

Data Formats for Healy Under way Instruments

Prepared by: Tom Bolmer, David Forcucci, David Hassilev, & Steve Roberts Updated May 3, 2008, by Tom Bolmer

Table of Contents

Data Formats for Healy Under way	Oxygen Sensor A	Speed Log
<u>Instruments</u>	Oxygen Sensor B	Sperry Speed Log
<u>Data</u>	Fluorometer A	Sound Velocimeter
Directories and Contents:	Fluorometer B	<u>SV2000</u>
1 Minute Averaged Data:	<u>Transmissometer</u>	<u>./Raw</u>
SCS Data:	ISUS Nitrate Sensor small file	75 KHz ADCP data
Extra files in the directory	ISUS Nitrate Sensor 3V large	150 Khz ADCP data
SCS Data:	file	KNUDSEN 320B/R
LDS Data:	Pressure Sensor Sea Water	Seabeam
Meta Data:	Line	Thermosalinograph
Raw:	Sonar Data	Thermosalinograph FWD
Images:	Seabeam 2112 Center Beam	CTD
Ice observations:	Knudsen	Expendable Bathythermograph
Merged Data	3.5 kHz	(XBT)
LDEO Averaged One Minute	Winch data	LDS Data
Data File	Starboard A-Frame Winch Data	Navigation
File Formats of Data Collected	Aft A-Frame Winch Data	ADU5 (Ashtech GPS)
Underway	Navigational Data	Trimble AGGPS
./SCS Data	POSMV	PSOMV Attitude
Underway Data	POSMV GGA	POSMV GPS
Meteorology Data	POSMV Psuedo Noise	POSMV Navigation for the
R. M. Young Sensors	POSMV HDT	SeaBeam
R.M. Young Air Temperatures	POSMV PASHR	SeaBeam Data
R.M. Young Air Temperatures,	POSMV VTG	SeaBeam Center Beam Data
Fahrenheit (Derived)	POSMV ZDA	Speed of Sound in the Surface
R.M. Young Wind. Port	Ashtech GPS	Water for SeaBeam
R.M. Young Wind, Starboard	Ashtech Attitude	Raw SeaBeam Files
R.M. Young Wind True, Port	Ashtech GGA	Gyroscope data
(Derived)	Ashtech GGL	MK27 Sperry Gyroscope
R.M. Young Wind True,	Ashtech HDT	MK39 Sperry Gyroscope
Starboard (Derived)	<u>PCode</u>	All SIO TSG and MET Data
Dew Point (Derived)	PCode AFT	Gravity
Jack Staff Meteorological	PCode Aft GGA	BGM221

Senors Jack Staff Wind Sensors Yard Arm Wind Senors **Solar Radiometers** Photosynthetic Active Radiation (PAR) Sensor Solar Radiometers (Short and Long Wave), Pyranometer and Pyrgeometer SAMOS (Shipboard Automated Meteorological and Oceanographic Systems) Example Format for most variables Example Format for data in Degrees SAMOS Data Designator Keys Oceanographic Data Thermosalinograph / Fluorometer TSG A TSG B Sea Surface Temperature **Theromsalinograph** Flowmeter A Theromsalinograph Flowmeter B

PCode Aft GLL PCode AFT VTG PCode AFT ZDA PCode Bridge PCode Bridge GGA PCode Bridge GLL PCode Bridge VTG Glonass Glonass GGA Glassnos GLL Gyro Gyro Heading MK27 Gyro MK39 Gyro Waypoints **IBS Waypoints**

BGM222 Events in Running LDS Underway Sensors and Calculations Sensors and Calculations HLY0802 - Shipboard Sensors HLY0802 - CTD Sensors HLY0802 - Sensor Calculations Calculating Temperature – ITS-90 Calculating Conductivity – ITS-90 Calculating Fluorometry Voltage Calculating Transmittance Calculating PAR for surface **PAR** Calculating Pyrgeometer Values MBARI-ISUS V3 Data File Instrument Locations on the Healy Layout plot of instrument locations Table of Survey measurements

Data

Data are received via RS-232 serial connections. In SCS a time tag is added at the beginning of each line of data in the form,

mm/dd/yyyy,hh:mm:ss.sss,[data stream from instrument] where:

Format	Value used
mm	2 digit month of the year
dd	2 digit day of the month
уууу	4 digit year
hh	2 digit hour of the day
mm	2 digit minute
SS.SSS	seconds

An example string from the Seabeam Centerbeam file is:

04/13/2007,06:49:20.920,\$SBCTR,2007,4,13,06:49:09.437,57.158792,-165.664322,69.15,60*00

All times are reported in UTC. Each file type has it's own NMEA string name (\$SBCTR as an example). The delimiters that separate fields in the raw data files are commas. Care should be taken when reprocessing the data that the field's separations are clearly understood.

Directories and Contents:

1 Minute Averaged Data:

This directory contains all of the under way data averaged over a 1 minute

window in time.

This directory contains serial data collected by the SCS version 3.3b data collection system in different directories. Directory names are labeled by

the instrument name and string type of the data collected. A description of

the data contained in this directory is below.

This directory contains serial data collected by the Lamont LDS data collection system in different directories. Directory names are labeled by

the instrument name and string type of the data collected. A description of

the data contained in this directory is below.

This directory contains raw data as recorded by individual instruments and

put into different directories. Directory names are labeled by the

instrument name and string type of the data collected. A description of the

data contained in this directory is below.

This directory contains documents useful in the post analysis of the data on

this DVD media set. The data type are separated into different directories

by type. A description of these directories is below.

1 Minute Averaged Data:

Raw:

Meta data:

HLY0802 distance.csv.gz Distance along track from port.

HLY0802 Averaged.csv.gz All the Under way data averaged for 1 minute.

Shapefile All of the 1 minute under way data averaged at 1 minute spacing in shp,

shx and dbf GIS files

SCS_Data:

/aft_a_frame Wire tension, wire out, and wire speed for the Aft A frame sheaves.

/air temp f Temperature data from the RM Young wind sensor in Fahrenheit. Data is

derived from data from files in the rmyoung air directory

/ashtech_attitude Attitude in NMEA format from the Ashtech ADU5 GPS receiver

/ashtech gga Position data in NMEA GGA format from the Ashtech ADU5 GPS

receiver

/ashtech gll Position data in NMEA GLL format from the Ashtech ADU5 GPS

receiver

/ashtech hdt Heading data in NMEA HDT format from the Ashtech ADU5 GPS

receiver

/dew point f Dew point temperature derived from air temp

/flomet_a Flow meter data just upstream of the A TSG and Fluorometer.
/flomet b Flow meter data just upstream of the B TSG and Fluorometer.

/fluro_a Flurometer for A TSG sensor.
/fluro b Flurometer for B TSG sensor.

/glonass_gga Position data in NMEA GGA format from the GLONASS GPS receiver.
/glonass_gll Position data in NMEA GLL format from the GLONASS GPS receiver.

/gyro_mk27 Heading data in NMEA HDT format from the Sperry MK27gyro compass
/gyro mk39 Heading data in NMEA HDT format from the Sperry MK39 gyro compass

/ibs waypoints Waypoints from the Healy's Integrated Bridge System

/isus ISUS Nitrate Sensor small file /isus3v ISUS Nitrate Sensor 3V full file

/knudsen Depth data in a proprietary PKEL format received from Knudsen 320 B/R

serial output

/met3a sen Meterology data from the top of the Jackstaff.

/oxygen_a Oxygen values from A TSG.
/oxygen_b Oxygen values from A TSG.

/pcode aft gga

Position data in NMEA GGA format from the Trimble Centurion receiver

located in the Computer lab<

/pcode aft gll Position data in NMEA GLL format from the Trimble Centurion receiver

located in the Computer lab

/pcode aft vtg Course and speed over ground in NMEA VTG format from the Trimble

Centurion receiver located in the Computer lab

/pcode aft zda

Time and date data in the NMEA ZDA format. Data retrieved from the

Trimble Centurion receiver located in the Computer lab

/pcode bridge gga Position data in NMEA GGA format from the Trimble GPS receiver

located on the bridge.

/pcode bridge gll Position data in NMEA GLL format from the Trimble GPS receiver

located on the bridge.

Course and speed over ground data in NMEA VTG format from the /pcode bridge vtg

Trimble GPS receiver located on the bridge.

Position data in NMEA GGA format from the POS/MV /posmv gga

Pseudorange error statistics in NMEA GST format from the POS/MV /posmv gst

/posmv hdt Heading data in NMEA HDT format from the POS/MV

/posmv pashr Roll, pitch and heave from POS MV inertial navigation system.

/posmv vtg Course and speed over ground in NMEA VTG format from the POS/MV

/posmv zda Time and date data in NMEA ZDA format from the POS/MV

Pressure sensor in the Uncontaminated Seawater System before the Bio /pressure sen

Chem Lab which measures header pressure in PSI

Temperature, humidity, air pressure data in NMEA XDR format from the /rmyoung air

RM Young meteorological system

Wind speed and direction data in NMEA WMV format from the RM /rmyportwind

Young weather vane on the port side of the Healy.

Wind speed and direction data in NMEA WMV format from the RM /rmystbdwind

Young weather vane on the starboard side of the Healy.

/samos data Meterology data for SAMOS.

/sbd a frame Wire tension, wire out, and wire speed for the starboard A frame sheaves.

/seabeam center Center depth data from the Seabeam 2112 /solar radiometers Solar Radiometer data for SW and IW.

/sperry speedlog ground/water speed data from the Sperry Speed Log

Photosynthetic Active Radiation volts and Microeinstens/m2 se from the /surface par

surface par sensor

Sound Velocity data from the SV2000 sound velocimeter located in the /sv2000

ADCP BB150 sonar well

/true wind port True wind speed data derived from gyro data and rmyportwind True wind speed data derived from gyro data and rmystbdwind /true wind stbd

Thermosalinograph and fluorometer data from the A TSG instruments in /tsg a

the Bio/Chem Lab.

-Thermosalinograph and fluorometer data from the B TSG the instruments /tsg b

in the Bio/Chem Lab.

Line out and speed data from the winch system. /winch data

Wind data from the Jack Staff. /wind sen a

/wind sen b Wind data from the Yard.

Extra files in the directory SCS Data:

Contains the data as to what occurred with SCS data. It shows when data ACQLOG.LOG

collection was started and stopped.

Incidents_YYYYMMDD-

TTTTTT.DTM

Contains any incident data which were triggered in SCS 3.3b.

sensor YYYYMMDD-

Contains the configuration file for data collection as configured by SCS 3.3b.

TTTTTT.scf

LDS_Data:

/AloftConCam Contains picture files separated by folders named by Year and Day of the

Year (YYYYJJJ). The picture files are in 5 minute JPEG format.

/FantailCam Contains picture files separated by folders named by Year andDay of the

Year (YYYYJJJ). The picture files are in 5 minute JPEG format.

/adu5 Contains the data from the ADU5 GPS.
/aggps Contains the data from the AG GPS.

/bgm221 Contains the data from the BGM221 Gravimeter.
/bgm222 Contains the data from the BGM222 Gravimeter.
/events Contains the logs of event for different systems.

/mk27 Contains the data from the MK27 Gyro.
/mk30 Contains the data from the MK30 Gyro.

/posatt Contains the attitude data from the POSMV GPS.
/posnav Contains the navigation data from the POSMV GPS.

/posreform2sb Contains the navigation data from the POSMV GPS reformatted for the

SeaBeam

/sbctr Contains the center beam data from the SeaBeam.

/sbsv Contains the surface sound velocity data for the SeaBeam.

/seabeam Contains the data from the SeaBeam.

/tsg met Contains the all data from SIO TSG and Met sensors.

Meta Data:

/elog Contains the technician's narrative of important events, which occurred

both to the network and to individual sensors.

/Bridge_Logs

DDMMMYY.doc The "smooth log" containing events recorded by the bridge watch.

DDMMMYYWX.xls Weather log recorded by the watch.

DDMMMYYNAV.xls Navigation logs recorded by the watch.

Raw:

/adcp75 75 KHz ADCP data /adcp150 150 Khz ADCP data

/ctd CTD data in directories by Cast number.

/knudsenraw Knudsen 320B/R data

/xbt Expendable Bathythermograph data.

Images:

/Satellite_Image Contains satellite imagery in jpeg format

/dmsp dmsp folders labeled by Year, Month, Day /hrpt hrpt folders labeled by Year, Month, Day

Directories of the Ice Observations taken for the cruise.

Ice_observations:

Merged Data

LDEO Averaged One Minute Data File

The data are summarized into an averaged one (1) minute data file by the LDEO technician. This file takes the average value centered around the minute, (30 seconds either side of the whole minute). The data are the raw values as they are logged. There has been no quality control done on these files. Those wishing more accurate and quality controlled values should process the data in the directories described below in the document.

HLY0802 track.csv or HLY0802 Averaged.csv

6944,2008/03/18 16:08,62.7178957,-174.0047168,213.6,10.1,216.3,71.5,-1.731,-

1.275, 26.5602, 33.093, 0.699, 0.070, 0.000, 0.014, 1.704, 0.170, 0.589, 0.059, 2.93, 3.30, 0.16, 278.38, 257.36, 257.33, 31, -15.87, 94.39, 1017.99, 0.00, 276.49, 1.76, 1.86, 5.20, 225.43, 1.87, 8.82, 4.44, 7.841, -1.275, 0.000, 0.000, 0.000, 2.76, -7, 0.1, -182, -1, 0

6945,2008/03/18 16:09,62.7155853,-174.0082005,204.9,10.3,204.6,71.0,-1.731,-

1.276, 26.5577, 33.091, 0.625, 0.062, 0.000, 0.014, 1.650, 0.165, 0.570, 0.057, 3.00, 3.40, 0.64, 277.30, 257.39, 257.45, 3.1, -15.88, 94.30, 1018.03, 0.00, 284.64, 2.73, 2.19, 4.86, 235.55, 2.71, 2.45, 3.64, 7.842, -1.276, 0.000, 0.000, 0.000, 2.75, -7, 0, 1, -183, -1, 0

6946,2008/03/18 16:10,62.7128363,-174.0101985,196.9,10.6,197.2,67.1,-1.726,-

1.278, 26.5468, 33.078, 0.624, 0.062, 0.000, 0.014, 1.632, 0.163, 0.555, 0.055, 2.94, 3.30, 1.20, 278.48, 257.45, 257.44, 3.31, -15.89, 94.21, 1018.02, 0.00, 274.01, 2.81, 349.11, 5.50, 245.37, 3.28, 343.65, 3.96, 7.812, -

1.278,0.000,,0.000,0.000,2,-274,-7,0,1,-185,-1,0

Field	DATA	Example	UNITS
01	ID	6944	sample count
02	date	2008/03/18 16:08	date & time UTC (year/month/day hour:minute)
03	lat	62.7178957	POSMV Latitude (decimal degrees)
04	lon	-174.0047168	POSMV Longitude (decimal degrees)
05	cog	213.6	POSMV Course Over Ground (angular distance from 0 (North) clockwise through 360, 1 minute average)
06	sog	10.1	POSMV Speed Over Ground (Knots, 1 minute average
07	heading	216.3	POSMV ship heading(angular distance from 0 (North) clockwise through 360, 1 minute average)
08	depth	71.5	Seabeam centerbeam depth(meters, 1 minute average)
09	SST	-1.731	SBE3s RemoteTemperature, Sea Chest intake (Celsius, 1 minute average)
10	TSG_InTemp	-1.275	SBE45 internal temperature (Celsius, 1 minute average)
11	TSG_Cond	26.5602	SBE45 Water Conductivity (millisiemens/centimeter, 1 minute average)
12	TSG_Sal	33.093	SBE45 Water Salinity (PSU, 1 minute average)
13	SCF-FL	0.699	SCF Fluorometer (Ug/l, 1 minute average)
14	SCF-FL-V	0.070	SCF Fluorometer (Volts, 1 minute average)
15	SCF-Turb	0.000	SCF Turbidity (NTU, 1 minute average)

16	SCF-Turb-V	0.014	SCF Turbidity (Volts, 1 minute average)
17	SCUFA-FL	1.704	SCUFA Fluorometer (Ug/l, 1 minute average)
18	SCUFA-FL-V	0.170	SCUFA Fluorometer (Volts, 1 minute average)
19	SCUFA-Turb	0.589	SCUFA Turbidity (NTU, 1 minute average)
20	SCUFA-Turb- V	0.059	SCUFA Turbidity (Volts, 1 minute average)
21	tsg_flow_A	2.93	Flowmeter in-line with PSTSGA, PSOXA, PSFLA (LitersPerMinute, 1 minute average)
22	tsg_flow_B	3.30	Flowmeter in-line with PSFLB (LitersPerMinute, 1 minute average)
23	SWR	0.16	Short Wave Radiation (W/M^2, 1 minute average)
24	LWR	278.38	Long Wave Radiation (W/M^2, 1 minute average)
25	LWR_Dome_T	257.36	LWD Dome Temperature (Deg K, 1 minute average)
26	LWR_Body_T	257.33	LWD Body Temperature (Deg K, 1 minute average)
27	PAR	3.31	Surface PAR (uE/Sec/M^2, 1 minute average)
28	MET3A_Temp	-15.87	MET3A Air Temperature (Deg C, 1 minute average)
29	MET3A_RH	94.39	MET3A Relative Humidity (%, 1 minute average)
30	MET3A_Baro	1017.99	MET3A Barometric Pressure (millibars, 1 minute average)
31	MET3A_Precip	0.00	MET3A Precipitation (mm, 1 minute average)
32	JS_WndDirR	276.49	Jackstaff Relative wind direction (deg, 1 minute average)
33	JS_WndSpdR	1.76	Jackstaff Relative wind speed (m/s, 1 minute average)
34	JS_WndDirT	1.86	Jackstaff True wind direction (deg, 1 minute average)
35	JS_WndSpdT	5.20	Jackstaff True wind speed (m/s, 1 minute average)
36	MM_WndDirR	225.43	Main Mast Relative wind direction (deg, 1 minute average)
37	MM_WndSpdR	1.87	Main Mast Relative wind speed (m/s, 1 minute average)
38	MM_WndDirT	8.82	Main Mast True wind direction (deg, 1 minute average)
39	MM_WndSpdT	4.44	Main Mast True wind speed (m/s, 1 minute average)
40	SBE_Oxy	7.841	SBE-43 Oxygen(ml/l, 1 minute average)
41	SBE_Oxy_T	-1.275	SBE-43 Oxygen Temperature(Deg C, 1 minute average)
42	Optode_Oxy	0.000	Optode Oxygen(ml/l, 1 minute average)
43	Optode_Oxy_T		Optode Oxygen Temperature(Deg C, 1 minute average)
44	Isus_1	0.000	Isus Aux 1(Volts, 1 minute average)
45	Isus_2	0.000	Isus Aux 2(Volts, 1 minute average)
46	WinchAft	2	Aft A-Frame Winch number
47	TensionAft	-276	Aft A-Frame Winch Wire tension(Pounds, 1 minute average)
48	WireOutAft	-7	Aft A-Frame Winch Wire out (Meters, 1 minute average)
49	SpeedAft	0	Aft A-Frame Winch Wire speed(Meters/minute, 1 minute average)
50	WinchSbd	1	Starboard A-Frame Winch number
51	TensionSbd	-182	Starboard A-Frame Winch Wire tension(Pounds, 1 minute average)

52	WireOutSbd	-1	Starboard A-Frame Winch Wire out (Meters, 1 minute average)
53	SpeedSbd	0	Starboard A-Frame Winch Wire speed(Meters/minute, 1 minute average)

File Formats of Data Collected Underway

In the sections below for each data type the directory name is listed, then an example file name, and then 3 lines from that file. This part is followed by a table that lists the data contained in the string.

./SCS Data

The following data types are to be found in the SCS Data directory.

Underway Data

Meteorology Data

R. M. Young Sensors

R.M. Young Air Temperatures

Temperature, humidity, air pressure data in NMEA XDR format from the RM Young meteorological system. ./rmyoung air

RMYoung-Air 20070414-182437.Raw

04/14/2007,18:24:40.693,\$WIXDR,C, -6.62,C,1,H, 89,P,1,C, -8.06,C,1,P, 994.24,B,2,D,-35,M,3hh 04/14/2007,18:24:46.677,\$WIXDR,C, -6.49,C,1,H, 89,P,1,C, -7.93,C,1,P, 994.32,B,2,D,-35,M,3hh 04/14/2007,18:24:49.678,\$WIXDR,C, -6.49,C,1,H, 89,P,1,C, -7.93,C,1,P, 994.24,B,2,D,-35,M,3hh

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/14/2007	mm/dd/year
2	SCS logged Time GMT	18:24:49.678	hh:mm:ss.sss
3	NMEA header	\$WIXDR	ASCI text
4	Data type for field 5	C	Temperature
5	Air Temperature	-6.62	Celsius
6		C	
7		1	
8	Data Type for field 9	Н	ASCII character
9	Relative Humidity	89	Percent
10		P	
11		1	
12	Data type for field 13	C	
13	Dew Point Temperature	-8.06	Celsius
14		С	
15		1	
16	Data type for field 17	P	Pressure
17	Barometer	994.24	hPa
18		В	

19		2	
20	Data type for field 20	D	
21	Elevation	-35	Meters
22		M	
23		3hh	

R.M. Young Air Temperatures, Fahrenheit (Derived)

Temperature data from the RM Young wind sensor in Fahrenheit. Data is derived from data from files in the rmyoung air directory.

./air temp f

AirTemp-F_20070413-000000.Raw 04/13/2007,00:00:02.074,\$DERIV,28.83,-1.76, 04/13/2007,00:00:05.074,\$DERIV,28.62,-1.88, 04/13/2007,00:00:08.074,\$DERIV,28.62,-1.88,

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/13/2007	mm/dd/year
2	SCS logged Time GMT	00:00:02.074	hh:mm:ss.sss
3	NMEA header	\$DERIV	ASCI text
4	Air Temperature	28.83	Fahrenheit
5	Air Temperature	-1.76	Celsius

R.M. Young Wind. Port

Wind speed and direction data in NMEA WMV format from the RM Young weather vane on the port side of the Healy.

./rmyportwind

RMYPortWind_20070414-182437.Raw 04/14/2007,18:24:38.490,\$WIMWV,033,R,028.1,N,A*36 04/14/2007,18:24:39.505,\$WIMWV,041,R,028.7,N,A*35 04/14/2007,18:24:40.521,\$WIMWV,034,R,029.4,N,A*35

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/14/2007	mm/dd/year
2	SCS logged Time GMT	18:24:38.490	hh:mm:ss.sss
3	NMEA header	\$WIMWV	ASCII text
4	Wind Direction	033	Degrees
5	R= Relative	R	ASCII character
6	Wind Speed	028.1	Knots
7	N= Knots	N	ASCII character
8	A= Valid Data	A	ASCII character
9	Check sum	*36	ASCII text

R.M. Young Wind, Starboard

Wind speed and direction data in NMEA WMV format from the RM Young weather vane on the starboard side of the Healy.

./rmstbwind

RMYStbdWind_20070414-182437.Raw 04/14/2007,18:24:38.677,\$WIMWV,044,R,025.4,N,A*3E 04/14/2007,18:24:39.693,\$WIMWV,045,R,025.6,N,A*3D 04/14/2007,18:24:40.724,\$WIMWV,042,R,025.2,N,A*3E

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/14/2007	mm/dd/year
2	SCS logged Time GMT	18:24:38.677	hh:mm:ss.sss
3	NMEA header	\$WIMWV	ASCII text
4	Wind Direction	044	Degrees
5	R= Relative	R	ASCII character
6	Wind Speed	025.4	Knots
7	N= Knots	N	ASCII character
8	A= Valid Data	A	ASCII character
9	Check sum	*3E	ASCII text

R.M. Young Wind True, Port (Derived)

True wind speed data derived from gyro data and rmyportwind.

./true wind port

PortWnd-T_20070415-000000.Raw 04/15/2007,00:00:03.927,\$DERIV,18.59,4.57,30.6,12,12.5,343.7,344.2, 04/15/2007,00:00:05.927,\$DERIV,19.69,10.28,31.4,16,12.5,344.2,344.2, 04/15/2007,00:00:07.927,\$DERIV,19.85,3.73,31.8,12,12.4,344.1,344.2,

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	,00:00:03.927	hh:mm:ss.sss
3	NMEA header	\$DERIV	ASCII text
4	Wind Speed derived	18.59	knots
5	Wind Directions derived	4.57	degrees
6	Wind Speed relative	30.6	knots
7	Wind Direction relative	12	direction
8	Speed over ground (pos mv)	12.5	knots
9	Course over ground (pos mv)	343.7	Degrees
10	Heading (pos mv)	344.2	Degrees

R.M. Young Wind True, Starboard (Derived)

True wind speed data derived from gyro data and rmystbdwind.

./true wind stbd

StbdWnd-T 20070415-000000.Raw

04/15/2007,00:00:03.396,\$DERIV,17.33,3.47,29.4,11,12.5,343.7,344.2,

04/15/2007,00:00:05.396,\$DERIV,17.05,15.29,28.5,18,12.5,344.2,344.2,

04/15/2007,00:00:07.396,\$DERIV,19.99,13.31,31.4,18,12.4,344.1,344.2,

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:07.396	hh:mm:ss.sss
3	NMEA header	\$DERIV	ASCII text
4	Wind Speed derived	19.99	knots
5	Wind Directions derived	13.31	degrees
6	Wind Speed relative	31.4	knots
7	Wind Direction relative	18	direction
8	Speed over ground (pos mv)	12.4	knots
9	Course over ground (pos mv)	344.1	Degrees
10	Heading (pos mv)	344.2	degrees

Dew Point (Derived)

Dew Point derived from rmyoung_air.

./dew_point_f

DewPt-F 20070414-182437.Raw

04/14/2007,18:24:41.099,\$DERIV,17.49,-8.06,

04/14/2007,18:24:44.099,\$DERIV,17.73,-7.93,

04/14/2007,18:24:47.099,\$DERIV,17.73,-7.93,

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/14/2007	mm/dd/year
2	SCS logged Time GMT	18:24:47.099	hh:mm:ss.sss
3	NMEA header	\$DERIV	ASCII text
4	Air Temperature	17.73	Fahrenheit
5	Air Temperature	-7.93	Celsius

Jack Staff Meteorological Senors

Weather Sensoers on top of the Jack Staff.

./met3a sen

MET3A-Sen 20080312-000000.Raw

03/12/2008,21:02:17.810,\$PSMEA,-6.29,83.89,1018.43,14.17*5C

03/12/2008,21:02:19.810,\$PSMEA,-6.28,83.90,1018.45,14.18*5C

03/12/2008,21:02:21.810,\$PSMEA,-6.28,83.90,1018.45,14.17*53

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/12/2008	mm/dd/year
2	SCS logged Time GMT	21:02:17.810	hh:mm:ss.sss
3	NMEA header	\$PSMEA	ASCII text
4	Air Temperature	-6.29	Celsius
5	Relative Humidity	83.89	%
6	Barometric Pressure	1018.45	milibars
7	Precipitation, total accumulation	14.17	milimeters
8	Check sum	*5C	ASCII text

Jack Staff Wind Sensors

Wind Sensors on top of the Jack Staff.

./wind sen a

WIND-SEN-A 20080312-000000.Raw

03/12/2008,21:18:00.841,\$PSWDA,52.45,13.92,341.17,14.81*62 03/12/2008,21:18:02.856,\$PSWDA,53.55,14.15,333.55,15.14*64 03/12/2008,21:18:04.841,\$PSWDA,52.27,14.48,337.10,14.35*6F

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/12/2008	mm/dd/year
2	SCS logged Time GMT	21:18:00.841	hh:mm:ss.sss
3	NMEA header	\$PSWDA	ASCII text
4	Relative Wind Direction	52.45	degrees
5	Relative Wind Speed	13.92	m/s
6	True Wind Direction	341.17	degrees
7	True Wind Speed	14.81	m/s
8	Check sum	*62	ASCII text

Yard Arm Wind Senors

Wind Sensors on top of the Jack Staff.

/wind sen b

WIND-SEN-B 20080312-000000.Raw

03/12/2008,21:49:48.919,\$PSWDB,45.64,15.53,325.29,14.45*68

03/12/2008,21:49:50.919,\$PSWDB,46.55,15.48,328.82,13.39*63

03/12/2008,21:49:52.919,\$PSWDB,46.36,15.48,326.14,14.68*64

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/12/2008	mm/dd/year
2	SCS logged Time GMT	21:49:48.919	hh:mm:ss.sss
3	NMEA header	\$PSWDB	ASCII text
4	Relative Wind Direction	45.64	degrees
5	Relative Wind Speed	15.53	m/s
6	True Wind Direction	325.29	degrees
7	True Wind Speed	14.45	m/s
8	Check sum	*68	ASCII text

Solar Radiometers

Photosynthetic Active Radiation (PAR) Sensor

Photosynthetic Active Radiation Microeinstens/m2 sec and volts from the surface PAR sensor on top of HCO. ./suface par

Surface-PAR 20080312-000000.Raw

03/12/2008,22:02:46.872,\$PSSPA,1749.51,1.056*4C

03/12/2008,22:02:48.872,\$PSSPA,1755.43,1.060*47

03/12/2008,22:02:50.888,\$PSSPA,1755.43,1.060*47

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/12/2008	mm/dd/year
2	SCS logged Time GMT	22:02:46.872	hh:mm:ss.sss
3	NMEA header	\$PSSPA	ASCII text
4	Surface PAR	1749.51	MicroEinstiens sec /m*2
5	Surface PAR	1.056	Volts
6	Check sum	*4C	ASCII text

Solar Radiometers (Short and Long Wave), Pyranometer and Pyrgeometer

Solar Radiometers data from the sensors on top of HCO. The short wave radiometer is the Pyranometer and the Long wave radiometer is the Pyranometer.

/solar radiometers

SRM 20080314-000000.Raw

03/14/2008,12:31:43.329,\$PSSRA,1.20,0.010,338.30,0.034,276.02,1.192,275.97,1.194*44 03/14/2008,12:31:45.329,\$PSSRA,1.20,0.010,338.30,0.034,276.02,1.192,275.97,1.194*44 03/14/2008,12:31:47.328,\$PSSRA,1.20,0.010,339.20,0.037,276.02,1.192,275.97,1.194*47

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/14/2008	mm/dd/year
2	SCS logged Time GMT	12:31:43.329	hh:mm:ss.sss
3	NMEA header	\$PSSRA	ASCII text
4	Short Wave Radiation	1.20	W/m*2
5	Short Wave Radiation, RAW	0.010	millivolts
6	Long Wave Radiation (LWR)	338.30	W/m*2
7	LWR, RAW	0.034	millivolts
8	LWR, Dome temperature	276.02	Degrees Kelvin
9	LWR, Some temp, RAW	1.192	volts
10	LWR, Body temperature	275.97	Degrees Kelvin
11	LWR, Body temp, RAW	1.194	volts
12	Check sum	*44	ASCII text

SAMOS (Shipboard Automated Meteorological and Oceanographic Systems)

Data formatted to be sent to the U.S. Research Vessel Surface Meteorology Data Assembly Center (DAC). These data are in files that have only a single value. Every variable sent into SAMOS is in a separate file. The name of the file should tell the user what the variable is.

There are two types of formats used. The bulk of the data has the date, time, a NMEA header for derived data, the mean data for the minute, the last value used in the minute, the total of all the values for the minute and the number of values used to get the mean. The other is for data that is in degrees. The data for degrees has the date, time, a NMEA header for derived data, the mean data for the minute found using the arc tangent of the sine and cosine of the data, the last data value for the minute, the mean of the sums of the sin of the data, the mean of the sum of the cosines of the data and the number of values used to get the mean.

For caluculation of the True wind direction and speed value for SAMOS the method is a less accurate one. The directions are caluculated as desribed above with the means of the sine and cosine of the angles applied to the arctangent for an average heading. The True winds are only a mean of the values entered. In the future (2009???) the direction and speed averages will be calulated using the vectors these data represent.

Example Format for most variables

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/25/2008	mm/dd/year
2	SCS logged Time GMT	00:00:04.710	hh:mm:ss.sss
3	NMEA header	\$DERIV	
4	mean value	7.71	
5	Last value used	7.712	
6	Sum of values	215.893	
7	number of values	28	

Example file using the Oxygen data: SAMOS-OX_20080325-000000.Raw 03/25/2008,00:00:04.710,\$DERIV,7.71,7.712,215.893,28, 03/25/2008,00:00:06.132,\$DERIV,7.71,7.712,223.605,29, 03/25/2008,00:00:07.475,\$DERIV,7.71,7.709,223.605,29,

Example Format for data in Degrees

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.505	hh:mm:ss.sss
3	NMEA header	\$DERIV	ASCII text
4	Arctangent of the Sums	79.39	
5	Last value used	93.174	
6	Mean of the Sines	57.4453621646971	
7	Mean of the Cosines	10.7645427712987	
8	number of values	59	

Example file using the Jack Staff True Wind data:

SAMOS-TIB_20080326-000000.Raw

03/26/2008,00:00:04.561,\$DERIV,321.84,319.15,36.9644472519094,47.0329478291115,60,

03/26/2008,00:00:06.045,\$DERIV,321.72,317.79,36.436429442339,46.173817552869,59,

03/26/2008,00:00:07.092,\$DERIV,321.66,317.79,37.1082793162236,46.9145049005139,60,

The data filenames each have a 2 letter data type designator to tell what kind of data is in the file. The files are named:

SAMOS The start of the filename for SAMOS data

OX Data type, here for Oxygen

20080325 Date, year, month and day of the month 000000 Time in hour, minute and seconds in UTC

The above file name would be: SAMOS-OX 20080325-000000.Raw

SAMOS Data Designator Keys

Parameter	Designator Key
Air temperature	AT
Air temperature \$PSMEA(2)	AT1
Atm. pressure	BP
Atm. Pressure \$PSMEA(4)	BP1
Conductivity \$PSTSA(3)	TC
Course over ground	CR
Depth to Surface	BT
Dewpoint temperature	DP
Earth relative wind direction	TIP
Earth relative wind direction \$PSWDA(4)	TIB
Earth relative wind direction \$PSWDB(4)	TIS1
Earth Relative Wind Direction Stbd	TIS
Earth relative wind speed	TKP
Earth relative wind Speed \$PSWDA(5)	TWB
Earth relative wind speed \$PSWDB(5)	TWS
Earth Relative Wind Speed Stbd	TKS
Flow through TSG \$PSFMA(2)	FI
Heading	GY
Heave	VH
Latitude	LA
Longitude	LO
Longitudinal Water Speed Fore - Aft	SL
Longwave radiation \$PSSRA(4)	LW
Longwave radiation \$PSSRA(6)	LD
Longwave radiation \$PSSRA(8)	LB
Oxygen \$PSOXA(2)	OX
Oxygen \$PSOXA(4)	OT
Photosynthetically Active Radiation \$PSSPA(2)	PA
Pitch	VP
POS-MV Heading	SH
Precipitation \$PSMEA(5)	PR
Relative humidity	RH
Relative humidity \$PSMEA(3)	RH1
Roll	VR
Salinity \$PSTSA(4)	SA
Sea Surface Temp \$PSSTA(2)	ST

Ship relative wind direction	WDP
Ship relative wind direction \$PSWDA(2)	WDB
Ship relative wind direction \$PSWDB(2)	WDS1
Ship Relative Wind Direction Stbd	WDS
Ship relative wind speed	WKP
Ship relative wind speed \$PSWDA(3)	WSB
Ship relative wind speed \$PSWDB(3)	WSS
Ship Relative Wind Speed Stbd	WKS
Shortwave radiation \$PSSRA(2)	SW
Speed over ground	SP
Transverse Water Speed Port to Stbd	SX
TSG Fluorometry \$PSFLA(2)	FL1
ΓSG Fluorometry \$PSFLB(2)	FL
rSG internal water temp. \$PSTSA(2)	TT
Curbidity \$PSFLB(4)	ТВ

Oceanographic Data

Thermosalinograph / Fluorometer

TSG A

Thermosalinograph data from the A TSG, Seabird SBE45, instruments in the Bio Chem Lab. /tsg a

TSG-A 20080313-000000.Raw

03/13/2008,04:46:03.355,\$PSTSA,2.565,28.4522,31.526,1456.01*7E

03/13/2008,04:46:05.340,\$PSTSA,2.566,28.4529,31.526,1456.02*75

03/13/2008,04:46:07.355,\$PSTSA,2.565,28.4519,31.525,1456.01*75

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/13/2008	mm/dd/year
2	SCS logged Time GMT	04:46:03.355	hh:mm:ss.sss
3	NMEA header	\$PSTSA	ASCII text
4	Temperature	2.565	Celsius
5	Conductivity	28.4522	Siemens/meter
6	Salinity	31.526	PSU
7	Sound Velocity	1456.01	Meters per Second (m/s)
8	Check sum	*7E	ASCII text

TSG B

Thermosalinograph data from the B, Seabird SBE21, TSG instruments in the Bio Chem Lab. /tsg b

TSG-B 20080313-000000.Raw

03/13/2008,04:46:03.355,\$PSTSB,2.565,28.4522,31.526,1456.01*7E

03/13/2008,04:46:05.340,\$PSTSB,2.566,28.4529,31.526,1456.02*75

03/13/2008,04:46:07.355,\$PSTSB,2.565,28.4519,31.525,1456.01*75

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/13/2008	mm/dd/year
2	SCS logged Time GMT	04:46:03.355	hh:mm:ss.sss
3	NMEA header	,\$PSTSB	ASCII text
4	Temperature	2.565	Celsius
5	Conductivity	28.4522	Siemens/meter
6	Salinity	31.526	PSU
7	Sound Velocity	1456.01	Meters per Second (m/s)
8	Check sum	*7E	ASCII text

Sea Surface Temperature

Sea surface temperature from the Science sea water intake. This uses a Sdeabird SBE3S Sensor. /Surface temp

Sea-Surface 20080313-000000.Raw

03/13/2008,05:46:40.402,\$PSSTA,2.039,2945.900*7E

03/13/2008,05:46:42.402,\$PSSTA,2.039,2945.900*7E

03/13/2008,05:46:44.402,\$PSSTA,2.039,2945.900*7E

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/13/2008	mm/dd/year
2	SCS logged Time GMT	05:46:40.402	hh:mm:ss.sss
3	NMEA header	\$PSSTA	ASCII text
4	Surface temperature (Sea Chest)	2.039	Celsius
5	Temperature, RAW	2945.900	volts
6	Check sum	*7E	ASCII text

Theromsalinograph Flowmeter A

Flow meter A, Flocat C-ES45-B003, data from the A TSG instruments in the Bio/Chem Lab. /flomet a

FlowMeter-A 20080314-000000.Raw

03/14/2008,13:44:44.640,\$PSFMA,2.51,38.000*44

03/14/2008,13:44:46.624,\$PSFMA,2.64,40.000*4D

03/14/2008,13:44:48.624,\$PSFMA,2.64,40.000*4D

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/14/2008	mm/dd/year
2	SCS logged Time GMT	13:44:44.640	hh:mm:ss.sss
3	NMEA header	\$PSFMA	ASCII text
4	Flow meter	2.51	Liters/minute
5	Flow meter, RAW	38.000	frequency
6	Check sum	*44	ASCII text

Theromsalinograph Flowmeter B

Flowmeter B, Flocat C-ES45-B003, data from the B TSG instruments in the Bio/Chem Lab. /flomet b

TSG-B 20080313-000000.Raw

03/13/2008,02:51:49.277,\$PSFMB,2.91,15.000*44

03/13/2008,02:51:51.277,\$PSFMB,2.91,15.000*44

03/13/2008,02:51:53.261,\$PSFMB,2.91,15.000*44

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/13/2008	mm/dd/year
2	SCS logged Time GMT	02:51:49	hh:mm:ss.sss
3	NMEA header	\$PSFMB	ASCII text
4	Flowmeter	2.91	Liters/minute
5	Flowmeter, RAW	15.000	frequency
6	Check sum	*44	ASCII text

Oxygen Sensor A

Oxygen A, SEABIRD SBE-43, data from the A TSG instruments in the Bio/Chem Lab. ./oxygen a

OXYGEN-A 20080313-000000.Raw

03/13/2008,05:25:28.371,\$PSOXA,7.265,2.922,2.576,2.576*58

03/13/2008,05:25:30.386,\$PSOXA,7.265,2.922,2.577,2.577*58

03/13/2008,05:25:32.371,\$PSOXA,7.268,2.923,2.576,2.576*54

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/13/2008	mm/dd/year
2	SCS logged Time GMT	05:25:28.371	hh:mm:ss.sss
3	NMEA header	\$PSOXA	ASCII text
4	Oxygen	7.265	ml/l
5	Oxygen, RAW	2.922	
6	Oxygen Temperature	2.576	Celsius
7	Oxygen Temperature, Raw	2.576	volts
8	Check sum	*58	ASCII text

Oxygen Sensor B

Oxygen B, Aanderaa Optode 3835, data from the B TSG instruments in the Bio/Chem Lab. ./oxygen b

OXYGEN-B 20080313-000000.Raw

03/13/2008, 05:25:28.371, \$PSOXB, 7.265, 2.922, 2.576, 2.576*58

03/13/2008,05:25:30.386,\$PSOXB,7.265,2.922,2.577,2.577*58

03/13/2008,05:25:32.371,\$PSOXB,7.268,2.923,2.576,2.576*54

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/13/2008	mm/dd/year
2	SCS logged Time GMT	05:25:28.371	hh:mm:ss.sss
3	NMEA header	\$PSOXB	ASCII text
4	Oxygen	7.265	ml/l
5	Oxygen, RAW	2.922	
6	Oxygen Temperature	2.576	Celsius
7	Oxygen Temperature, Raw	2.576	volts
8	Check sum	*58	ASCII text

Fluorometer A

Flurometer A data from the A, Seaoint SCF, TSG instruments in the Bio/Chem Lab. /fluro a

Fluro-A 20080313-000000.Raw

03/13/2008,03:19:57.277,\$PSFLA,0.330,0.033,0.000, 0.010*49

03/13/2008,03:19:59.277,\$PSFLA,0.330,0.033,0.000,0.010*49

03/13/2008,03:20:01.277,\$PSFLA,0.360,0.036,0.000,0.010*49

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/13/2008	mm/dd/year
2	SCS logged Time GMT	03:19:57.277	hh:mm:ss.sss
3	NMEA header	\$PSFLA	ASCII text
4	Flurometer	0.330	Ug/l
5	Flrometer, RAW	0.033	volts
6	Turbidity	0.000	NTU
7	Turbidity, RAW	0.010	volts
8	Check sum	*49	ASCII text

Fluorometer B

Flurometer B, Turner SCUFA, data from the B TSG instruments in the Bio/Chem Lab. /fluro b

Fluro-B 20080313-000000.Raw

3/13/2008,03:24:49.293,\$PSFLB,0.910,0.091,0.200,0.020*4B 03/13/2008,03:24:51.293,\$PSFLB,0.910,0.091,0.200,0.020*4B 03/13/2008,03:24:53.308,\$PSFLB,0.910,0.091,0.200,0.020*4B

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/13/2008	mm/dd/year
2	SCS logged Time GMT	03:24:49.293	hh:mm:ss.sss
3	NMEA header	\$PSFLB	ASCII text
4	Flurometer	0.910	Ug/l
5	Flrometer, RAW	0.091	volts
6	Turbidity	0.200	NTU
7	Turbidity, RAW	0.020	volts
8	Check sum	*4B	ASCII text

Transmissometer

Transmissometer TSG instruments in the Bio/Chem Lab.

/trans

Fluro-B 20080313-000000.Raw

3/13/2008,03:24:49.293,\$PSFLB,0.910,0.091,0.200,0.020*4B

03/13/2008,03:24:51.293,\$PSFLB,0.910,0.091,0.200,0.020*4B

03/13/2008,03:24:53.308,\$PSFLB,0.910,0.091,0.200,0.020*4B

THIS IS YET TO BE Offically FORMATTED AND LOGGED

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/13/2008	mm/dd/year
2	SCS logged Time GMT	03:24:49.293	hh:mm:ss.sss
3	NMEA header	\$PSFLB	ASCII text
4	Flurometer	0.910	Ug/l
5	Flrometer, RAW	0.091	volts
6	Turbidity	0.200	NTU
7	Turbidity, RAW	0.020	volts
8	Check sum	*4B	ASCII text

ISUS Nitrate Sensor

ISUS Nitrate Sensor, MBARI/Satlatic ISIS V3, TSG instruments in the Bio/Chem Lab. Data is logged every 5 minutes for about 30 seconds. For the times in between this the values in the volts columns are 0.0

./isus

Isus 20080422-000000.Raw

04/22/2008,00:04:31.275,\$PSNTA,-0.308,0.478*75

04/22/2008,00:04:33.275,\$PSNTA,-0.308,0.478*75

04/22/2008,00:04:35.275,\$PSNTA,-0.308,0.478*75

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/22/2008	mm/dd/year
2	SCS logged Time GMT	00:04:31.275	hh:mm:ss.sss
3	NMEA header	\$PSNTA	ASCII text
4	ISUS Aux 1	-0.308	volts
5	ISUS Aux 2	0.478	volts
6	Check sum	*75	ASCII text

ISUS Nitrate Sensor 3V

ISUS Nitrate Sensor 3V, MBARI/Satlatic ISIS V3, instrument in the Bio/Chem Lab. Data is logged every 5 minutes for a few seconds. The data only gets the SCS time stamp at the start of data being sent in that time window. These files are very large. A more complete description of this format is below in a section from the <u>Satlantic Operation Manual's format secton</u>. The example of the data below only shows the first 6 columns of data.

./isus

ISUSV3 20080422-000000.Raw

04/22/2008,00:00:53.167,,4623,9021,.... This is the first line that gets the SCS time stamp

SATNLF0141,2008112,23.928082,-4.82,19.99,407.63,...

SATNLF0141,2008112,23.928759,-4.65,20.32,403.75,...

SATNLF0141,2008112,23.928759,-4.65,20.32,403.75....

SATNLF0141,2008112,23.929436,-5.05,20.59,405.80,...

FIELD	DATA	Example	UNITS
1	Instrument	SATNLF0141	ASCII text
2	Date (year, day of year)	2008112	уууујјј
3	decimal hours, GMT	23.928082	number
4	Nitrate Concentration	-4.82	uMol/L
5	Aux 1	19.99	volts
6	Aux 2	407.63	ASCII text
7 - n	See Appendix		

Pressure Sensor

The sensor is located in the Bio_Chem lab approx. 30' upstream of the TSG. On HLY0802 this was installed and started logging on 04/19/2008 at 22:06:02.387Z. ./pressure sen

Seawater-Pressure-Sensor_20080428-000000.Raw 04/28/2008,00:00:03.401,\$PSPSA,25.88,2.588*41 04/28/2008,00:00:05.401,\$PSPSA,25.86,2.586*41 04/28/2008,00:00:07.401,\$PSPSA,25.92,2.592*41

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/28/2008	mm/dd/year
2	SCS logged Time GMT	00:00:03.401	hh:mm:ss.sss
3	NMEA header	\$PSPSA	ASCII text
4	Pressure	25.88	PSI
5	Raw Volts	2.588	Volts
6	Check sum	*41	ASCII text

Sonar Data

Seabeam 2112 Center Beam

Center depth data derived from the Seabeam 2112 data on the POSMVNAV computer. ./seabeam center

Seabeam-Centerbeam_20070414-182437.Raw

04/14/2007,18:24:38.427,\$SBCTR,2007,4,14,18:24:35.713,58.119110,-169.839278,70.70,60*00 04/14/2007,18:24:40.177,\$SBCTR,2007,4,14,18:24:37.213,58.119152,-169.839367,70.49,61*00 04/14/2007,18:24:40.615,\$SBCTR,2007,4,14,18:24:38.734,58.119193,-169.839452,70.92,60*00

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/14/2007	mm/dd/year
2	SCS logged Time GMT	18:24:40.615	hh:mm:ss.sss
3	NMEA header	\$SBCTR	ASCII text
4	Seabeam Date	2007,	Year
5	Seabeam Date	4	month
6	Seabeam Date	14	day
7	Seabeam Time	18:24:38.734	hh:mm:ss.sss
8	Latitude	58.119193	Degrees
9	Longitude	-169.839452	Degrees
10	Depth	70.92	meters
11	Number of Beams	60	
12	Check sum	*00	ASCII text

Knudsen

3.5 kHz

Depth data in a proprietary PKEL format received from Knudsen 320 B/R serial output.

./knudsen

Knudsen 20070414-182437.Raw

04/14/2007,18:24:38.099,\$PKEL99, ,14042007,182524.248,00192,HF,00.00,0,+008.50,

LF,73.24,1,+008.50,1500, , ,58 07.123897N,169 50.315830W,1060*12

04/14/2007.18:24:38.349,\$PKEL99,

,14042007,182525.759,00191,HF,00.00,0,+008.50,LF,73.22,1,+008.50,1500,-----, ,58 07.127267N,169 50.322883W,0565*1F

04/14/2007,18:24:39.865,\$PKEL99,

 $, 14042007, 182527.269, 00191, HF, 00.00, 0, +008.50, LF, 73.22, 1, +008.50, 1500, \\ , , 58 07.128948N, 169 50.326409W, 1078*10$

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/14/2007	mm/dd/year
2	SCS logged Time GMT	18:24:39.865	hh:mm:ss.sss
3	NMEA header	\$PKEL99	ASCII text
4	Record Number???		
5	Knudsen Date	14042007	DDMMYYYY
6	Knudsen Time	182527.269	HHMMSS.sss
7		00191	
8	HF Header (12 kHz)	HF	ASCII text
9	HF Depth to Surface	00.00	Meters *
10	HF Draft	,+008.50	Meters
11	LF Header	LF	ASCII text
12	LF Depth to Surface	73.22	Meters *
13	LF Depth Valid Flag	1	ASCII integer
14	LF Draft	+008.50	Meters
15	Sound Speed	1500	Meters Per Second**
1.0	T 1	50.07.12004031	
18	Latitude	58 07.128948N	DD MM.MMMMM***
19	Longitude	169 50.326409W	DDD MM.MMMMMM***
20	Position Latency	1078	
21	Checksum	*10	

- * Knudsen depth is currently set for XXXXXXX Meters
- ** Knudsen default sound speed 1500 meters/sec.
- *** Current GPS source is the POS/MV

Winch data

Starboard A-Frame Winch Data

1 second data from the Starboard A Frame winch data output.

./sbd_a_frame

Stbd-A-Frame 20070418-000000.Raw

04/18/2007,06:13:18.281,01, 890, 36, -27, 0000 04/18/2007,06:13:19.250,01, 890, 35, -28, 0000 04/18/2007,06:13:20.235,01, 900, 35, -28, 0000

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/18/2007	mm/dd/year
2	SCS logged Time GMT	06:13:20.235	hh:mm:ss.sss
3	Winch number	01	
4	Wire tension	900	Pounds
5	Wire out	35	Meters
7	Wire speed	-28	Meters/minute

Aft A-Frame Winch Data

1 second data from the Aft A Frame winch data output.

./aft a frame

Aft-A-Frame 20070418-000000.Raw

04/18/2007,08:46:45.844,02, -160, , 31, , 58, ,0000

04/18/2007,08:46:46.844,02, -160, , 32, , 60, ,0000

04/18/2007,08:46:47.812,02, -160, 33, 60, 0000

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/18/2007	mm/dd/year
2	SCS logged Time GMT	08:46:47.812	hh:mm:ss.sss
3	Winch number	02	
4	Wire tension	-160	Pounds
5	Wire out	33	Meters
7	Wire speed	60	Meters/minute

Navigational Data

POSMV

POSMV GGA

Position data in NMEA GGA format from the POS/MV.

./posmv gga

POSMV-GGA 20070415-000000.Raw

04/15/2007,00:00:03.052,\$INGGA,000002.737,5830.47054,N,17012.64182,W,2,08,1.0,1.80,M,,,4,0297*07 04/15/2007,00:00:04.052,\$INGGA,000003.737,5830.47385,N,17012.64365,W,2,08,1.0,1.76,M,,,5,0297*0A 04/15/2007,00:05.052,\$INGGA,000004.737,5830.47716,N,17012.64550,W,2,08,1.0,1.71,M,,,6,0297*07

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.052	hh:mm:ss.sss
3	NMEA header	\$INGGA	ASCII text
4	GPS time at position GMT	000004.737	hhmmss.sss
5	Latitude	5830.47716	ddmm.mmmmm
6	North (N) or South(S)	N	ASCII character
7	Longitude	17012.64550	dddmm.mmmmm
8	East (E) or West (W)	W	ASCII character
9	GPS Quality: 1 = GPS2=DGPS	2	
10	Number of GPS Satellites Used	08	
11	HDOP (horizontal dilution of precision)	1.0	
12	Antenna height	1.71	meters
13	M for Meters	M	
14	Geoidal Height		meters
15	M for Meters		
16	Differential reference station ID	0297	
17	Checksum	*07	

POSMV Psuedo Noise

Psuedorange error statistics in NMEA GST format from the POS/MV.

./posmv gst

POSMV-Pseudo-Noise 20070415-000000.Raw

04/15/2007,00:00:02.990,\$INGST,000002.737,,0.6,0.4,22.3,0.4,0.6,0.8*63

04/15/2007,00:00:03.990,\$INGST,000003.737,,0.6,0.4,22.3,0.4,0.6,0.8*62

04/15/2007,00:00:04.990,\$INGST,000004.737,,0.6,0.4,22.3,0.4,0.6,0.8*65

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.052	hh:mm:ss.sss
3	NMEA header	\$INGST	ASCII text
4	GPS time at position GMT	000004.737	hhmmss.sss
5			
6	Smjr.smjr	0.6	meters
7	Smnr.smnr	0.4	meters
8	0.000	22.3	
9	1.1	0.4	meters
10	y.y	0.6	meters
11	Standard deviation of altitude (a.a)	0.8	meters
12	Checksum	*65	ACII text

POSMV HDT

Heading data in NMEA HDT format from the POS/MV.

./posmv hdt

POSMV-HDT 20070415-000000.Raw

04/15/2007,00:00:03.083,\$INHDT,344.2,T*24

04/15/2007,00:00:04.083,\$INHDT,344.2,T*24

04/15/2007,00:00:05.083,\$INHDT,344.2,T*24

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.083	hh:mm:ss.sss
3	NMEA header	\$INHDT	ASCII text
4	Heading	344.2	Degrees
5	True(T) or Magnetic(M)	T	ASCII character
6	Checksum	*24	ASCII text

POSMV PASHR

Pitch and Roll data in NMEA PASHR format from the POS/MV.

./posmv pashr

POSMV-PASHR 20070415-000000.Raw

04/15/2007,00:00:02.912,\$PASHR,000002.737,344.17,T,-0.21,0.10,-0.02,0.017,0.017,0.011,2,1*17 04/15/2007,00:00:03.912,\$PASHR,000003.737,344.19,T,-0.22,0.10,-0.02,0.017,0.017,0.011,2,1*1B 04/15/2007,00:00:04.912,\$PASHR,000004.737,344.20,T,-0.24,0.10,-0.02,0.017,0.017,0.011,2,1*10

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.052	hh:mm:ss.sss
3	NMEA header	\$PASHR	ASCII text
4	Time GMT	000004.737	hhmmss.sss
5	Heading	344.20	heading
6	True	Т	ASCII character
7	Roll	-0.24	Degrees
8	Pitch	0.10	Degrees
9	Heave	-0.02	Degrees
10	Accuracy roll	0.017	Degrees
11	Accuracy pitch	0.017	Degrees
12	Accuracy heading	0.011	Degrees
13	Accuracy of heading 0-no aiding, 1-GPS 2= GPS & GAMS	2	ASCII integer
14	IMU 0= out 1= satisfactory	1	ASCII character
15	Check Sum	*10	ASCI text

POSMV VTG

Course and speed over ground in NMEA VTG format from the POS/MV.

./posmv vtg

POSMV-VTG 20070415-000000.Raw

04/15/2007,00:00:03.130,\$INVTG,343.7,T,,M,12.5,N,23.1,K*75

04/15/2007,00:00:04.130,\$INVTG,344.0,T,,M,12.5,N,23.1,K*75

04/15/2007,00:00:05.115,\$INVTG,344.2,T,,M,12.5,N,23.1,K*77

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.115	hh:mm:ss.sss
2	NMEA header	\$INVTG	ASCII text
3	Heading	344.2	Degrees
4	Degrees true (T)	T	ASCII character
5	Heading		Degrees
6	Degrees magnetic	M	ASCII character
7	Ship Speed	12.5	knots
8	N=Knots	N	ASCII character
9	Ship Speed	23.1	km/hr
10	K=KM per hour	K	ASCII character
11	Check sum	*77	ASCII text

POSMV ZDA

Time and date data in NMEA ZDA format from the POS/MV.

./posm zda

POSMV-ZDA 20070415-000000.Raw

04/15/2007,00:00:03.162,\$INZDA,000003.0016,15,04,2007,,*77

04/15/2007,00:00:04.162,\$INZDA,000004.0016,15,04,2007,,*70

04/15/2007,00:00:05.162,\$INZDA,000005.0016,15,04,2007,,*71

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.162	hh:mm:ss.sss
2	NMEA header	\$INZDA	ASCII text
3	Time UTC	000005.0016	HHMMSS.ssss
4	Day	15	DD
5	Month	04	MM
6	Year	2007	Year
7	??		??
8	??	00	??
9	Checksum	*71	ASCII text

Ashtech GPS

Ashtech Attitude

Attitude in NMEA format from the Ashtech ADU5 GPS receiver.

./ashtech attiude

Ashtech-Attitude 20070415-000000.Raw

04/15/2007,00:00:03.490,\$GPPAT,000003.00,5830.44196,N,17012.62728,W,00030.21,344.3730,000.25,-000.01,0.0015,0.0074,0*42

04/15/2007, 00:00:04.490, \$GPPAT, 000004.00, 5830.44527, N, 17012.62914, W, 00030.23, 344.3537, 000.20, -000.06, 0.0015, 0.0071, 0*4A

04/15/2007, 00:00:05.490, \$GPPAT, 000005.00, 5830.44859, N, 17012.63099, W, 00030.23, 344.3431, 000.22, -000.07, 0.0014, 0.0077, 0*41

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.490	hh:mm:ss.sss
3	NMEA header	\$GPPAT	ASCII text
4	GPS time at position GMT	000005.00	hhmmss.ss
5	Latitude	5830.44859	ddmm.mmmmm
6	North (N) or South(S)	N	ASCII character
7	Longitude	17012.63099	dddmm.mmmmm
8	East (E) or West (W)	W	ASCII character
9	Altitude	00030.23	Meters
10	Heading	344.3431	Degrees
11	Pitch	000.22	Degrees
12	Roll	-000.07	degrees
13	Attitude phase measurement rms error, MRMS	0.0014	meters
14	Attitude baseline length rms error, BRMS	0.0077	meters
15	Attitude reset flag (0:good attitude, 1:rough estimate or bad attitude)	0	ASCII integer
16	Check sum	*41	ASCII text

Ashtech GGA

Position data in NMEA GGA format from the Ashtech ADU5 GPS receiver.

./ashtech gga

Ashtech-GGA 20070415-000000.Raw

04/15/2007, 00:00:02.333, \$GPGGA, 000002.00, 5830.43864, N, 17012.62542, W, 1, 13, 0.7, 20.74, M, 9.47, M, *73, 04/15/2007, 00:00:03.333, \$GPGGA, 000003.00, 5830.44196, N, 17012.62728, W, 1, 13, 0.7, 20.75, M, 9.47, M, *7E, 04/15/2007, 00:00:04.333, \$GPGGA, 000004.00, 5830.44527, N, 17012.62914, W, 1, 13, 0.7, 20.76, M, 9.47, M, *75, 04/15/2007, 00:04.333, \$0.44527, N, 17012.62914, W, 1, 13, 0.7, 20.76, M, 9.47, M, *75, 04/15/2007, 00:04.333, \$0.44527, N, 17012.62914, W, 1, 13, 0.7, 20.76, M, 9.47, M, *75, 04/15/2007, 00:04.333, \$0.44527, N, 17012.62914, W, 1, 13, 0.7, 20.76, M, 9.47, M, *75, 04/15/2007, 00:04.333, \$0.44527, N, 17012.62914, W, 1, 13, 0.7, 20.76, M, 9.47, M, *75, 04/15/2007, 00:04.333, \$0.44527, N, 17012.62914, W, 1, 13, 0.7, 20.76, M, 9.47, M, *75, 04/15/2007, 00:04.333, \$0.44527, N, 17012.62914, W, 1, 13, 0.7, 20.76, M, 9.47, M, *75, 04/15/2007, 00:04.333, \$0.44527, N, 17012.62914, W, 1, 13, 0.7, 20.76, M, 9.47, M, *75, 04/15/2007, 00:04.333, \$0.44527, N, 17012.62914, W, 1, 13, 0.7, 20.76, M, 9.47, M, *75, 04/15/2007, 00:04.333, \$0.44527, N, 17012.62914, W, 1, 13, 0.7, 20.76, M, 9.47, M, *75, 04/15/2007, 00:04.333, \$0.44527, N, 17012.62914, W, 1, 13, 0.7, 20.76, M, 9.47, M, *75, 04/15/2007, 00:04.333, \$0.44527, N, 17012.62914, W, 1, 13, 0.7, 20.76, M, 9.47, M, *75, 04/15/2007, 00:04.334, W, 1, 13, 0.7, 20.76, M, 9.47, M, *75, 04/15/2007, 00:04.334, W, 1, 13, 0.7, 20.76, M, 9.47, M, *75, 04/15/2007, 00:04.334, W, 1, 13, 0.7, 20.76, M, 9.47, M, 1, 13, 0.72, M, 1, 13, 0.72, M, 1, 13, 0.72, M, 1, 13, 0.72, M, 1, 13, 0.

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:04.333	hh:mm:ss.sss
3	NMEA header	\$GPGGA	ASCII text
4	GPS time at position GMT	000004.00	hhmmss.ss
5	Latitude	5830.44527	ddmm.mmmmm
6	North (N) or South(S)	N	ASCII character
7	Longitude	17012.62914	dddmm.mmmmm
8	East (E) or West (W)	W	ASCII character
9	GPS Quality: 1 = GPS 2=DGPS	1	ASCII integer
10	Number of GPS Satellites Used	13	
11	HDOP (horizontal dilution of precision)	0.7	
12	Antenna height	20.76	meters
13	M for Meters	M	ASCII character
14	Geoidal Height	9.47	meters
15	M for Meters	M	ASCII character
16	Differential reference station ID (no data in sample string)		
17	Checksum	*75	ASCCII text

Ashtech GGL

Position data in NMEA GLL format from the Ashtech ADU5 GPS receiver.

./ashtech ggl

Ashtech-GLL 20070415-000000.Raw

04/15/2007,00:00:03.271,\$GPGLL,5830.44196,N,17012.62728,W,000003.00,A,A*74 04/15/2007,00:00:04.255,\$GPGLL,5830.44527,N,17012.62914,W,000004.00,A,A*7C 04/15/2007,00:05.255,\$GPGLL,5830.44859,N,17012.63099,W,000005.00,A,A*74

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.255	hh:mm:ss.sss
3	NMEA header	\$GPGLL	ASCI text
4	Latitude	5830.44859	ddmm.mmmmm
5	North or South	N	ASCII character
6	Longitude	17012.63099	dddmm.mmmmm
7	East or West	W	ASCII character
8	GMT of Position	000005.00	hhmmss.ss
9	Status of data (A=valid)	A	ASCII character
10	???	A	
11	Checksum	*74	ASCII text

Ashtech HDT

Heading data in NMEA HDT format from the Ashtech ADU5 GPS receiver.

./ashtech hdt

Ashtech-HDT 20070415-000000.Raw

04/15/2007,00:00:03.505,\$GPHDT,344.373,T*31

04/15/2007,00:00:04.505,\$GPHDT,344.354,T*34

04/15/2007,00:00:05.505,\$GPHDT,344.343,T*32

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.505	hh:mm:ss.sss
3	NMEA header	\$GPHDT	ASCII text
4	Heading	344.343	Degrees
5	True(T) or Magnetic(M)	Т	ASCII character
6	Checksum	*32	ASCII text

PCode

PCode AFT

<pPCode Aft GGA</pre>

Position data in NMEA GGA format from the Trimble Centurion receiver located in the Computer lab.

./pcode aft gga

PCode-AFT-GGA 20070415-000000.Raw

 $04/15/2007, 00:00:\overline{03}.443, \$GPGGA, 000002.522, 5830.4417, N, 17012.6249, W, 1,04,1.5,019.8, M, -008.9, M,, *5104/15/2007, 00:00:04.427, \$GPGGA, 000003.522, 5830.4450, N, 17012.6267, W, 1,04,1.5,019.8, M, -008.9, M,, *5F04/15/2007, 00:05.427, \$GPGGA, 000004.522, 5830.4483, N, 17012.6286, W, 1,04,1.5,019.8, M, -008.9, M,, *5904/15/2007, 00:05.427, \$GPGGA, 000004.522, 5830.4483, N, 17012.6286, W, 1,04,1.5,019.8, M, -008.9, M,, *5904/15/2007, 00:05.427, \$GPGGA, 000004.522, 5830.4483, N, 17012.6286, W, 1,04,1.5,019.8, M, -008.9, M, *5904/15/2007, 00:05.427, \$GPGGA, 000004.522, 5830.4483, N, 17012.6286, W, 1,04,1.5,019.8, M, -008.9, M, *5904/15/2007, 00:05.427, \$GPGGA, 000004.522, 5830.4483, N, 17012.6286, W, 1,04,1.5,019.8, M, -008.9, M, *5904/15/2007, 00:05.427, \$GPGGA, 000004.522, 5830.4483, N, 17012.6286, W, 1,04,1.5,019.8, M, -008.9, M, *5904/15/2007, 00:05.427, \$GPGGA, 000004.522, 5830.4483, N, 17012.6286, W, 1,04,1.5,019.8, M, -008.9, M, *5904/15/2007, 00:05.427, \$GPGGA, 000004.522, 5830.4483, N, 17012.6286, W, 1,04,1.5,019.8, M, -008.9, M, *5904/15/2007, 00:05.427, \$GPGGA, 000004.522, \$GPGGA, 000004.522$

FIELD	DATA	Examples	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.427	h:mm:ss.sss
3	NMEA header	\$GPGGA	ASCII text
4	GPS time at position GMT	000004.522	hhmmss.ss
5	Latitude	5830.4483	ddmm.mmmm
6	North (N) or South(S)	N	ASCII character
7	Longitude	17012.6286	dddmm.mmmm
8	East (E) or West (W)	W	ASCII character
9	GPS Quality: 1 = GPS 2=DGPS	1	ASCII integer
10	Number of GPS Satellites Used	04	
11	HDOP (horizontal dilution of precision)	1.5	
12	Antenna height	019.8	meters
13	M for Meters	M	ASCII character
14	Geoidal Height	-008.9	meters
15	M for Meters	M	ASCII character
16	Differential reference station ID (no data in sample string)		
17	Checksum	*59	ASCII text

PCode Aft GLL

Position data in NMEA GLL format from the Trimble Centurion receiver located in the Computer lab. ./pcode aft gll

Pcode-AFT-GLL 20070415-000000.Raw

04/15/2007,00:00:03.474,\$GPGLL,5830.4417,N,17012.6249,W,000002.522,A*25 04/15/2007,00:00:04.474,\$GPGLL,5830.4450,N,17012.6267,W,000003.522,A*2 04/15/2007,00:05.490,\$GPGLL,5830.4483,N,17012.6286,W,000004.522,A*2D

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.490	hh:mm:ss.sss
3	NMEA header	\$GPGLL	ASCI text
4	Latitude	5830.4483	ddmm.mmmm
5	North or South	N	ASCII character
6	Longitude	17012.6286	dddmm.mmmm
7	East or West	W	ASCII character
8	GMT of Position	000004.522	hhmmss.sss
9	Status of data (A=valid)	A	ASCII character
10	Checksum	*2D	ASCVII text

PCode AFT VTG

Course and speed over ground in NMEA VTG format from the Trimble Centurion receiver located in the Computer lab.

./pcode_aft_vtg

Pcode-AFT-VTG 20070415-000000.Raw

04/15/2007,00:00:03.537,\$GPVTG,343.7,T,331.4,M,012.4,N,023.0,K*4E 04/15/2007,00:00:04.537,\$GPVTG,343.6,T,331.3,M,012.5,N,023.1,K*48 04/15/2007,00:05.537,\$GPVTG,343.6,T,331.3,M,012.4,N,023.0,K*48

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.537	hh:mm:ss.sss
2	NMEA header	\$GPVTG	ASCI text
3	Heading	343.6	Degrees
4	Degrees true (T)	T	ASCII character
5	Heading	331.3	Degrees
6	Degrees magnetic	M	ASCII character
7	Ship Speed	012.4	knots
8	N=Knots	N	ASCII character
9	Ship Speed	023.0	km/hr
10	K=KM per hour	K	ASCII character
11	Check sum	*48	ASCII text

PCode AFT ZDA

Time and date data in the NMEA ZDA format. Data retrieved from the Trimble Centurion receiver located in the Computer lab.

./pcode_aft_zda

Pcode-AFT-ZDA 20070415-000000.Raw

04/15/2007,00:00:03.224,\$GPZDA,000003.00,15,04,2007,00,00,*4C

04/15/2007,00:00:04.224,\$GPZDA,000004.00,15,04,2007,00,00,*4B

04/15/2007,00:00:05.224,\$GPZDA,000005.00,15,04,2007,00,00,*4A

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.537	hh:mm:ss.sss
2	NMEA header	\$GPZDA	ASCII text
3	Time UTC	000005.00	hhmmss.sss
4	Day	15	DD
5	Month	04	MM
6	Year	2007	Year
7	??	00	??
8	??	00	??
9	Checksum	*4A	ASCII text

PCode Bridge

PCode Bridge GGA

Position data in NMEA GGA format from the Trimble GPS receiver located on the bridge.

./pcode_bridge_gga

PCode-Bridge-GGA 20070415-000000.Raw

04/15/2007, 00:00:03.037, \$GPGGA, 000002.00, 5830.469, N, 17012.644, W, 1,04,2.666, 32.15, M, 8.930, M,, *4D, 04/15/2007, 00:00:05.037, \$GPGGA, 000004.00, 5830.476, N, 17012.648, W, 1,04,2.667, 31.82, M, 8.930, M,, *45, 04/15/2007, 00:00:07.052, \$GPGGA, 000006.00, 5830.482, N, 17012.651, W, 1,04,2.668, 31.55, M, 8.930, M,, *41, 04,2.668, 31.55, M, 8.930, M, *41, 04,2.668, M, 9.930, M

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:07.052	hh:mm:ss.sss
3	NMEA header	\$GPGGA	ASCII text
4	GPS time at position GMT	000006.00	hhmmss.ss
5	Latitude	5830.482	ddmm.mmm
6	North (N) or South(S)	N	ASCII character
7	Longitude	17012.651	dddmm.mmm
8	East (E) or West (W)	W	ASCII character
9	GPS Quality: 1 = GPS 2=DGPS	1	ASCII integer
10	Number of GPS Satellites Used	04	
11	HDOP (horizontal dilution of precision)	2.668	
12	Antenna height	31.55	meters
13	M for Meters	M	ASCII character
14	Geoidal Height	8.930	meters
15	M for Meters	M	ASCII character
16	Differential reference station ID (no data in sample string)		
17	Checksum	*41	ASCII text

PCode Bridge GLL

Position data in NMEA GLL format from the Trimble GPS receiver located on the bridge. ./pcode bridge gll

Pcode-Bridge-GLL_20070415-000000.Raw

04/15/2007,00:00:03.099,\$GPGLL,5830.469,N,17012.644,W,000002.00,A*12 04/15/2007,00:05.099,\$GPGLL,5830.476,N,17012.648,W,000004.00,A*16 04/15/2007,00:00:07.099,\$GPGLL,5830.482,N,17012.651,W,000006.00,A*17

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:07.099	hh:mm:ss.sss
3	NMEA header	\$GPGLL	ASCII text
4	Latitude	5830.482	ddmm.mmm
5	North or South	N	ASCII character
6	Longitude	17012.651	dddmm.mmm
7	East or West	W	ASCII character
8	GMT of Position	000006.00	hhmmss.ss
9	Status of data (A=valid)	A	
10	Checksum	*17	ASCII text

PCode Bridge VTG

Course and speed over ground data in NMEA VTG format from the Trimble GPS receiver located on the bridge.

./pcode_bridge_vtg

Pcode-Bridge-VTG_20070415-000000.Raw 04/15/2007,00:00:03.162,\$GPVTG,343.9,T,333.8,M,12.46,N,23.08,K*40 04/15/2007,00:00:05.162,\$GPVTG,343.8,T,333.8,M,12.49,N,23.12,K*45 04/15/2007,00:00:07.146,\$GPVTG,343.9,T,333.8,M,12.48,N,23.11,K*46

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:07.146	hh:mm:ss.sss
2	NMEA header	\$GPVTG	ASCII text
3	Heading	343.9	Degrees
4	Degrees true (T)	T	ASCII character
5	Heading	333.8	Degrees
6	Degrees magnetic	M	ASCII character
7	Ship Speed	12.48	knots
8	N=Knots	N	ASCII character
9	Ship Speed	23.11	km/hr
10	K=KM per hour	K	ASCII character
11	Check sum	*46	ASCII text

Glonass

Glonass GGA

Position data in NMEA GGA format from the GLONASS GPS receiver.

./glonass gga

Glonass-GGA 20070415-000000.Raw

04/15/2007,00:00:02.412,\$GPGGA,000002.00,5830.472078,N,17012.636881,W,1,09,0.9,22.999,M,9.46,M,,*

04/15/2007, 00:00:04.412, \$GPGGA, 000004.00, 5830.478732, N, 17012.640527, W, 1,09,0.9, 22.932, M, 9.46, M,, *4D

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:04.412	hh:mm:ss.sss
3	NMEA header	\$GPGGA	ASCII text
4	GPS time at position GMT	000004.00	hhmmss.ss
5	Latitude	5830.478732	ddmm.mmmmmm
6	North (N) or South(S)	N	ASCII character
7	Longitude	17012.640527	dddmm.mmmmmm
8	East (E) or West (W)	W	ASCII character
9	GPS Quality: 1 = GPS 2=DGPS	1	ASCII integer
10	Number of GPS Satellites Used	09	
11	HDOP (horizontal dilution of precision)	0.9	
12	Antenna height	22.932	meters
13	M for Meters	M	ASCII character
14	Geoidal Height	9.46	meters
15	M for Meters	M	ASCII character
16	Differential reference station ID (no data in sample string)		
17	Checksum	*4D	ASCII text

Glassnos GLL

Position data in NMEA GLL format from the GLONASS GPS receiver.

./glassnos gll

Glonass-GLL 20070415-000000.Raw

04/15/2007,00:00:03.240,\$GPGLL,5830.475412,N,17012.638716,W,000003.00,A*12 04/15/2007,00:00:04.255,\$GPGLL,5830.478732,N,17012.640527,W,000004.00,A*16 04/15/2007,00:05.255,\$GPGLL,5830.482216,N,17012.642424,W,000005.00,A*11

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:05.255	hh:mm:ss.sss
3	NMEA header	\$GPGLL	ASCII text
4	Latitude	5830.482216	ddmm.mmmmmm
5	North or South	N	ASCII character
6	Longitude	17012.642424	dddmm.mmmmmm
7	East or West	W	ASCII character
8	GMT of Position	000005.00	hhmmss.ss
9	Status of data (A=valid)	A	ASCII character
10	Checksum	*74	ASCII text

Gyro

Gyro Heading

MK27 Gyro

Heading data in NMEA HDT format from the Sperry MK27 gyrocompass.

./gyro mk27

Gyro-MK27 20080314-000000.Raw

03/14/2008,00:00:01.467,\$HEHDT,53.94,T*24

03/14/2008,00:00:01.577,\$HEHDT,53.94,T*24

03/14/2008,00:00:01.671,\$HEHDT,53.94,T*24

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/14/2008	mm/dd/year
2	SCS logged Time GMT	00:00:01.467	hh:mm:ss.sss
3	NMEA header	\$HEHDT	ASCII text
4	Heading	53.94	degrees
5	True (T) or Magnetic (M)	T	ASCII character
6	Check sum	*24	ASCII text

MK39 Gyro

Heading data in NMEA HDT format from the Sperry MK39 gyrocompass.

./gyro mk39

Gyro-MK39 20080314-000000.Raw

03/14/2008,00:00:01.327,\$INHDT,53.70,T*24

03/14/2008,00:00:01.436,\$INHDT,53.70,T*24

03/14/2008,00:00:01.530,\$INHDT,53.70,T*24

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/14/2008	mm/dd/year
2	SCS logged Time GMT	00:00:01.327	hh:mm:ss.sss
3	NMEA header	\$HEHDT	ASCII text
4	Heading	53.70	degrees
5	True (T) or Magnetic (M)	Т	ASCII character
6	Check sum	*24	ASCII text

Waypoints

IBS Waypoints

Waypoints from the Healy's Integrated Bridge System (IBS).

./ibs waypoints

IBS-WayPoints 20070415-000000.Raw

04/15/2007,00:00:03.193,\$NVWPL,6152.68,N,17402.58,W,62*51

04/15/2007,00:00:04.193,\$NVWPL,6156.58,N,17422.68,W,63*56

04/15/2007,00:00:05.193,\$NVWPL,6202.16,N,17439.96,W,64*52

FIELD	DATA	Example	UNITS
1	SCS logged Date		mm/dd/year
2	SCS logged Time GMT	00:00:05.193	hh:mm:ss.sss
3	NMEA header	\$NVWPL	ASCII text
4	Latitude	6202.16	ddmm.mm
5	North or South	N	ASCII character
6	Longitude	17439.96	dddmm.mm
7	East or West	W	ASCII character
8	Waypoint number	64	
9	Checksum	*52	ASCII text

Speed Log

Sperry Speed Log

Ground/water speed data from the Sperry Speed Log.

./sperry_speedlog

Sperry-Speedlog 20070415-000000.Raw

04/15/2007,00:00:02.755,\$VDVBW,12.32,0.85,A,12.43,0.66,A*5A

04/15/2007,00:00:03.271,\$VDVBW,12.33,0.80,A,12.44,0.66,A*59

04/15/2007,00:00:03.771,\$VDVBW,12.34,0.78,A,12.45,0.68,A*56

FIELD	DATA	Example	UNITS
1	SCS logged Date	04/15/2007	mm/dd/year
2	SCS logged Time GMT	00:00:03.771	hh:mm:ss.sss
2	NMEA header	\$VDVBW	ASCII text
3	Fore-aft Water Speed -= astern	12.34	knots
4	Port-Stbd Water Speed -= port	0.78	knots
5	A= Data Valid V=Invalid	A	ASCII character
6	Fore-aft Bottom Speed -= astern	12.45	knots
7	Port-Stbd Bottom Speed - = port	0.68	knots
8	A= Data Valid V=Invalid	A	ASCII character
9	Checksum	*56	ASCII text

Sound Velocimeter

SV2000

Sound Velocity data from the SV2000 sound velocimeter.

./sv2000

Sound-Velocimeter 20080314-000000.Raw

03/14/2008,00:00:24.999, 1470.87

03/14/2008,00:00:55.030,1470.87

03/14/2008,00:01:25.045, 1470.87

FIELD	DATA	Example	UNITS
1	SCS logged Date	03/14/2008	mm/dd/year
2	SCS logged Time GMT	00:00:24.999	hh:mm:ss.sss
2	NMEA header	1470.87	Meters/sceond

./Raw

The following sections are in the Raw data directory.

75 KHz ADCP data

./adcp75

The shipboard ADCP system measures currents in the depth range from about 30 to 300 m -- in good weather. In bad weather or in ice, the range is less, and sometimes no valid measurements are made. ADCP data collection occurs on the Healy for the benefit of the scientists on individual cruises and for the long-term goal of building a climatology of current structure in the Ocean.

The ADCP data set collected during this cruise are placed in the directory ./Raw/adcp75. The archive consists of a single file for each day of data collection. The files are named by the cruise HLY0801, a three place number of the sequence in the files, then an extra "_000000", and then an extent for the kind of data in the file. An example of the files for one set is:

FILE NAME	FILE EXTENSION	DEFINITION
HLY0703022_000000		Raw Binary ADCP Data
HLY0703022_000000	.ENS	Binary Adep Data
HLY0703022_000000	.ENX	Binary Ensemble Data
HLY0703022_000000	.STA	short term average
HLY0703022_000000	.LTA	long term average
HLY0703022_000000	.N1R	Raw NMEA ASCII
HLY0703022_000000	.N2R	Raw NMEA ASCII
HLY0703022_000000	.NMS	Averaged Nav Data
Cruise Name_000008	Copy of .ini	

150 Khz ADCP data

./adcp150

NOT used on HLY0802

The shipboard ADCP system measures currents in the depth range from about 30 to 300 m -- in good weather. In bad weather or in ice, the range is less, and sometimes no valid measurements are made. ADCP data collection occurs on the Healy for the benefit of the scientists on individual cruises and for the long-term goal of building a climatology of current structure in the Ocean.

The ADCP data set collected during this cruise are placed in the directory ./Raw/adcp150. The archive consists of a single file for each day of data collection. The files are named by the cruise HLY0801, a three place number of the sequence in the files, then an extra "_000000", and then an extent for the kind of data in the file. An example of the files for one set is:

FILE NAME	FILE EXTENSION	DEFINITION
HLY0703022_000000		Raw Binary ADCP Data
HLY0703022_000000	.ENS	Binary Adcp Data
HLY0703022_000000	.ENX	Binary Ensemble Data
HLY0703022_000000	.STA	short term average
HLY0703022_000000	.LTA	long term average
HLY0703022_000000	.N1R	Raw NMEA ASCII
HLY0703022_000000	.N2R	Raw NMEA ASCII
HLY0703022_000000	.NMS	Averaged Nav Data

KNUDSEN 320B/R

The Knudsen 320B/R depth sounder can record depth in both 3.5 and 12 kHz mode. The Healy records the 3 - 6kHz data (Sub Bottom Profile) underway. This data is saved in all of the formats that the Knudsen can record data in. These files are in both ASCII and BINARY format (see the table below). This data is also saved as depth in Datalog/Knudsen.

./knudsenraw

FILENAME	FORMAT	DEFINITION
2007_102_0005_004.keb	Binary	Knudsen Playback File
2007_102_0005_008.kea	Ascii	Log of depth, settings and environmental data
2007_102_0005_HF_001.sgy	Binary	SEG-Y extended Seismic format

Seabeam

The raw Seabeam 2112 files are in this directory. The naming convention uses the year, month, Julian day, and the start hour and minute in it. For year 2007 on day 110 starting at 11:12 the name would be sb20071101112.mb41. mb41 is the MB-System multibeam format number for the Seabeam 2112. These files can best be accessed and used by using the MB-System software.

./Seabeam

sb20071091600.mb41

Thermosalinograph

Thermosalinograph FWD

./tsg_fwd HLY08TSGFwd0801-2.CON HLY08TSGFwd0801-2.hex

CTD

Data for the each CTD cast are contained here. These files are in SeaBird software's format. Each cast is in a separately numbered subdirectory.

./ctd

FILENAME	FORMAT	DEFINITION
021.BL	ASCII	Bottle firing information
021.CON	ASCII	The configuration file for the cast
021.HDR	ASCII	Header information for the cast
021.btl	ASCII	Averaged Bottle firing information
021.cnv	ASCII	The data
021.dat	Binary	The data
021.jpg	Binary	Plotted JPEG image of the cast
021.ros	ASCII	Data from when bottles fire
021avg.cnv	ASCII	Meaned 1 meter down cast of the data

Expendable Bathythermograph (XBT)

The file names use the probe type and the sequence number of the XBT or Expendable Sound Velocimeter (XSV in the series used for the cruise.

For HLY0802 No XBTs were taken.

./xbt

FILENAME	EXTENSION	DEFINITION	PROGRAM REQUIRED to read the file
T5_00014.rdf	.RDF	Raw Data Format	Sippican Software
T5_00014.edf	.EDF	Exportable Data Format	Any text/spreadsheet

LDS Data

The Lamont Data Logging System (LDS) outputs it's file to LDS_Data. Below are directories in which data is written to.

Navigation

Navigation data are logged in the format they come from the device with a data source stamp and a time stamp added to them in several directories in LDS_Data. These data strings are in NMEA (National Marine Electronics Association) format. You will need a copy of NMEA 183, Standard for Interfacing Marine Electronics Devices, Version 2.3, March 1, 1998, to help you understand the data formats used. These data are also in the SCS_Data directories that are described above in formats that are explained. The web-site http://www.gpsinformation.org/dale/nmea.htm might help you understand these formats. Example files will be shown below but no formats will be given.

ADU5 (Ashtech GPS)

Data from the Ashtech GPS is written here as it is from the GPS receiver.

./adu5

HLY0801-adu5.y2008d082

adu5 2008:082:00:00:00.1772 \$GPGLL,6222.52645,N,16922.29346,W,000000.00,A,A*7B

adu5 2008:082:00:00:00.2942

\$GPGGA,000000.00,6222.52645,N,16922.29346,W,1,11,0.8,18.49,M,7.53,M,,*73

adu5 2008:082:00:00:00:3542 \$GPVTG,165.20,T,154.20,M,002.86,N,005.29,K,A*23

adu5 2008:082:00:00:00.4152

\$GPPAT,000000.00,6222.52645,N,16922.29346,W,00026.02,150.5834,000.30,001.12,0.0015,0.0093,0*62

adu5 2008:082:00:00:00.4241 \$GPHDT,150.583,T*3F

adu5 2008:082:00:00:01.1731 \$GPGLL,6222.52568,N,16922.29301,W,000001.00,A,A*75

adu5 2008:082:00:00:01.2901

\$GPGGA,000001.00,6222.52568,N,16922.29301,W,1,11,0.8,18.50,M,7.53,M,,*75

adu5 2008:082:00:00:01.2920 \$GPVTG,164.37,T,153.37,M,002.96,N,005.47,K,A*2C

adu5 2008:082:00:00:01.4110

\$GPPAT,000001.00,6222.52568,N,16922.29301,W,00026.03,150.7601,000.28,001.23,0.0017,0.0118,0*6C

adu5 2008:082:00:00:01.4200 \$GPHDT,150.760,T*30

Trimble AGGPS

Navigation data from the AGGPS receiver is written here as it is from the GPS receiver.

```
./aggps
```

```
HLY0801-aggps.y2008d082
aggps 2008:082:00:00:00.2252
$GPGGA,000000.00,6222.5258
```

\$GPGGA,000000.00,6222.525857,N,16922.290938,W,2,07,1.2,21.02,M,8.08,M,5.0,0297*54 aggps 2008:082:00:00:00.2832 \$GPGLL,6222.525857,N,16922.290938,W,000000.00,A,D*75

aggps 2008:082:00:00:00.3412 \$GPVTG,165.5,T,,,002.89,N,005.35,K,D*42

aggps 2008:082:00:00:00.3992 \$GPGSV,2,1,07,31,23,093,44,32,25,079,45,23,22,190,46,20,66,229,50*78

aggps 2008:082:00:00:00.4572 \$GPGSV,2,2,07,11,51,173,50,14,20,043,42,17,41,279,50,,,,*46

aggps 2008:082:00:00:00.5172 \$GPGSA,A,3,31,32,23,20,11,14,17,,,,,2.6,1.2,2.3*37

aggps 2008:082:00:00:00.5752 \$GPZDA,000000.10,22,03,2008,00,00*6E

aggps 2008:082:00:00:00.6332

\$GPRMC,000000,A,6222.525857,N,16922.290938,W,002.89,165.5,220308,13.9,E,D*03

aggps 2008:082:00:00:00.6631 \$GPGST,000000.00,0.4,1.1,0.9,52.2,1.0,1.0,2.7*6A

aggps 2008:082:00:00:01.2320

\$GPGGA,000001.00,6222.525073,N,16922.290454,W,2,07,1.2,20.94,M,8.08,M,3.6,0297*52 aggps 2008:082:00:00:01.2902 \$GPGLL,6222.525073,N,16922.290454,W,000001.00,A,D*7D

PSOMV Attitude

The Attitude data from the POSMV is written here.

./posatt

HLY0801-posatt.y2008d082

 posatt
 2008:082:00:00:00.0082
 :06000C -0004F 0105
 0013

 posatt
 2008:082:00:00:00.1082
 :010007 -0003F 0105
 0013

 posatt
 2008:082:00:00:00.2082
 :0A0007 -0003F 0105
 0013

 posatt
 2008:082:00:00:00.3082
 :01000C -0004F 0105
 0013

 posatt
 2008:082:00:00:00.4082
 :09011E -0003F 0105
 0013

 posatt
 2008:082:00:00:00.5081
 :0A000C -0003F 0105
 0013

 posatt
 2008:082:00:00:00:00.6081
 :04011E -0003F 0105
 0013

POSMV GPS

The data from the POSMV GPS is written here.

./posnav

```
Posnav 2008:082:00:00:00.0502 $INZDA,00000.0043,22,03,2008,,*78

posnav 2008:082:00:00:00.1922 $PASHR,000000.069,150.36,T,1.05,0.13,-0.03,0.019,0.019,0.011,2,1*35

posnav 2008:082:00:00:00.1923 $PRDID,0.13,1.05,150.36*7E

posnav 2008:082:00:00:00.2502 $INGST,000000.069,0.7,0.5,18.0,0.7,0.5,1.1*6F

posnav 2008:082:00:00:00.3112 $INGGA,000000.069,6222.50218,N,16922.26144,W,2,09,0.9,-
2.73,M,,,4,0297*23

posnav 2008:082:00:00:00.3642 $INHDT,150.4,T*25

posnav 2008:082:00:00:00.3643 $INVTG,169.7,T,,M,3.0,N,5.5,K*7A

posnav 2008:082:00:00:01.0501 $INZDA,000001.0043,22,03,2008,,*79

posnav 2008:082:00:00:01.1920 $PASHR,000001.069,150.53,T,1.04,0.13,-0.03,0.019,0.019,0.011,2,1*36
```

POSMV Navigation for the SeaBeam

The SeaBeam only needs specific navigation data. So the POSMV data is reformatted SeaBeam and sent to the SeaBeam for use by it.

./posreform2sb

HLY0801-posreform2sb.y2008d082

```
posreform2sb 2008:082:00:00:00.366 $NVVBW,3.0,0.1,A,3.0,0.1,A*5B
posreform2sb 2008:082:00:00:00.366 $NVHDT,150.36,T*0B
posreform2sb 2008:082:00:00:00.366 $NVGLL,6222.5022,N,16922.2614,W,000000.07,A*10
posreform2sb 2008:082:00:00:01.366 $NVVBW,3.1,0.1,A,3.1,0.1,A*5B
posreform2sb 2008:082:00:00:01.366 $NVHDT,150.53,T*08
posreform2sb 2008:082:00:00:01.366 $NVGLL,6222.5014,N,16922.2611,W,000001.07,A*11
posreform2sb 2008:082:00:00:02.368 $NVVBW,3.2,0.1,A,3.2,0.1,A*5B
```

SeaBeam Data

SeaBeam Center Beam Data

The data from the SeaBeam's center beam is stripped out of the data file and used for displays around the ship. This data is also available as described above.

./sbctr

```
Betr 2008:082:00:00:03.8623 $SBCTR,2008,3,22,00:00:01.222,62.375023,-169.371017,33.82,43*00 sbetr 2008:082:00:00:05.3697 $SBCTR,2008,3,22,00:00:02.742,62.375000,-169.371010,33.92,51*00 sbetr 2008:082:00:00:07.7156 $SBCTR,2008,3,22,00:00:04.252,62.374975,-169.371002,36.19,40*00 sbetr 2008:082:00:00:08.1426 $SBCTR,2008,3,22,00:00:05.762,62.374957,-169.370990,33.32,40*00 sbetr 2008:082:00:00:09.8221 $SBCTR,2008,3,22,00:00:07.272,62.374932,-169.370985,31.89,46*00 sbetr 2008:082:00:00:11.6578 $SBCTR,2008,3,22,00:00:08.992,62.374903,-169.370970,32.48,42*00 sbetr 2008:082:00:00:13.5820 $SBCTR,2008,3,22,00:00:10.502,62.374870,-169.370955,34.15,48*00 sbetr 2008:082:00:00:16.1493 $SBCTR,2008,3,22,00:00:13.522,62.374817,-169.370927,34.30,45*00
```

sbctr 2008:082:00:00:17.6985 \$SBCTR,2008,3,22,00:00:15.032,62.374790,-169.370912,33.82,43*00

sbctr 2008:082:00:00:19.5798 \$SBCTR,2008,3,22,00:00:16.552,62.374760,-169.370890,33.47,55*00

Speed of Sound in the Surface Water for SeaBeam

The SeaBeam needs the Speed of Sound at the surface. This is calculated from the Sea Chest intake water temperature and the TSG Salinity. The water temperature and Salinity are also in this file.

//sbsv

HLY0801-sbsv.y2008d082

```
        sbsv
        2008:082:00:00:00.4142
        1439.5, -1.72, 0033.7,0

        sbsv
        2008:082:00:00:02.4138
        1439.5, -1.72, 0033.7,0

        sbsv
        2008:082:00:00:04.4146
        1439.5, -1.72, 0033.7,0

        sbsv
        2008:082:00:00:06.4222
        1439.5, -1.73, 0033.7,0

        sbsv
        2008:082:00:00:08.3860
        1439.5, -1.73, 0033.7,0

        sbsv
        2008:082:00:00:10.4126
        1439.5, -1.73, 0033.7,0

        sbsv
        2008:082:00:00:12.4142
        1439.5, -1.73, 0033.7,0

        sbsv
        2008:082:00:00:14.4140
        1439.5, -1.73, 0033.7,0

        sbsv
        2008:082:00:00:16.3947
        1439.5, -1.73, 0033.7,0

        sbsv
        2008:082:00:00:18.3864
        1439.5, -1.73, 0033.7,0
```

Raw SeaBeam Files

The Raw SeaBeam data files are here. These are in the SeaBeam 2112 format. To use these files you will need a tool such as the MB-System Software package that can be found at LDEO. The files are named using the year, day in the year and time.

./seabeam

sb20080812300.mb41

sb20080820000.mb41

sb20080820100.mb41

sb20080820200.mb41

sb20080820300.mb41

sb20080820400.mb41

sb20080820400.mb41

sb20080820600.mb41

sb20080820700.mb41

sb20080820800.mb41

sb20080820900.mb41

Gyroscope data

There are 2 Sperry Gyroscopes running the MK27 and the MK30 on the ship. These contain heading of the ship.

MK27 Sperry Gyroscope

./mk27

```
0801-mk27.y2008d082
```

```
mk27
      2008:082:00:00:0.0556 $HEHDT,150.94,T*16
      2008:082:00:00:0.1452 $HEHDT,150.95,T*17
mk27
      2008:082:00:00:0.1876 $HEROT,7.07,A*1B
mk27
mk27
      2008:082:00:00:0.3013 $HEXDR,A,150.95,D,HDG,A,-0.97,D,ROLL,A,-0.24,D,PITCH*48
mk27
      2008:082:00:00:0.3432 $HEHDT,150.97,T*15
mk27
      2008:082:00:00:0.3855 $HEHDT,150.98,T*1A
mk27
      2008:082:00:00:0.4516 $HEHDT,151.00,T*1A
      2008:082:00:00:0.5452 $HEHDT,151.02,T*18
mk27
mk27
      2008:082:00:00:0.6495 $HEHDT,151.03,T*19
mk27
      2008:082:00:00:0.6936 $HEROT,8.06,A*15
mk27
      2008:082:00:00:0.7453 $HEHDT,151.05,T*1F
```

MK30 Sperry Gyroscope

./mk30

HLY0801-mk30.y2008d082

```
mk30 2008:082:00:00:00.0159 $INHDT,150.68,T*1F
mk30 2008:082:00:00:00.0666 $INROT,9,A*36
      2008:082:00:00:00.1142 $INHDT,150.69,T*1E
mk30
mk30
      2008:082:00:00:00.1602 $INROT,9,A*36
mk30 2008:082:00:00:00.2205 $INHDT,150.71,T*17
      2008:082:00:00:00.2646 $INROT,9,A*36
      2008:082:00:00:00.3142 $INHDT,150.72,T*14
mk30
mk30
      2008:082:00:00:00.3623 $INROT,10,A*0E
mk30
      2008:082:00:00:00.4186 $INHDT,150.74,T*12
mk30 2008:082:00:00:00.4633 $INROT,10,A*0E
mk30 2008:082:00:00:00.5142 $INHDT,150.76,T*10
mk30 2008:082:00:00:00.5725 $INROT,10,A*0E
mk30 2008:082:00:00:00.6166 $INHDT,150.77,T*11
```

All SIO TSG and MET Data

All of the data from the SIO TSG and Meteorological Sensors are sent in one serial line. All of these data have different NMEA strings and formats. These are listed above. This is a single file for all these data. This data is also in the SCS data sections above. The format for this file can be seen in the file Healy MET Mar 1 2008.txt.

./tsg met

```
HLY0801-tsg met.y2008d082
tsg met 2008:082:00:00:00.3272 $PSSRA,501.80,4.190,349.54,0.257,261.02,1.951,261.51,1.922*4E
tsg met 2008:082:00:00:00.3275 $PSSPA,1665.98,1.006*43
tsg met 2008:082:00:00:00.3542 $PSMEA,-11.56,87.90,1022.45,0.03*51
tsg met 2008:082:00:00:00.3543 $PSWDA,240.50,11.88,243.30,11.08*5C
tsg met 2008:082:00:00:00.3872 $PSWDB,234.33,10.31,233.57,11.74*57
tsg met 2008:082:00:00:00.4142 $PSSTA,-1.721,2708.200*52
tsg met 2008:082:00:00:00.4143 $PSTSA,-1.274,27.0231,33.728,1441.48*5C
tsg met 2008:082:00:00:00.4432 $PSTSB,...*46
tsg met 2008:082:00:00:00.4432 $PSOXA,7.350,2.768,-1.274,-1.274*5F
tsg met 2008:082:00:00:00.4433 $PSOXB,,,,*56
tsg met 2008:082:00:00:00.4732 $PSFLA,0.300,0.030,0.000,0.013*4A
tsg met 2008:082:00:00:00.5012 $PSFLB,1.150,0.115,0.430,0.043*4B
tsg met 2008:082:00:00:00.5013 $PSNTA,0.000,0.000*58
tsg met 2008:082:00:00:00.5311 $PSFMA,3.04,46.000*4C
tsg met 2008:082:00:00:00.5313 $PSFMB,3.30,17.000*4C
```

tsg met 2008:082:00:00:00.5371 \$GPZDA,000000.00,22,03,2008,00,00*6F

Gravity

Two Gravimeters are being recorded from the IC no-Gyro room.

BGM221

./bgm221

HLY0801-bgm221.y2008d082

bgm221 2008:082:00:00:00.5731 04:025278 00

bgm221 2008:082:00:00:01.5661 04:025279 00

bgm221 2008:082:00:00:02.5661 04:025279 00

FIELD	DATA	Example	UNITS
1	Data Stream Name	bgm221	ASCII text
2	LDS logged Time GMT	2008:082:00:00:00.5731	yyyy:jjj:hh:mm:ss.sss
3	measurement period in quarters of a second	04	quarters of a second
4	"counts" proportional to observed gravity	025278	counts
5	status flags	00	0 = OK

BGM222

./bgm222

HLY0801-bgm222.y2008d082

bgm222 2008:082:00:00:00.4962 04:025332 00

bgm222 2008:082:00:00:01.5071 04:025333 00

bgm222 2008:082:00:00:02.4960 04:025332 00

FIELD	DATA	Example	UNITS
1	Data Stream Name	bgm222	ASCII text
2	LDS logged Time GMT	2008:082:00:00:00.4962	yyyy:jjj:hh:mm:ss.sss
3	measurement period in quarters of a second	04	quarters of a second
4	"counts" proportional to observed gravity	025332	counts
5	status flags	00	0 = OK

Events in Running LDS

The files here are logs of LDS start and stops of different data loggers.

./events

Some examples files here are:

HLY0801-ev-adcp nav.y2008d073

HLY0801-ev-adcp nav.y2008d081

HLY0801-ev-adcp rph.y2008d073

HLY0801-ev-adcp_rph.y2008d081

HLY0801-ev-adu5.y2008d073

HLY0801-ev-aggps.y2008d073

HLY0801-ev-bgm221.y2008d073

HLY0801-ev-bgm222.y2008d073

This file HLY0801-ev-posreform2sb.y2008d073 contains:

posreform2sb 2008:073:20:22:50.0857 LOGGER STARTUP N/A starting up...

posreform2sb 2008:073:20:22:50.0857 OTHER N/A succeeded in locking in memory

Underway Sensors and Calculations

Sensors and Calculations

HLY0802 - Shipboard Sensors

Sensor	Description	Serial #	Last Calibration Date	Status
Meteorology & Radiometers	,		'	
Port Anemometer	RM Young 09101	L001	02/06/07	Collected
Stbd Anemometer	RM Young 09101	L003	03/07/07	Collected
Barometer	RM Young 612011	BP01643	02/22/08	Collected
Air Temp/Rel. Hum.	RM Young 41382V	13352	02/22/08	Collected
Helo shack PAR	BSI QSR-2200	20270	01/09/07	Collected
Shortwave Radiation	Eppley labs - PSP	35032F3	08/01/07	Collected
Longwave Radiation	Eppley labs PIR	34955F3	08/17/07	Collected
Barometer	Paroscientific MET3A	101757	06/27/07	Collected
Bow Temperature	Paroscientific MET3A	101757	06/27/07	Collected
Precipitation	Paroscientific MET3A	101757	06/27/07	Collected
Relative Humidity	Paroscientific MET3A	101757	06/27/07	Collected
Jack Staff Ultrasonic Anemometer	RM Young 85004	00703	09/20/07	Collected
Yard Arm Stb Ultrasonic Anemometer	RM Young 85004	00704	09/20/07	Collected
Underway Ocean				
TSG A	SeaBird SBE45	0215	08/01/07	Collected
TSG B	SeaBird SBE45	3107	01/16/08	Not Collected
Remote Sea Temp	SeaBird SBE3S	4063	12/13/07	Collected
Fluorometer B	Turner SCUFA	0600	12/15/07	Collected
Fluorometer A	Seapoint SCF	SCF2957	12/15/07	Collected
Oxygen Sensor A	SeaBird SBE-43	1307	09/28/07	Collected
Oxygen Sensor B	Aanderaa Optode 3835	719	11/21/07	Collected
Nitrate Sensor	MBARI ISUS v3	141	10/11/07	Collected
Flowmeter A	Flocat C-ES45-B003	09061005	01/07/08	Collected

Flowmeter B	Flocat C-ES45-B003	02030692	01/07/08	Collected
AC-S Spectral Attenuation and Absorption Meter	Wetlabs	053	01/01/08	Collected
Sonars				
Knudsen- subbottom	320 B/R	K2K-00-0013	N/A	Collected
ADCP 150 kHz	Broad Band (BB150)	80	N/A	Not Collected
ADCP 75 kHz	Ocean Surveyor	172	N/A	Collected
Multibeam	Seabeam 2112	?	N/A	Collected
Speed log	Sperry	?	N/A	Collected some
Navigation				
P-Code GPS (aft)	Trimble Centurion	0220035469	N/A	Collected
Attitude GPS	Ashtech ADU5	AD520033513	N/A	Collected
DGPS	Trimble AGGPS- AG132	0224016199	N/A	Collected
POSMV	Model- MV V4	2306	N/A	Collected
P-Code GPS (fwd)	Rockwell	?	N/A	Collected
Glonass	?	?	N/A	Collected
GYRO 1	Sperry MK39 PN 03956-1982416-2	340	?	Collected
GYRO 2	Sperry MK27A 4800880-1	025	N/A	Collected

HLY0802 - CTD Sensors

Sensor	Comments	Serial #	Last service/ Calibration Date	Status
CTD fish	SBE 911plus	639	01/18/08	
Pressure Sensor #1	Digiquartz with TC	83012	01/18/08	Collected
Temperature #1	SBE3- Primary	2855	01/21/08	Collected
Temperature #2	SBE3- Secondary	2796	01/27/08	Collected
Conductivity #1	SBE4- Primary	2568	01/18/08	Collected
Conductivity #2	SBE4- Secondary	2561	01/18/08	Collected
Pump	SBE5 Primary	3115	01/08	NA
Pump	SBE5 Secondary	3112	01/08	NA
Deck Unit	SBE 11-Plus V2	0417	12/07	NA
Altimeter	PSA916	843	01/08	Collected
Oxygen	SBE43	458	12/12/07	Collected
Fluorometer	Chelsea-Aquatrack3	088234	03/07	Collected
Transmisometer	Wetlabs	CST-390DR	01/08	Collected
PAR	Bioshperical QSP2300	70115	01/07	Collected
Carousel	SBE32- 12 place	347	01/08	NA

HLY0802 - Sensor Calculations

The coefficients for temperature, conductivity, fluorometer and turbidity sensors can be found in the calibrations sheets below in the Appendix.

Calculating Temperature – ITS-90

T = decimal equivalent of bytes 1-4

Temperature Frequency: f = T/19 + 2100

Temperature = $1/\{g + h[ln(f_0/f)] + i[ln^2(f_0/f)] + j[ln^3(f_0/f)]\} - 273.15$ (°C)

Calculating Conductivity – ITS-90

C = decimal equivalent of bytes 5-8

Conductivity Frequency f = sqrt(C*2100+6250000)

Conductivity = $(g + hf^2 + if^3 + jf^4)/[10(1 + dt + ep)]$ (siemens/meter)

t = temperature (°C); p = pressure (decibars); d = Ctcor; e = CPcor

Calculating Fluorometry Voltage

f = decimal equivalent of bytes 15-17

Fluorometry Voltage = f/819

Calculating Transmittance

$$V_{dark} = 0.058 \text{ V}$$

$$V_{ref} = 4.765 \text{ V}$$

t = decimal equivalent of bytes 18 - 20

Transmissometer Voltage (V_{signal}) = t/819

% Transmittance = $(V_{signal} - V_{dark}) / (V_{ref} - V_{dark})$

Calculating PAR for surface PAR

raw data = mV

calibration scale = 6.08 V/(mEinstiens/cm²sec)

offset $(V_{dark}) = 0.3 \text{ mV}$

 $(raw \text{ mV} - V_{\text{dark}})/\text{scale x } 10^4 \text{ cm}^2/\text{m}^2 \text{ x } 10^{-3} \text{ V/mV} = \text{mEinstiens/m}^2\text{sec}$

or

 $(data \text{ mV} - 0.3 \text{ mV}) \times 1.65 \text{ (mEinstiens/m}^2\text{sec)/mV} = \text{mEinstiens/m}^2\text{sec}$

Calculating Pyrgeometer Values

V = Eppley PIR Thermopile voltage

S = Sensitivity (Calibration factor from Eppley Cal sheet)

S = 3.32

J = Stefan-Boltzmann Constant

J = 5.6697e-8

B = [absorption constant (for Eppley Black paint formula) 0.985 / dome glass IR transmission 0.5]

B= 3.5 for Stock Eppley PIR

Tb = Eppley Body Temperature in degrees Kelvin

Td = Eppley Dome Temperature in degrees Kelvin

Tb and Td calculated as follows:

$$T = 1/(a + \ln(Vo/Irt)*(b + c*(\ln(Vo/Irt)**2)));$$

>Irt = (Vref-Vin)/R1

On Healy
$$R1 = 82500$$
 Vref = 5.0>

$$a = 0.0010295$$
 $b = 0.000239$ $c = 1.568e-7$

$$W/M2 = V/S + (J * Tb^4) + (B*J*(Tb^4 - Td^4))$$

MBARI-ISUS V3 Data File FORMAT From Satlantic Document SAT-DN-425 pages D-5 and D-6

Field Name	Format	Description
INSTRUMENT	AS 10	The frame header or synchronization string starts with "SAT" for a Satlantic instrument, followed by three characters identifying the frame type. The last four characters are the instrument serial number.
DATE	AS 7 BS 4	The date field denotes the date at the time of the sample, using the year and Julian day. The format is YYYYDDD.
TIME	AF 9 BD 8	The time field gives the GMT/UTC time of the sample in decimal hours of the day.
NTR_CONC	AF 47 BF 4	The Nitrate concentration as calculated by the ISUS is reported in ?Mol/L; in ASCII frames to 2 decimal places.
AUX1	AF 47 BF 4	First auxiliary fitting result of the ISUS is reported.
AUX2	AF 47 BF 4	Second auxiliary fitting result of the ISUS is reported.
AUX3	AF 47 BF 4	Third auxiliary fitting result of the ISUS is reported.
RMS ERROR	AF 810 BF 4	The Root Mean Square Error of the ISUS' concentration calculation is given, in ASCII frames to 6 decimal places.
The above fields	are prese	nt in all frames, the following fields only in full frames.
T_INT	AF 5 BF 4	The temperature inside the ISUS housing is given in degrees Celsius; in ASCII frames to 2 decimal places.
T_SPEC	AF 5 BF 4	The temperature of the spectrometer is given in degrees Celsius; in ASCII frames to 2 decimal places.
T_LAMP	AF 5 BF 4	The temperature of the lamp is given in degrees Celsius; in ASCII frames to 2 decimal places.
LAMP_TIME	AI 16 BU 4	The lamp on-time of the current data acquisition in seconds.
HUMIDITY	AF 45 BF 4	The humidity inside the instrument, given in percent. Increasing values of humidity indicate a slow leak.
VOLT_12	AF 5 BF 4	The voltage of the lamp power supply.
VOLT_5	AF 5 BF 4	The voltage of the internal analog power supply.
VOLT_MAIN	AF 5 BF 4	The voltage of the main internal supply.
REF AVG	AF 7 BF 4	The average Reference Channel measurement during the sample time, in ASCII mode to 2 decimal places.
REF STD	AF 6 BF 4	The variance of the Reference Channel measurements, in ASCII mode to 2 decimal places.

SW DARK	AF 8 BF 4	An AF formatted field representing the Sea-Water Dark calculation (to 2 decimal places), in spectrometer counts.
SPEC AVG	AF 8 BF 4	An AF formatted field representing the average value of all spectrometer channels, to 2 decimal places.
CHANNEL(?1)	AI 35 BU 2	The counts of the first channel (wavelength ?1) of the spectrometer.
CHANNEL(?n)	AI 35 BU 2	The counts of the n-th channel (wavelength ?n) of the spectrometer.
CHANNEL(?256)	AI 35 BU 2	The counts of the last (256-th) channel (wavelength ?256) of the spectrometer.
CHECK SUM	AI 13 BU 1	A check sum validates frames. Satlantic's software rejects invalid frames.
TERMINATOR	AS 2 AS 2	This field marks the end of the frame by a carriage return/line feed pair (0Dhex and 0Ahex).

Depending on the frame type, the sizes of the frames (for ASCII frames including the delimiters) are:

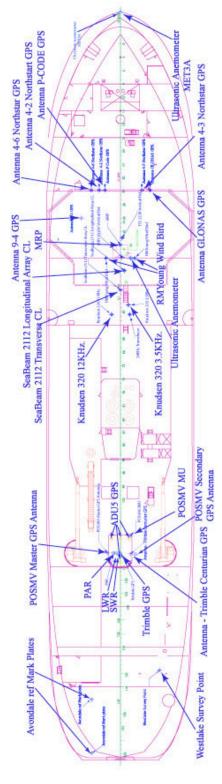
ASCII Concentration Frame 73 bytes (maximum)

ASCII Full Frame 1694 bytes (maximum)

Binary Full Frame 605 bytes (fixed)

For a flash disk size of 256 MB, this translates to approximately 4,500,000 ASCII Concentration frames, 155,000 ASCII Full frames, or 440,000 Binary Full frames. With an acquisition rate of one frame per second, an acquisition period of 52 days (ASCII Concentration frame), 43.5 hours (ASCII Full frame) or 122 hours (Binary Full frame) can be stored on the flash disk. Larger disk sizes are available upon request.

The instrument is normally configured to periodically generate dark spectra to correct for thermal noise. This is achieved by closing an on-board shutter over the UV light source before sampling. To distinguish between *Light* and *Dark* frames, the instrument uses different frame headers. This allows any telemetry acquisition system to distinguish between sensor readings taken with the shutter opened and closed.


The different frames are distinguished by their header string: following the three letter 'SAT' identifier is a three letter frame identifier: The first letter is for ISUS frames always a 'N', indicating that the ISUS is an Nitrate measuring instrument. The second letter indicates the shutter state of that frame ('L' for Light frame, 'D' for Dark frame) and the third letter indicates the frame type ('C' for ASCII Concentration Frame, 'F' for ASCII Full Frame, and 'B' for Binary Full Frame).

Frame Header	Explanation of frame header
SATNLC	SATlantic Nitrate Light Concentration frame
SATNDC	SATlantic Nitrate Dark Concentration frame
SATNLF	SATlantic Nitrate Light Full ASCII frame
SATNDF	SATlantic Nitrate Dark Full ASCII frame
SATNLB	SATlantic Nitrate Light full Binary frame
SATNDB	SATlantic Nitrate Dark full Binary frame

Instrument Locations on the Healy

Layout plot of instrument locations

The locations of Instruments on this diagram are approximate only. Do NOT use this for measurements but only for relative locations.

Table of Survey measurements

	140	or Survey in	eugui ements			
Consolidated Survey Data						
	Elements					
	of:					
		Avondale Survey				
		Westlake Survey				
		Lamont Survey				
All Measurements in <u>Meters</u> relative to MRP unless otherwise stated		Emmone sur (c)	I	I	1	I
	X = fore &	aft with + forew	ard			
		k starboard with				
	Z= vertica	l with + upwards				
				X	Y	Z
<u>Item</u>	<u>Survey</u>	<u>Description</u>		<u>North</u>	<u>East</u>	Elevation
1	Avondale	MRP	See discussion Westlake Final Report	34.30	0.00	9.15
2	Westlake	MRP	by Definition	0.00	0.00	0.00
3	Westlake	Seabeam 2112				
		Transverse Array	Centerline	-7.679	0.030	9.242
		Longitudinal Array	Centerline	-4.386	0.711	9.238
4	Westlake	Transducers				
		Starboard - Forward to Aft				
		Transducer -	Bathy 2000 3.5 kHz	-10.252	1.362	9.243
		Transducer -	Bathy 1500 34 kHz *	-11.866	1.559	9.245
		Transducer -	Doppler Speed Log	-12.168	0.414	9.245
		Transducer -	Spare Transducer Well	-13.081	1.449	9.237
5	Westlake	Port - Forward to Aft				
		Transducer -	VM 150	-9.726	-1.395	9.230
		Transducer -	Ocean Surveyor 75 kHz	-10.819	-1.290	9.230
		Transducer -	Bathy 2000 12 kHz	-11.859	-1.492	9.234
		Transducer -	Spare Transducer Well	-13.078	-1.394	9.235
6	Westlake	Gyros				
		Starboard Gyro	Centerline	4.741	0.207	-19.604
		Port Gyro	Centerline	4.746	-0.207	-19.609
7	Westlake	Antennas				

10	Westlake Raw	Fan Tail				
	XX7 .1 1	MRP	Port Antenna (Master)	52.5429	2.2030	-22.3300
		MRP	Transmit array	-4.3860	0.7110	9.2380
		MRP	IMU	- 49.5710	1.7110	-16.7990
		IMU	Port Antenna (Master)	-2.9719	- 3.9140	-5.5310
		From	ТО	X	Y	Z
9	LDEO	POS/MV				
			Center of TSS 333B	1.210	0.329	-0.013
			scribe atop mounting plate			
			TSS 333B - Marine Motion Sensor -			
			Center (mid-point) - calculated	-2.100	0.291	-0.775
			Measured at Top of mounting bracket			
			MRV-M-MV -			
8	Westlake	Vertical Ref				
	·		Time Server **	-52.671	1.838	-21.115
			Trimble Centurion**	-52.726	-1.717	-21.113
			Antenna base (4D)	-49.771	-1.546	-22.008
			Antenna base (4C)	-49.785		-22.020
			Antenna base (4B)	-49.758	0.038	-22.010
			Antenna base (4A)	-53.872	-0.011	-22.025
		_	GLONAS GPS Antenna *	9.379	5.066	-23.515
			Antenna 4-3 * - Northstar (4.1.4)	9.355	3.638	-23.363
			P CODE GPS Antenna	9.368	-2.645	-23.609
			Antenna 4-2 * - Northstar (4.1.2)	9.362	-3.617	-23.451
			Antenna 4-6 * - Northstar GPS (4.1.1)	9.374	-4.970	-23.406
		REF DWG TBD	Antenna 9-4 * - GPS Antenna (4.1.5)	4.587	-6.622	-24.000

Af	ft/Port -	86.737	-4.906	-3.617
Fo	orward/Port -	77.600	-4.881	-3.589
Fo	orward/Starboard -	72.590	6.676	-3.653