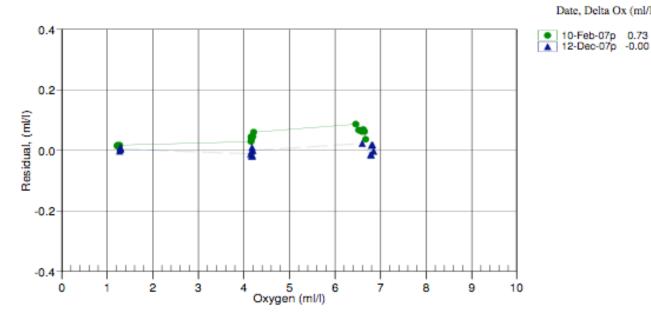
SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0459 CALIBRATION DATE: 12-Dec-07p SBE 43 OXYGEN CALIBRATION DATA

COEFFICIENTS

Soc = 0.4158 Boc = 0.0000 Voffset = -0.4827


TCor	=	0.0011	
PCor	=	1.350e-04	

BATH OX (ml/l)	BATH TEMP ITS-90	BATH SAL PSU	INSTRUMENT OUTPUT(VOLTS)	INSTRUMENT OXYGEN(ml/l)	RESIDUAL (ml/l)
1.27	20.00	0.01	0.953	1.27	-0.00
1.28	26.00	0.01	1.009	1.28	-0.00
1.28	12.00	0.01	0.887	1.28	0.00
1.28	2.00	0.00	0.802	1.29	0.01
1.29	6.00	0.00	0.838	1.30	0.01
1.29	30.00	0.01	1.053	1.29	0.00
4.15	26.00	0.01	2.187	4.13	-0.01
4.16	20.00	0.01	2.017	4.15	-0.02
4.17	12.00	0.01	1.795	4.17	-0.00
4.18	30.00	0.01	2.328	4.19	0.01
4.19	2.00	0.00	1.518	4.17	-0.02
4.19	6.00	0.00	1.634	4.19	-0.00
6.59	30.00	0.01	3.398	6.62	0.02
6.78	20.00	0.01	2.986	6.76	-0.01
6.79	26.00	0.01	3.277	6.78	-0.02
6.80	12.00	0.01	2.630	6.82	0.02
6.82	6.00	0.00	2.359	6.84	0.02
6.84	2.00	0.00	2.181	6.84	-0.00

oxygen (ml/l) = (Soc * (V + Voffset)) * exp(Tcor * T) * Oxsat(T,S) * exp(Pcor * P)

V = voltage output from SBE43, T = temperature [deg C], S = salinity [PSU]

Oxsat(T,S) = oxygen saturation [ml/l], P = pressure [dbar], Residual = instrument oxygen - bath oxygen

Date, Delta Ox (ml/l)

Flurometer

Serial # 088234

CERTIFICATE OF CALIBRATION

All test equipment and standards used are of known accuracy and are traceable to national standards. Details of test equipment and standards relevant to this certificate are available upon request.

Date of issue	06 March 2007	Group
Description	Mk III Aquatracka (Chlorophyll-a)	55 Central Avenue West Molesey Surrey KTB 202 United Kingdom
Serial Number	088234	Tel: +44 (0)20 8481 9000 Fax: +44 (0)20 8941 9319
Part No	3598C	sales@chelsea.co.uk www.chelsea.co.uk

REPORT

The fluorimeter was exposed to various concentrations of Chlorophyll-a dissolved in acetone in addition to pure water and pure acetone. The following formula was derived from the readings to relate instrument output to chlorophyll-a concentration.

Conc. = $(0.00779 \times 10^{\text{Output}}) - 0.0211$

Where -

Conc. = fluorophor concentration in µg/l Output = Aquatracka output in volts

The above formula can be used in the range 0 - 100 microgrammes per litre to an uncertainty of 0.02 microgrammes per litre plus 5% of value.

Notes

The above formula has been derived using Chlorophyll-a dissolved in acetone. No guarantee is given as to the performance of the instrument to biologically active chlorophyll in sea-water.

The zero offset has been determined in the laboratory using purified water from a reverse osmosis/ion exchange column. It is possible that purer water may be found in clean deep ocean conditions. Under these conditions, the offset shown in the above formula should be replaced by the antilogarithm of the Aquatracka output in the purest water found, multiplied by the scale factor.

Serial number 88234 Page 1 of 2

Group Companies

Chelsea

Chelsea Technologies Ltd Chelsea Instruments Ltd Chelsea Environmental Ltd Marine Acoustics Ltd

HLY0801 Data Synopsis

Transmisometer

Serial # CST-390DR

PO Box 518 620 Applegate St. Philomath, OR 97370

(541) 929-565 Fax (541) 929-527 www.wetlabs.com

C-Star Calibration

Date February 27, 2007	Customer US Coast Guard	Work order 104
Manager of Contrast and Contrast Arrange of Arrange of Arrange	S/N# CST-390DR	Pathlength 25 cm
V _d V _{air} V _{ref}	Analog meter 0.058 V 4.788 V	
Temperature of calibration wa Ambient temperature during c	4.707 V ter alibration	18.8 °C 23.4 °C

Relationship of transmittance (Tr) to beam attenuation coefficient (c), and pathlength (x): $Tr = e^{-cx}$

To determine beam transmittance: $Tr = (V_{sig} - V_{dark}) I (V_{ret} - V_{dark})$

To determine beam attenuation coefficient: c = -1/x * In (Tr)

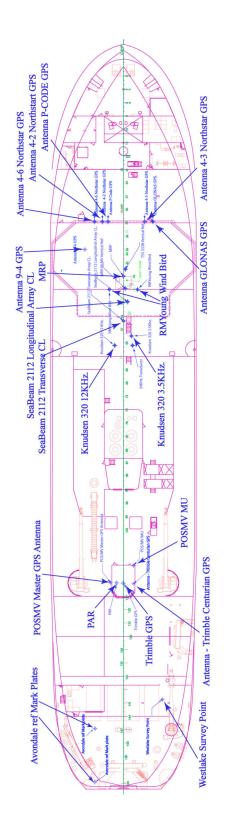
Meter output with the beam blocked. This is the offset Vd

Meter output in air with a clear beam path. Vak

V_{ref} Meter output with clean water in the path.

Temperature of calibration water: temperature of clean water used to obtain $V_{\mbox{\scriptsize ref}}$

Ambient temperature: meter temperature in air during the calibration. Measured signal output of meter. Vsig


uEinsteins/cm²-sec per volt µEinsteins/cm²·sec per volt 9.43E+15 3.27E+15 2.54E+15 9,66E+14 .30E+14 1.02E+13 Fest Irrad. cm2·sec) (quanta/ 19511 Note: The QSP-2300 output is a voltage that is proportional to the log of the incident irradiance. µEinsteins/cm²sec Job No.: Irradiance = Calibration factor * (10^ALight Signal Voltage - 10^ADark Voltage) Transmission Error (%) 17.71--27.4 0.0 2.7 -9.3 5.34E-06 9.00E-06 Measured 100.00% 0.01566 34.66% 26.87% 10.22% 1.35% 0.07% Trans. Voltage % VDC (+) Error -1% 0% 2% 6% quanta/cm2·sec per volt quanta/cm²·sec quanta/cm2-sec per volt Expected Voltage 2.908 3.467 3.024 2.434 1.512 0.194 10 Volts AE 9.43E+15 Voltage Sensor 0.594 3.007 2.897 2,478 1.608 0.500 3.467 3.5 2 9 To calculate irradiance, use this formula: Volts Volts Volts Volts Lamp Integrated PAR Irradiance: Sensor Supply Current (Dark): Supply Voltage: SC3 Immersion Coefficient: Standard Lamp: F-863(9/30/06) 3.22E+12 5.42E+12 Calibrated 100.00% 36.10% 70/60/10 27.60% 70115 Trans. 9.27% 1.11% 0.05% 0.00274 2) This section is for internal use and for more advanced analysis 0.003 3.467 TPO Model Number: OSP2300 G Sensor Test Data and Results²⁾ Calibration Date: Dry Calibration Factor: Serial Number: Operator: Wet Calibration Factor: **Operating Voltage Range:** Dark Before: Light - No Fitter Hldr.: Dark After - NFH: Average Dark Transmission Expected 0.10% 100% 50% 32% 10% 1% 1. Annual calibration is recommended. Filter OD No Filter Nominal 0.3 0.5 NO Votes:

PAR Serial # 70115

Page 113 of 119

Instrument Locations on the Healy

Layout plot of instrument locations

Table of Survey measurements

Conso	lidated Surv	vey Data	I	1		
	Elements of	of:				
		Avondale Survey				
		Westlake Survey				
		Lamont Survey				
	All Measu	rements in <u>Meters</u> rela	tive to MRP unless otherv	wise stated		
	X = fore &	aft with + foreward				
	Y = port &	x starboard with + to s	tarboard			
	Z= vertica	l with + upwards				
				Х	Y	Ζ
<u>Item</u>	<u>Survev</u>	Description		North	<u>East</u>	<u>Elevation</u>
1	Avondale	MRP	See discussion Westlake Final Report	34.30	0.00	9.15
2	Westlake	MRP	by Definition	0.00	0.00	0.00
3	Westlake	Seabeam 2112				
		Transverse Array	Centerline	-7.679	0.030	9.242
		Longitudinal Array	Centerline	-4.386	0.711	9.238
4	Westlake	Transducers				
		Starboard - Forward to Aft				
		Transducer -	Bathy 2000 3.5 kHz	-10.252	1.362	9.243
		Transducer -	Bathy 1500 34 kHz *	-11.866	1.559	9.245
		Transducer -	Doppler Speed Log	-12.168	0.414	9.245
		Transducer -	Spare Transducer Well	-13.081	1.449	9.237
5	Westlake	Port - Forward to Af	t			

		Transducer -	VM 150	-9.726	-1.395	9.230
	-	Transducer -	Ocean Surveyor 75 kHz	-10.819	-1.290	9.230
		Transducer -	Bathy 2000 12 kHz	-11.859	-1.492	9.234
		Transducer -	Spare Transducer Well	-13.078	-1.394	9.235
6	Westlake	Gyros				
		Starboard Gyro	Centerline	4.741	0.207	-19.604
		Port Gyro	Centerline	4.746	-0.207	-19.609
7	Westlake	Antennas				
		REF DWG TBD	Antenna 9-4 * - GPS Antenna (4.1.5)	4.587	-6.622	-24.000
			Antenna 4-6 * - Northstar GPS (4.1.1)	9.374	-4.970	-23.406
			Antenna 4-2 * - Northstar (4.1.2)	9.362	-3.617	-23.451
			P CODE GPS Antenna *	9.368	-2.645	-23.609
			Antenna 4-3 * - Northstar (4.1.4)	9.355	3.638	-23.363
			GLONAS GPS Antenna *	9.379	5.066	-23.515
			Antenna base (4A)	-53.872	-0.011	-22.025
			Antenna base (4B)	-49.758	0.038	-22.010
			Antenna base (4C)	-49.785	1.629	-22.020
			Antenna base (4D)	-49.771	-1.546	-22.008
			Trimble Centurion**	-52.726	-1.717	-21.113
			Time Server **	-52.671	1.838	-21.115
8	Westlake	Vertical Ref				
			MRV-M-MV -			-
			Measured at Top of mounting bracket			

			Center (mid-point) - calculated	-2.100	0.291	-0.775
			TSS 333B - Marine Motion Sensor -			
I			scribe atop mounting plate			
			Center of TSS 333B	1.210	0.329	-0.013
9	LDEO	POS/MV	1			
		From	ТО		Y	Z
		IMU	Port Antenna (Master)	-2.9719	-3.9140	-5.5310
		MRP	IMU	-49.5710	1.7110	-16.7990
		MRP	Transmit array	-4.3860	0.7110	9.2380
		MRP	Port Antenna (Master)	-52.5429	-2.2030	-22.3300
10	Westlake Raw	Fan Tail				
I			Aft/Port	-86.737	-4.906	-3.617
[Forward/Port	-77.600	-4.881	-3.589
I			Forward/Starboard	-72.590	6.676	-3.653

SBE 21 SEACAT Thermosalinograph Data Output Formats

This is extracted from page 33 of the SBE 21 SEACAT Thermosalinograph User's Manual (SeaBird Manual Version #022, 03/30/07).

The SBE 21 outputs data in raw, hexadecimal form as described below.

The inclusion of some output parameters is dependent on the system configuration - if the specified sensor is not enabled (see *Command Descriptions* above), the corresponding data is not included in the output data stream, shortening the data string.

• SBE 21 Format (F1) - ttttccccrrrrruuuvvvwwwxxx (use this format if you will be using SEASAVE to acquire real-time data and/or SBE Data Processing to process the data)

• SBE 16 Format (F2) - #ttttccccrrrrruuuvvvwwwxxxnnnn (custom format)

where

tttt = primary temperature

cccc = conductivity

rrrrrr = remote temperature (from SBE 38 or SBE 3 remote sensor)

uuu, vvv, www, xxx = voltage outputs 0, 1, 2, and 3 respectively

= attention character

nnnn = lineal sample count (0, 1, 2, etc.)

Data is output in the order listed, with no spaces or commas between parameters. Shown with each parameter is the number of digits.

Calculation of the parameter from the data is described below (use the decimal equivalent of the hex data in the equations).

1. Temperature

temperature frequency (Hz) = (tttt / 19) + 2100

2. Conductivity

conductivity frequency (Hz) = square root [($\csc * 2100$) + 6250000]

3. SBE 3 secondary temperature (if **SBE3=Y**)

SBE 3 temperature frequency (Hz) = rrrrrr / 256

4. SBE 38 secondary temperature (if **SBE38=Y**)

SBE 38 temperature *psuedo* frequency (Hz) = rrrrrr / 256

- 5. External voltage 0 (if 1 or more external voltages defined with SVx) external voltage 0 (volts) = uuu / 819
- 6. External voltage 1 (if 2 or more external voltages defined with SVx) external voltage 1 (volts) = vvv / 819
- External voltage 2 (if 3 or more external voltages defined with SVx) external voltage 2 (volts) = www / 819

```
    8. External voltage 3 (if 4 external voltages defined with SVx)
external voltage 3 (volts) = xxx / 819
```

Example: SBE 21 with SBE 38 and two external voltages sampled,

example scan = ttttccccrrrrruuuvvv = A80603DA1B58001F5A21

```
• Temperature = tttt = A806 (43014 decimal);
```

```
temperature frequency = (43014 / 19) + 2100 = 4363.89 Hz
```

```
• Conductivity = cccc = 03DA (986 decimal);
```

conductivity frequency =

square root [986 *2100) + 6250000] = 2884.545 Hz

• SBE 38 = rrrrr = 1B5800 (1,792,000 decimal)

temperature *pseudo* frequency (Hz) = (1,792,000 / 256) = 7000 Hz

• First external voltage = uuu = 1F5 (501 decimal);

voltage = 501 / 819 = 0.612 volts

• Second external voltage = vvv = A21 (2593 decimal);

voltage = 2593 / 819 = 3.166 volts

Note:

SBE 21 always outputs an even number of voltage characters. If you enable 1 or 3 voltages, it adds a 0 to the data stream before the last voltage, as shown below:

• Remote temperature and 1 voltage enabled –

ttttccccrrrrr0uuu or

#ttttccccrrrrr0uuunnnn

• Remote temperature and 3 voltages enabled -

ttttccccrrrrruuuvvv0www

#ttttccccrrrrrruuuvvv0wwwnnnn

Notes:

• Sea-Bird's software (SEASAVE and SBE Data Processing) uses the equations shown to perform these calculations; it then uses the calibration coefficients in the configuration (.con) file to convert the raw frequencies and voltages to engineering units. Alternatively, you can use the equations to develop your own processing software.

• See *Notes on SBE 38 Remote Temperature Data Output Format* below for details on how Sea-Bird handles SBE 38 data.