

Data Synopsis for HLY0802

March 29 – May 6, 2008 Dutch Harbor to Dutch Harbor

Chief Scientist- Carin Ashjian Healy Captain- Captain Tedric R. Lindström

Prepared by: Tom Bolmer, David Forcucci, David Hassilev, & Steve Roberts

Table of Contents

Project Summary	4
Cruise Track	5
Personnel	6
Science Party Personnel	6
Ship's Crew	9
Science Components and their major sampling activities	10
Project Names Grants and Summaries	12
Distribution Contents	12
Introduction to Date	14
Introduction to Data	14
Data	15
Distribution DVD Contents at a Glance	15
Directories on the first DVD:	16
./1_Minute_Averaged_Data: /SCS_Dete:	16
./SCS_Data. /Extra files in the directory SCS_Data:	10
/LDS_Data	18
/Raw:	18
./Meta Data:	18
./ice observations:	19
First DVD Contents by directory:	19
Directories on the second and subsequent DVDs:	20
./LDS_Data:	20
./Raw:	20
./Satellite_Images:	20
Second DVD Contents by directory:	21
Merged Data	21
LDEO Averaged One Minute Data File	21
File Formats of Data Collected Underway	24
APPENDIX:	24
Acquisition Problems and Events	24
Comments that might help when using the data	32
Underway Sensors and Calibrations	33
Sensors and Calibrations	33
HLY0802 Shipboard Sensors	33
HLY0802- CTD Sensors	34
HLY0802 Sensor Calculations	35
Calculating Temperature – ITS-90	35
Calculating Conductivity – ITS-90	35
Calculating Fluorometry Voltage	35
Calculating Transmittance	35
Calculating PAR for surface PAR	35
Calculating Pyrgeometer Values	36

Calibrations	37
Meteorology & Radiometers	37
R.M. Young Wind Bird, Starboard	37
R.M. Young Wind Bird Port	38
Barometer	39
Air Temperture / Relative Humidity	40
Shortwave Radiation Pyranometer	43
Longwave Radiation Pyrgeometer	44
Jack Staff MET Station	45
Underway Ocean Flow through Sensors	47
Seabird ThermoSalinograph	47
Temperature	47
Conductivity	48
Remote Sea Temperature (Sea Chest)	49
Fluorometer B	50
Oxygen Sensor A	52
CTD Sensors	53
Pressure Sensor	53
Temperature #1	54
Temperature #2	55
Conductivity #1	56
Conductivity # 2	57
Oxygen	58
Fluorometer	59
Transmisometer	60
PAR	61
Instrument Locations on the Healy	62
Layout plot of instrument locations	62
Table of Survey measurements	63
SBE 21 SEACAT Thermosalinograph Data Output Formats	65
HLY0802 Data DVD Dates	67

Project Summary

Bering Ecosystem Study and Bering Sea Integrated Research Program Spring Cruise

The overall objective of this cruise is to describe the lower trophic levels of the Bering Sea ecosystem under varying conditions of ice cover in order to better understand ecosystem response to ongoing changes in climate, ice cover (extent of ice cover and timing of ice formation and retreat), and accompanying oceanographic conditions. Thirteen projects are supported on cruise HLY0802 on board the USCGC Healy in the Bering Sea during March 31-May 6, 2008. Sampling was conducted across three major east-west transects of the shelf, including repeated sampling along portions of two of those transects, along the 70 m isobath from ~70 miles south of St. Lawrence Island to ~200 m north of Dutch Harbor, AK, and in a region of the outer shelf where an ice-edge bloom was developing. This scheme permitted sampling of different regions of the shelf under varying conditions of ice cover. During the period of the cruise the ice edge retreated over 100 miles to the north and significant changes in the quality and ice algal load of the ice was documented in the different regions. A range of sampling activities was supported including water column sampling using CTD/Niskens, plankton nets, floating sediment traps, and a Video Plankton Recorder, benthic sampling using Van Veen Grabs, Multicore, and a benthic camera, and on-ice sampling both directly from the ship via personnel deployment on the ice and from helicopter landings on more remote ice floes. Underway sampling of basic hydrographic, meteorological, and bathymetric parameters also was conducted.

Cruise Track

Personnel

Science Party Personnel

Name	Position	Institution	Phone	Email	Date	Date	Nation
					on	off	ality
Carin	Chief Sci.	WHOI	508-289-	cashjian@whoi.edu	03/27	05/06	USA
Ashjian			3457				
Ana Aguilar-	Post-Doc	U of A,	907-474-	aaguilar@iarc.uaf.edu	03/27	04/20	USA
Islas		Fairbanks	1524	_			
Philip	Technician	WHOI	508-289-	palatalo@whoi.edu	03/27	05/06	USA
Alatalo			2980				
John Allison	Technician	NCAR	303-497-	jallison@ucar.edu	04/20	05/06	USA
			2633				
Robert	Observer	USF&W	907-733-	ambrose@mtaonline.net	03/27	04/20	USA
Ambrose			1690				
Megan	Scientist	Univ. of	206-543-	megdawg@u.washington	03/27	05/06	USA
Bernhardt		Wash.	9658	.edu			
Tom Bolmer	LDEO	WHOI	508-289-	tbolmer@whoi.edu	03/27	05/06	USA
	Technician		2628				
Lynne Butler	Support	URI	401-965-	lbutler@gso.uri.edu	03/27	05/06	USA
	Technician		2143				
Robert	Scientist	URI	401-874-	campbell@gso.uri.edu	03/27	05/06	USA
Campbell			6692				
John Casey	Technician	BIOS	441-297-	john.casey@bios.edu	03/27	05/06	USA
			1880				
			x731				
Ned Cokelet	Technician	NOAA-	206-526-	Edward.D.Cokelet@noaa	04/20	05/06	USA
		PMEL	6820	.gov			
Emily	Grad Student	W. Wash.	360-556-	tropicalfishy4@hotmail.c	03/27	05/06	USA
Davenport		Univ.	5376	om			
Ed Davis	Technician	Univ. of	865-384-	edavis8@utk.edu	03/27	05/06	USA
		Tenn.	5783				
Alex De	Scientist	NOAA-	206-526-	Alex.DeRobertis@noaa.	03/27	04/20	USA
Robertis		AFSC	4789	gov			
Allan Devol	Scientist	Univ. of	207-543-	devol@u.washington.edu	03/27	05/06	USA
		Wash.	1292				
Ann Fienup-	Scientist /	Ind.	907-346-	riordan@alaska.net	03/27	04/10	USA
Riordan	Media	Researcher	2952				
Rolf	Scientist	U of A,	907-474-	rgradinger@ims.uaf.edu	03/27	04/20	Germ.
Gradinger		Fairbanks	7407				
Rodger	Scientist	Univ. of Md	410-326-	harvey@cbl.umces.edu	03/27	04/10	USA
Harvey			7206				
Anthony	Maritime	Helo	352-223-	Anthonywayne7@gmail.	03/27	05/06	USA
Hickey	Helocopter	Mechanic	8920	com			
Scott Hiller	Support	SIO	858-534-	shiller@ucsd.edu	03/27	05/06	USA
	Technician		1907				

Katrin Iken	Scientist	U of A, Fairbanks	907-474- 5192	<u>iken@ims.uaf.edu</u>	03/27	05/06	Germ.
David Kachel	Technician	NOAA- PMEL	206-526- 6195	dave.kachel@noaa.gov	03/27	04/20	USA
Nanch Kachel	Technician	U. Wash	206-525- 6746	nancy.kachel@noaa.gov	03/27	04/20	USA
Roger Kelly	Technician	URI	401-874- 6273	rokelly@gso.uri.edu	03/27	05/06	USA
Kathy Kuletz	Scientist	USF&W	907-786- 3453	<u>kathy_kuletz@fws.gov</u>	04/20	05/06	USA
Elizabeth Labunski	Observer	USF&W	907-786- 3865	<u>elizabeth labunski@fws.</u> gov	03/27	05/06	USA
Carol Ladd	Technician	NOAA- PMEL	206-526- 6024	<u>carol.ladd@noaa.gov</u>	03/27	04/20	USA
Evelyn Lessard	Co-Chief Sci.	Univ. Wash.	206-543- 8795	<u>elessard@u.washington.e</u> <u>du</u>	03/27	05/06	USA
Jeremy Malczyk	Technician	U. Wash	206-526- 4424	Jeremy.Malczyk@noaa.g ov	03/27	04/20	USA
Jeremy Mathis	Scientist	U of A, Fairbanks	907-474- 5926	jmathis@sfos.uaf.edu	04/20	05/06	USA
Michael Merchant	Network Admin	ESU	206-217- 6576	Michael.W.Merchant@u scg.mil	03/27	05/06	USA
Calvin Mordy	Scientist	Aquatic Solutions	206-526- 6870	Calvin.W.Mordy@noaa. gov	03/27	04/20	USA
Daniel Naber	Technician	U of A, Fairbanks	907-474- 7747	naber@ims.uaf.edu	03/27	04/20	USA
Rebecca Neumann	Scientist	Univ. of Oldenburg, Germ.	907-474- 7407	rebecca1509@gmx.de	03/27	05/06	Germ.
Alexei Pinchuk	Scientist	Univ. of Alaska	907-224- 4313	ftaip1@uaf.edu	03/27	05/06	Russia
Rachel L. Pleuthner	Technician	Univ. of Md.	716-517- 5927	pleuthne@cbl.umces.edu	03/27	05/06	USA
Peter Proctor	Techncian	Univ. of Wash.	206-526- 6217	peter.proctor@noaa.gov	04/20	05/06	USA
Maria Prokopenko	Postdoc Fellow	USC	323-630- 4968	prokopen@usc.edu	03/27	05/06	Russia n
Rob Rember	Technician	U of A, Fairbanks	907-474- 2795	rrember@iarc.uaf.edu	03/27	04/20	Canada
Dylan Righi	Technician	Univ. Wash.	206-526- 6508	<u>dylan.righi@noaa.gov</u>	04/20	05/06	USA
Steve Roberts	LDEO Technician	UCAR	303-497- 2637	sroberts@ucar.edu	03/27	05/06	USA
Gaelin Rosenwaks	Ind. Journalist	Ind. Journalist	917-923- 4866	gaelin@mac.com	04/20	05/06	USA
Celia Ross	Technician	OSU	541-737- 4369	celiaross@hotmail.com	03/27	05/06	USA
Janet Scannell	Technician	NCAR	303-497- 1093	anstett@ucar.edu	03/27	04/20	USA

Tracy Shaw	Scientist	OSU	541-867- 0306	tracy.shaw@noaa.gov	03/27	05/06	USA
Evelyn Sherr	Scientist	OSU	541-737- 4369	sherre@coas.oregonstate. edu	03/27	05/06	USA
David Shull	Scientist	W. Wash. Univ.	360-650- 3690	<u>david.shull@wwu.edu</u>	03/27	05/06	USA
Boris Sirenko	Scientist	Zoo. Inst. Russ. Acad. of S.	7-812- 328-1311	marine@zin.ru	03/27	05/06	Russia
Rolf Sonnerup	Scientist	Univ. of Wash.	206-526- 6748	rolf@u.washington.edu	04/20	05/06	USA
Mike Spink	Dept. Interior	Helo Ops.	541-219- 1818	rotorhead555@hotmail.c om	03/27	05/06	USA
Bill Springer	Maritime Helocopter	Helo Pilot	928-214- 8416	wspringer@hotmail.com	03/27	05/06	USA
Sarah Story Manes	Grad. Student	U. of Ak. Fairbanks	978-884- 2119	story@sfos.uaf.edu	03/27	05/06	USA
David Strausz	Technician	NOAA Corp	206-526- 4510	David.Strausz@noaa.gov	04/20	05/06	USA
Kris Swenson	Technician	LDEO	845-365- 8780	kswenson@ldeo.columbi a.edu	03/27	05/06	USA
Donna Van Keuren	Technician	URI/Consul tant	401-294- 3836	dvankeur@gso.uri.edu	03/27	05/06	USA
Paul Walczak	Technician	OSU	NA	pwalczak@coas.oregonst ate.edu	03/27	05/06	USA
Peng Wang	Grad Student	LDEO	845-365- 8780	pengwang@ldeo.columb ia.edu	03/27	05/06	China
Jonathan Whitefield	Technician	BIOS	441-297- 1880 x706	jonathan.whitefield@bio s.edu	03/27	05/06	UK
Heather Whitney	Grad Student	Univ. of Wash.	206-543- 7521	hwhitney@u.washington. edu	03/27	05/06	USA

Ship's Crew

HEALY Sailing List for March 13, 2008.

Lindstrom, Tedric CAPT Bateman. Dale CDR Hammond, Mark LCDR Stewart, Jeffrey LCDR Angelo, James YNC Arakaki, Rebecca SK2 Ayers, Silas LT Bartlett, Charles MST1 Beasley, Corey HSCS Beckmann, Rachel LTJG Bender, Zachary ENS Berringer, Mike ETC Blas, Paul FN Brogan, John MKC Buford, Aimee BM2 Carr, Michael LTJG Carter, John FS2 Cole, Tyler SN Conroy, William BM3 Coombe, Jeffrey MK2 Dabe, Jeffrey IT2 Daem, Steven ET2 Davidson, Ash BM1 Davis, Jonathon ET2 Dull, Steven FS2 Dunning, Lara BM3 Elliott, Stephen LTJG Fernandez, Chelsey SN Finley, Nathan EM2 Ford, Angela SN

Galvez, Oscar R. LT Glenzer, William BM1 Gonzalez, Fernando MK2 Ghosn, Kathleen FN Hamilton, H. Mark FS3 Harbinsky, Mark ET2 Harris, Daniel SK1 Hurtado, Daniell EM1 Jacobs, Bryson ENS Johnston, Garrett SN Jones, Greg MKCS Kidd, Wayne BMC Kruger, Thomas MST3 Laisure, Jeremy SK2 Lambert, Douglas MK1 Lavman, Rich MST1 Liebrecht, Brian ET1 Loftis, Jon MK1 Lyons, Sean R CWO3 Manangan, Sorjen OSC Mandrie, Montarno DC3 Marsden, George DCC Mastrota, Leigh FN McNally, Terence SK1 McManus, Gene SN Meadowcroft, Brian LTJG Merten, James SN Miller, Valerie CWO2 Murphy, Nicholas MK2

Meyer, Heather MK2 Newton, Elizabeth LTJG Passalacqua, Joseph ETCM Pentecost, James DC1 Podhora, Curtis EMCM Quichocho, Robert MK1 Redd, Davion DC2 Rieg, Mark MSTC Rivera-Maldonado, Abner SKC Rocklage, Eric MST1 Rudibaugh, Kenneth MK1 Shaffer, Hans EM1 Siciak, Anthony MK3 Smith, Corey MK3 Smith, Josh LTJG Sullivan, Timothy BMCS Swanson, Shawn ET1 Thomas, Tasha ENS Thompson, Emily SN Tomlin, Mathew SN Travers, Cynthia LTJG Von Kauffmann, Daniel IT1 Wagner, Alexander FN Ward, John CWO3 Whiting, Allan, MK2 Williams, Tony FSCS Worrell, Kenneth EM1 Wright, Tiffany MST2 Yeckley, Andy BM3 Zitting, Arrene FS1

Science Components and their major sampling activities

Project	PIs	On-Ship Team	Sampling Activites
Sea Ice Algae, a Major Food Source for Herbivorous Plankton and Benthos in the Eastern Bering Sea	Rolf Gradinger, Katrin Iken, Bodil Bluhm	Rolf Gradinger, Katrin Iken, Sarah Manes, Rebecca Neumann	On-ice sampling, vertical nets, Van Veen grabs, CTD and water sampling, ice sampling by helicopter
Mesozooplankton-microbial food web interactions in a climatically changing sea ice environment	Evelyn Sherr, Barry Sherr, Carin Ashjian, Robert Campbell	Evelyn Sherr, Carin Ashjian, Robert Campbell Celia Ross, Donna Van Keuren	Vertical nets, water from CTD, Video Plankton Recorder
Role of Ice Melting in Providing Available Iron to the Surface Water of the Eastern Bering Sea Shelf	Jingfeng Wu	Ana Aguilar-Islas, Rob Rember	On-ice sampling, Fe samplers on CTD wire, helicopter based ice sampling
A Service Proposal to Examine Impacts of Sea-ice on The Hydrographic Structure and Nutrients Over the Eastern Bering Sea Shelf	Terry Whitledge and Rolf Sonnerup	Nancy Kachel, David Kachel, Carol Ladd, Calvin Mordy, Jeremy Malczyk, Dan Naber, Ned Cokelet, Dylan Righi, Jeremy Mathis, Rolf Sonnerup, Peter Proctor, David Strausz	CTD sampling, nutrient and chlorophyll analysis, oxygen analysis, underway sampling, on-ice sampling
The Trophic Role of Euphausiids in the eastern Bering Sea: Ecosystem Responses to Changing Sea-ice Conditions	Evelyn Lessard and Rodger Harvey	Evelyn Lessard, Rodger Harvey, Tracy Shaw, Megan Bernhardt, Rachel Pluethner	Bongo nets, CTD and water sampling, on ice sampling
Nitrogen supply for new production and its relation to climatic conditions on the eastern Bering Sea Shelf	Raymond Sambrotto and Daniel Sigman	Kris Swenson, Peng Wang	CTD and water sampling, on ice sampling and incubations, small plankton net, underway water sampling
Denitrification and global change in Bering Sea shelf sediments	Allan Devol and David Shull	Allan Devol, David Shull, Heather Whitney, Emily Davenport	Multicore benthic sampling, water sampling from CTD, on ice sampling
The Impact of Changes in Sea Ice Extent on Primary Production, Phytoplankton Community Structure, and Export in the eastern Bering Sea	Brad Moran and Mike Lomas	Pat Kelly, Jonathon Whitefield, John Casey	CTD and water sampling, on-ice sampling, floating sediment traps

Project	PIs	On-Ship Team	Sampling Activites
Benthic Ecosystem Response to	Jackie	Ed Davis,Boris	Van Veen Grabs, CTD and
Changing Ice Cover in the	Grebmeier and	Sirenko	water sampling
Bering Sea	Lee Cooper		
Epi-benthic survey	Jackie	Ed Davis, Boris	Benthic camera
	Grebmeier and	Sirenko	
	Lee Cooper		
North Pacific Pelagic Seabird	Kathy Kuletz	Kathy Kuletz, Liz	seabird and marine mammal
Observer Program	and David Irons	Labunski, Robert	observations while underway
		Ambrose	
Echolocation and estimation of	Alex De	Alex De Robertis	Multi-frequency acoustic
fish and krill	Robertis		detection and identificatin of
			krill and fish
Bering Ecosystem Study Data	Jim Moore,	Janet Scannell,	Event and data organization,
Management Support	Greg	John Allison	web serving, and archiving
	Stossmeister,		
	and Steve		
	Williams		
Assessment of mesozooplankton	Ken Coyle and	Alexei Pinchuk	CalVET nets and MOCNESS
population and biomass in the	Alexei Pinchuk		plankton net sampling system
eastern Bering Sea for spring			
and summer of 2008, 2009, and			
2010			

Project Names, Grants and Summaries

BEST: Sea Ice Algae, a Major Food Source for Herbivorous Plankton and Benthos in the Eastern Bering Sea (NSF ARC-0732767)

PIs: Rolf Gradinger, Bodil Bluhm, Katrin Iken (UAF)

Abundance, biomass, community composition and productivity of sea ice algae and phytoplankton. Salinity, temperature, and nutrient concentrations in ice cores and under-ice water, ice thickness, snow cover and light regime. Sedimenting material, stable isotope ratios (d¹³C, d¹⁵N) and algal community composition. On-ice sampling with ice augers, ice-tethered sub-ice sediment traps, plankton nets, benthic grabs. Occasional small boat and helicopter.

BEST: Mesozooplankton-microbial food web interactions in a climatically changing sea ice environment (NSF ARC-0732301, -0732362, -0732382)

PIs: Evelyn Sherr and Barry Sherr (OSU), Robert Campbell (URI), Carin Ashjian (WHOI) Mesozooplanton/microzooplankton grazing rates and grazing impacts; high resolution vertical and horizontal distribution of plankton from Video Plankton Recorder. Plankton nets, CTD, Video Plankton Recorder

BEST: Role of Ice Melting in Providing Available Iron to the Surface Water of the Eastern Bering Sea Shelf (NSF ARC-0612538)

PI: Jingfeng Wu (UAF) Iron concentration in sea ice and seawater. Trace metal clean sampling vanes on CTD wire. Sampling on ice.

BEST - A Service Proposal to Examine Impacts of Sea-ice on The Hydrographic Structure and Nutrients Over the Eastern Bering Sea Shelf (NSF ARC-0732430, -0732640)

PIs: Whitledge (UAF), Sonnerup (U. Washington), (Stabeno (NOAA)) Hydrography, nutrients, and chlorophyll. CTD sampling.

BEST: The Trophic Role of Euphausiids in the eastern Bering Sea: Ecosystem Responses to Changing Sea-ice Conditions (NSF ARC-0732389, -0732667)

PIs: Evelyn Lessard (UW), Rodger Harvey (U Maryland)

Age structure and diet history of important euphausids; euphausiid grazing rates and growth and trophic lipid markers. CTD, plankton nets, on ice sampling.

BEST: Nitrogen supply for new production and its relation to climatic conditions on the eastern Bering Sea Shelf. NSF ARC-0612427, -0612198

PIs: Raymond Sambrotto (LDEO-Columbia), Daniel Sigman (Princeton) New (nitrate) and regenerated nitrogen production; nitrogen isotope ratios. CTD.

BEST: Denitrification and global change in Bering Sea shelf sediments (NSF ARC-0612436, -0612380)

PIs: Allan Devol (U. Washington), David Shull (Western Washington U.) Profiles and fluxes of oxygen, nitrate, ammonium, phosphate and silicate in the sediment; measurement of ²²²Rn and ²¹⁰Pb. Benthic coring with multicore; AUV work under ice.

BEST: The Impact of Changes in Sea Ice Extent on Primary Production, Phytoplankton Community Structure, and Export in the eastern Bering Sea (NSF ARC-0732680, -0732359)

PIs: Brad Moran (URI), Mike Lomas (BBIOS)

Gross and net primary production using traditional ¹⁴C, ¹³C methods, and triple oxygen isotope technique and dissolved oxygen concentrations. Water column fluxes of particulates along the slope. Sinking rates of particulates. CTD and floating sediment traps.

BSIERP Project: Epi-benthic survey (NPRB project)

PIs: Jackie Grebmeier, Lee Cooper (U. Maryland) Distribution of epibenthic megafauna using benthic camera.

BEST: Benthic Ecosystem Response to Changing Ice Cover in the Bering Sea NSF ARC-0802290

PIs: Jackie Grebmeier and Lee Cooper Benthic infaunal community composition and biomass. Delta O-18 in seawater. CTD and benthic grabs.

North Pacific Pelagic Seabird Observer Program (NPRB Project 637)

PIs: Kathy Kuletz, David Irons (USFWS) Seabird abundance and composition relative to oceanography. Visual observations.

Echo Location and Estimation of Fish and Krill

PI: Alex De Robertis (NOAA) Multifrequency acoustics using fish finder.

Bering Ecosystem Study Data Management Support (NSF ARC-0808853)

PIs: Jim Moore, Greg Stossmeister, Steve Williams (NCAR/EOL)

Develop an on-line field catalog including project documentation and data browsing capabilities during the cruise. The catalog is continually updated throughout the cruise and is expected to contain: map plots of ship and station locations, ice observation summaries and photos, periodic chief scientist reports, event log, a station summary table, preliminary analyses by onboard scientists, and access to preliminary bottle and CTD data. After the cruise the field catalog will be moved to a more permanent location on EOL's website and sensitive data will be password protected to limit distribution to BEST-BSIERP PIs only. EOL will also provide archival services for all data collected during this cruise.

Assessment of Mesozooplankton Population and Biomass in the Eastern Bering Sea for Spring and Summer of 2008, 2009 and 2010.

PIs: Ken Coyle and Alexei Pinchuk (UAF).

Determine the mesozooplankton species composition, abundance, and biomass of the eastern Bering Sea during each of two cruises per year for three BEST field seasons using MOCNESS (in open water only) and CalVET plankton nets

Distribution Contents

Introduction to Data

The Healy data acquisition systems continuously log data from the instruments used during the cruise. This document describes:

- The structure and organization of the data on the distribution media.
- The format and contents of the data strings.
- Formulas for calculating values.
- Information about the specific instruments in use during the cruise.
- A log of acquisition problems and events during the cruise that may affect the data.
- Scanned calibration sheets for the instruments in use during the cruise.

The data is distributed on a series of DVD-ROMs (DVD-R) written in ISO9660 level-4 format. It is readable by virtually every computing platform.

IMPORTANT: Read the section, "Acquisition Problems and Events," for important information that may affect the processing of this data.

There are two logging system on the Healy. The ship (ESU) runs the SCS logging system and the LDEO support group runs the LDS logging system. This provides some redundancy in logging. The main purpose of LDS is to log and record data for archiving.

The Scientific Computer System (SCS) is a data acquisition, and display system designed for Oceanographic, Atmospheric, and Fisheries research applications. It acquires sensor data from shipboard oceanographic, atmospheric, and fisheries sensors and provides this information to scientists in real time via text and graphic displays, while simultaneously logging the data to disk for later analysis. SCS also performs quality checks by monitoring I/O, providing delta/range checks and plotting data after acquisition.

The LDEO Data System is somewhat distant relative of the logging code that has grown through more than a decade of use at LDEO. It is a significant revision of the current (2004) code used on the R/V Ewing (the Ewing Data System) and is architecturally much different. Because of this, LDS is still growing and at the moment (2008) this is the only operational implementation.

Data

Data are received via RS-232 serial connections. In SCS a time tag is added at the beginning of each line of data in the form,

mm/dd/yyyy,hh:mm:ss.sss,[data stream from instrument] where:

Format	Value used
mm	2 digit month of the year
dd	2 digit ay of the year
уууу	4 digit year
hh	2 digit hour of the day
mm	2 digit minute
SS.SSS	seconds

An example string from the Seabeam Centerbeam file is:

04/13/2007,06:49:20.920,\$SBCTR,2007,4,13,06:49:09.437,57.158792,-165.664322,69.15,60*00 All times are reported in UTC. Each file type has it's own NEMA string name (\$SBCTR as an example). The delimiters that separate fields in the raw data files are commas. Care should be taken when reprocessing the data that the field's separations are clearly understood.

Distribution DVD Contents at a Glance

Most data files are gzipped before they are written to the DVD to save space on the DVD.

There are two types/styles of DVDs created for the data for the cruise

The first DVD in the data set contains a summary of all of the data, descriptions and smaller data sets. It has a 1 minute averaged file of all the data collected under way. It also has ASCII files of many of the sensors from which data are collected. These sensors are ones that do not create huge amounts of data. There is also a directory called Meta_Data, which has descriptions of the data and the formats used. This DVD is created at the end of the cruise.

The second and subsequent DVDs contain data from sensors that create large amounts of data. These DVDs are created during the cruise as the data collected covers enough disk space to fill a DVD. By making these DVDs during the cruise, the time to create the full data set at the end of the cruise is shortened. Some data sets in this category cover several DVDs. Are must be taken to be sure all of the data of a certain type are recovered when you down load data form these DVDs to your own computers.

Appendix "Example list of the DVD directories" below for an example of the layout of each of the DVDs created.

The DVD will be name for the cruise and the number of the DVD in the series created for the cruise. S an example the second DVD for HLY0802 will be named *hly0802_media-vol02*. The root directory on the DVD will be *media-vol2*. This naming convention will let your copy all of the DVDs to a directory and keep each DVD unique but in a named sequence for accessing.

In the main directory is a file that lists all of the files on the DVD. This file is called:

media-volxx.md5: This file is a master list of every file on the DVD the file's checksum. The x is the DVD volume number.

Directories on the first DVD:	
1_Minute_Averaged_Data:	This directory contains all of the under way data averaged over a 1 minute window in time.
SCS_Data:	This directory contains serial data collected by the SCS version 3.3b data collection system in different directories. Directory names are labeled by the instrument name and string type of the data collected. A description of the data contained in this directory is below.
LDS_Data:	This directory contains serial data collected by the Lamont LDS data collection system in different directories. Directory names are labeled by the instrument name and string type of the data collected. A description of the data contained in this directory is below.
Raw:	This directory contains raw data as recorded by individual instruments and put into different directories. Directory names are labeled by the instrument name and string type of the data collected. A description of the data contained in this directory is below.
Meta_data:	This directory contains documents useful in the post analysis of the data on this DVD media set. A description of these directories is below.

./1_Minute_Averaged_Data:

HLY0801_distance.csv.gz	Distance along track from port.
HLY0801 Averaged.csv.gz	All the Under way data averaged for 1 minute.
Shapefile	All of the 1 minute under way data averaged at 1 minute spacing in shp,
	shx and dbf GIS files.

./SCS_Data:

/aft_a_frame	Wire tension, wire out, and wire speed for the Aft A frame sheaves.
/air_temp_t	derived from data from files in the rmyoung air directory
/ashtech attitude	Attitude in NMEA format from the Ashtech ADU5 GPS receiver
/ashtech_gga	Position data in NMEA GGA format from the Ashtech ADU5 GPS receiver
/ashtech_gll	Position data in NMEA GLL format from the Ashtech ADU5 GPS receiver
/ashtech_hdt	Heading data in NMEA HDT format from the Ashtech ADU5 GPS receiver
/dew point f	Dew point temperature derived from air temp
/flomet_a	Flow meter data just upstream of the A TSG and Fluorometer.
/flomet_b	Flow meter data just upstream of the B TSG and Fluorometer.
/fluro_a	Flurometer for A TSG sensor.
/fluro_b	Flurometer for B TSG sensor.
/glonass_gga	Position data in NMEA GGA format from the GLONASS GPS receiver.
/glonass_gll	Position data in NMEA GLL format from the GLONASS GPS receiver.
/gyro_mk27	Heading data in NMEA HDT format from the Sperry MK27gyro compass
/gyro_mk39	Heading data in NMEA HDT format from the Sperry MK39 gyro compass

/ibs_waypoints /isus	Waypoints from the Healy's Integrated Bridge System ISUS Nitrate Sensor small file
/isus3v	ISUS Nitrate Sensor 3V full file
/knudsen	Depth data in a proprietary PKEL format received from Knudsen 320 B/R
	serial output
/met3a_sen	Meterology data from the top of the Jackstaff
/oxygen a	Oxygen values from A TSG
/oxygen_h	Oxygen values from A TSG
/pcode_aft_gga	Position data in NMEA GGA format from the Trimble Centurion receiver
	located in the Computer lab
/pcode_aft_gll	Position data in NMEA GLL format from the Trimble Centurion receiver located in the Computer lab
/pcode_aft_vtg	Course and speed over ground in NMEA VTG format from the Trimble Centurion receiver located in the Computer lab
/pcode_aft_zda	Time and date data in the NMEA ZDA format. Data retrieved from the Trimble Centurion receiver located in the Computer lab
/ncode bridge gga	Position data in NMEA GGA format from the Trimble GPS receiver
,peode_one8e_88a	located on the bridge
/pcode_bridge_gll	Position data in NMEA GLL format from the Trimble GPS receiver located on the bridge
/pcode_bridge_vtg	Course and speed over ground data in NMEA VTG format from the
	I rimble GPS receiver located on the bridge.
/posmv_gga	Position data in NMEA GGA format from the POS/MV
/posmv_gst	Pseudorange error statistics in NMEA GS1 format from the POS/MV
/posmv_hdt	Heading data in NMEA HD1 format from the POS/MV
/posmv_pashr	Roll, pitch and heave from POS MV inertial navigation system.
/posmv_vtg	Course and speed over ground in NMEA VIG format from the POS/MV
/posmv_zda	Time and date data in NMEA ZDA format from the POS/MV
/pressure_sen	Chem Lab which measures header pressure in PSI.
/rmyoung_air	Temperature, humidity, air pressure data in NMEA XDR format from the RM Young meteorological system
/rmyportwind	Wind speed and direction data in NMEA WMV format from the RM Young weather vane on the port side of the Healy
/rmystbdwind	Wind speed and direction data in NMEA WMV format from the RM Young weather vane on the starboard side of the Healy.
/samos_data	Meterology data for SAMOS.
/sbd_a_frame	Wire tension, wire out, and wire speed for the starboard A frame sheaves.
/seabeam_center	Center depth data from the Seabeam 2112
/solar_radiometers	Solar Radiometer data for SW and IW.
/sperry_speedlog	ground/water speed data from the Sperry Speed Log
/surface_par	Photosynthetic Active Radiation volts and Microeinstens/m2 se from the surface par sensor
/sv2000	Sound Velocity data from the SV2000 sound velocimeter located in the ADCP BB150 sonar well
/true wind port	True wind speed data derived from gyro data and rmyportwind
/true wind stbd	True wind speed data derived from gyro data and rmystbdwind
/tsg_a	Thermosalinograph and fluorometer data from the A TSG instruments in the Bio/Chem Lab.

/tsg_b	Thermosalinograph and fluorometer data from the B TSG the instruments
	in the Bio/Chem Lab.
/winch_data	Line out and speed data from the winch system.
/wind_sen_a	Wind data from the Jack Staff.
/wind_sen_b	Wind data from the Yard.

./Extra files in the directory SCS_Data:

ACQLOG.LOG	Contains the data as to what occurred with SCS data. It shows when data
	collection was started and stopped.
Incidents_YYYYMMDD-TTTT	TT.DTM Contains any incident data, which were triggered in SCS.
sensor_YYYYMMDD-TTTTTT	.scf Contains the configuration file for data collection as configured by
	SCS.

./LDS_Data:

/adu5 Contains the data from	n the ADU5 GPS.
/aggps Contains the data from	n the AG GPS.
/bgm221 Contains the data from	n the BGM221 Gravimeter.
/bgm222 Contains the data from	n the BGM222 Gravimeter.
/events Contains the logs of e	vent for different systems.
/mk27 Contains the data from	n the MK27 Gyro.
/mk30 Contains the data from	n the MK30 Gyro.
/posatt Contains the attitude of	lata from the POSMV GPS.
/posnav Contains the navigation	on data from the POSMV GPS.
/posreform2sb Contains the navigation	on data from the POSMV GPS reformatted for the
SeaBeam.	
/sbctr Contains the center be	eam data from the SeaBeam.
/sbsv Contains the surface s	ound velocity data for the SeaBeam.
/tsg_met Contains the all data f	rom SIO TSG and Met sensors.

./Raw:

/ctd	CTD data in directories by Cast number.
/xbt	Expendable Bathythermograph data. (not on HLY0802)

./Meta_Data:

/elog	Contains the technician's narrative of important events, which occurred
	both to the network and to individual sensors.
/Bridge_Logs	
DDMMMYY.doc	The "smooth log" containing events recorded by the bridge watch.
DDMMMYYWX.xls	Weather log recorded by the watch.
DDMMMYYNAV.xls	Navigation logs recorded by the watch.
/WHOisWHO	Contains files of Science Party Members and addresses.
	-

./ice_observations:

Directories of the Ice Observations taken during the cruise.

First DVD Contents by directory:

SCS Data: aft a frame air temp f ashtech attitude ashtech gga ashtech gll ashtech hdt dew point f flomet a flomet b fluro a fluro b glonass gga glonass gll gyro mk27 gyro mk39 ibs waypoints isus isus3v knudsen met3a sen oxygen a oxygen b pcode aft gga pcode aft gll pcode aft vtg pcode aft zda pcode bridge gga pcode bridge gll

pcode bridge vtg posmv gga posmv gst posmv hdt posmv pashr posmv vtg posmv zda pressure sen rmyoung air rmyportwind rmystbdwind samos data seabeam center solar radiometers sperry speedlog stbd a frame surface par surface temp sv2000 true wind port true wind stbd tsg a tsg b wind sen a wind sen b Raw: adcp150 adcp75 ctd

knudsenraw xbt **Images:** Satellite Images Satellite Images/dmsp Satellite Images/hrpt LDS Data: AloftConnCam FantailCam adu5 aggps bgm221 bgm222 events mk27 mk30 posatt posnav posreform2sb sbctr sbsv seabeam tsg met **1 Minute Averaged Data:** Shapefile Meta Data: Bridge Logs Elog **WHOisWHO**

Directories on the second and subsequent DVDs:

LDS_Data:	This directory contains serial data collected by the Lamont LDS data collection system in different directories. Directory names are labeled by the instrument name and string type of the data collected. DVDs contain as much data for a given time interval that can fit on the DVD. Then, a new DVD is started. A description of the data contained in this directory is below.
Raw:	This directory contains raw data as recorded by individual instruments and put into different directories. Directory names are labeled by the instrument name and string type of the data collected. DVDs contain as much data for a given time interval that can fit on the DVD. Then, a new DVD is started. A description of the data contained in this directory is below.
Satellite_Images:	This directory contains images from Satellites collected over the cruise They are in directories named for their content and further broken into directories named by YearMonthDay (YYYYMMDD).
./LDS_Data:	
/AloftConCam	This directory contains picture files from Aloft Con separated by directories named by Year and Day of Year (YYYYJJJ). The files are

rolled over at midnight GMT. Some directories are empty as the DVDs

This directory contains picture files from Aft Con separated by directories

named by Year and Day of Year (YYYYJJJ). The files are rolled over at midnight GMT. Some directories are empty as the DVDs are created.

are created. The picture files are in JPEG format.

The picture files are in JPEG format.

Contains the data from the SeaBeam.

/FantailCam

/seabeam

./Raw:

/adcp75
/adcp150
/knudsenraw

75 KHz ADCP data 150 Khz ADCP data Knudsen 320B/R data

./Satellite_Images:

/dmsp /hrpt

Second DVD Contents by directory:

An example list of subdirectories and files here may be different from the actual DVD.

./LDS Data:	2008_089_2354_HF_000.sgy.gz
./AloftConnCam	2008 089 2354 LF 000.sgy.gz
./ 2008087	
2008-087-174500.jpg	./knudsenraw
2008-087-175000.jpg	2008 089 2354 000.kea.gz
	2008_089_2354_000.keb.gz
./ 2008096	2008_089_2354_HF_000.sgy.gz
	2008_089_2354_LF_000.sgy.gz
2008-096-235000.jpg	
2008-096-235500.jpg	./Satellite Images:
./FantailCam	./dmsp
./2008087	./20080327
2008-087-174500.jpg	200803270014.f-12.1km vis.jpeg
2008-087-175000.jpg	200803270014.f-12.4km ir.jpeg
./2008096	
	./200700817
2008-097-000000.jpg	
2008-097-000500.jpg	200804060618.f-16.4km ir.jpeg
./seabeam	200804060618.f-16.4km vis.jpeg
sb20080892300.mb41.gz	./hrpt
sb20080900000.mb41.gz	./20080326
	200803260048.noaa-18.1km ir ch5.jpeg
sb20080971200.mb41.gz	200803260048.noaa-18.1km vis ch1.jpeg
sb20080971300.mb41.gz	
Raw:	./20070817
./adcp150 NOT done on HLY0802	
./adcp75	200804061429.noaa-18.4km vis ch1.jpeg
HLY0802004 000000.ENR.gz	200804061429.noaa-18.4km vis ch2.jpeg
HLY0802004 000000.ENS.gz	
Merged Data	

LDEO Averaged One Minute Data File

The data are summarized into an averaged one (1) minute data file by the LDEO technician. This file takes the average value centered around the minute, (30 seconds either side of the whole minute). The data are the raw values as they are logged. There has been no quality control done on these files. Those wishing more accurate and quality controlled values should process the data in the directories described below in the document.

HLY0801_track.csv 6944,2008/03/18 16:08,62.7178957,-174.0047168,213.6,10.1,216.3,71.5,-1.731,-1.275,26.5602,33.093,0.699,0.070,0.000,0.014,1.704,0.170,0.589,0.059,2.93,3.30,0.16,278.38,257.3 6,257.33,3.31,-15.87,94.39,1017.99,0.00,276.49,1.76,1.86,5.20,225.43,1.87,8.82,4.44,7.841,-1.275,0.000,,0.000,0.000,2,-276,-7,0,1,-182,-1,0 6945,2008/03/18 16:09,62.7155853,-174.0082005,204.9,10.3,204.6,71.0,-1.731,-1.276,26.5577,33.091,0.625,0.062,0.000,0.014,1.650,0.165,0.570,0.057,3.00,3.40,0.64,277.30,257.3

9,257.45,3.31,-15.88,94.30,1018.03,0.00,284.64,2.73,2.19,4.86,235.55,2.71,2.45,3.64,7.842,-1.276,0.000,,0.000,0.000,2,-275,-7,0,1,-183,-1,0

6946,2008/03/18 16:10,62.7128363,-174.0101985,196.9,10.6,197.2,67.1,-1.726,-

1.278, 26.5468, 33.078, 0.624, 0.062, 0.000, 0.014, 1.632, 0.163, 0.555, 0.055, 2.94, 3.30, 1.20, 278.48, 257.4, 5, 257.44, 3.31, -15.89, 94.21, 1018.02, 0.00, 274.01, 2.81, 349.11, 5.50, 245.37, 3.28, 343.65, 3.96, 7.812, -1.278, 0.000, 0.000, 2, -274, -7, 0, 1, -185, -1, 0

Field	DATA	Example	UNITS
01	ID	6944	sample count
02	date	2008/03/18	date & time UTC (year/month/day hour:minute)
		16:08	
03	lat	62.7178957	POSMV Latitude (decimal degrees)
04	lon	-174.0047168	POSMV Longitude (decimal degrees)
05	cog	213.6	POSMV Course Over Ground (angular distance from 0
			(North) clockwise through 360, 1 minute average)
06	sog	10.1	POSMV Speed Over Ground (Knots, 1 minute average
07	heading	216.3	POSMV ship heading(angular distance from 0 (North)
			clockwise through 360, 1 minute average)
08	depth	71.5	Seabeam centerbeam depth(meters, 1 minute average)
09	SST	-1.731	SBE3s RemoteTemperature, Sea Chest intake (Celsius, 1
			minute average)
10	TSG_InTemp	-1.275	SBE45 internal temperature (Celsius, 1 minute average)
11	TSG_Cond	26.5602	SBE45 Water Conductivity (millisiemens/centimeter, 1
			minute average)
12	TSG_Sal	33.093	SBE45 Water Salinity (PSU, 1 minute average)
13	SCF-FL	0.699	SCF Fluorometer (Ug/l, 1 minute average)
14	SCF-FL-V	0.070	SCF Fluorometer (Volts, 1 minute average)
15	SCF-Turb	0.000	SCF Turbidity (NTU, 1 minute average)
16	SCF-Turb-V	0.014	SCF Turbidity (Volts, 1 minute average)
17	SCUFA-FL	1.704	SCUFA Fluorometer (Ug/l, 1 minute average)
18	SCUFA-FL-V	0.170	SCUFA Fluorometer (Volts, 1 minute average)
19	SCUFA-Turb	0.589	SCUFA Turbidity (NTU, 1 minute average)
20	SCUFA-Turb-V	0.059	SCUFA Turbidity (Volts, 1 minute average)
21	tsg_flow_A	2.93	Flowmeter in-line with PSTSGA, PSOXA, PSFLA
			(LitersPerMinute, 1 minute average)
22	tsg_flow_B	3.30	Flowmeter in-line with PSFLB (LitersPerMinute, 1 minute
			average)
23	SWR	0.16	Short Wave Radiation (W/M ² , 1 minute average)
24	LWR	278.38	Long Wave Radiation (W/M ² , 1 minute average)
25	LWR_Dome_T	257.36	LWD Dome Temperature (Deg K, 1 minute average)
26	LWR_Body_T	257.33	LWD Body Temperature (Deg K, 1 minute average)
27	PAR	3.31	Surface PAR (uE/Sec/M^2, 1 minute average)
28	MET3A_Temp	-15.87	MET3A Air Temperature (Deg C, 1 minute average)
29	MET3A_RH	94.39	MET3A Relative Humidity (%, 1 minute average)
30	MET3A_Baro	1017.99	MET3A Barometric Pressure (millibars, 1 minute average)
31	MET3A_Precip	0.00	MET3A Precipitation (mm, 1 minute average)
32	JS_WndDirR	276.49	Jackstaff Relative wind direction (deg, 1 minute average)
33	JS_WndSpdR	1.76	Jackstaff Relative wind speed (m/s, 1 minute average)
34	JS_WndDirT	1.86	Jackstaff True wind direction (deg, 1 minute average)

Field	DATA	Example	UNITS
35	JS_WndSpdT	5.20	Jackstaff True wind speed (m/s, 1 minute average)
36	MM_WndDirR	225.43	Main Mast Relative wind direction (deg, 1 minute
			average)
37	MM_WndSpdR	1.87	Main Mast Relative wind speed (m/s, 1 minute average)
38	MM_WndDirT	8.82	Main Mast True wind direction (deg, 1 minute average)
39	MM_WndSpdT	4.44	Main Mast True wind speed (m/s, 1 minute average)
40	SBE_Oxy	7.841	SBE-43 Oxygen(ml/l, 1 minute average)
41	SBE Oxy T	-1.275	SBE-43 Oxygen Temperature(Deg C, 1 minute average)
42	Optode Oxy	0.000	Optode Oxygen(ml/l, 1 minute average)
43	Optode Oxy T		Optode Oxygen Temperature(Deg C, 1 minute average)
44	Isus 1	0.000	Isus Aux 1(Volts, 1 minute average)
45	Isus 2	0.000	Isus Aux 2(Volts, 1 minute average)
46	WinchAft	2	Aft A-Frame Winch number
47	TensionAft	-276	Aft A-Frame Winch Wire tension(Pounds, 1 minute
			average)
48	WireOutAft	-7	Aft A-Frame Winch Wire out (Meters, 1 minute average)
49	SpeedAft	0	Aft A-Frame Winch Wire speed(Meters/minute, 1 minute
			average)
50	WinchSbd	1	Starboard A-Frame Winch number
51	TensionSbd	-182	Starboard A-Frame Winch Wire tension(Pounds, 1 minute
			average)
52	WireOutSbd	-1	Starboard A-Frame Winch Wire out (Meters, 1 minute
			average)
53	SpeedSbd	0	Starboard A-Frame Winch Wire speed(Meters/minute, 1
			minute average)

File Formats of Data Collected Underway

The formats of the Under way data files that were collected on this cruise are in a separate document named HLY0802_Sensors. This is now a separate document due to it's large size. The file HLY0802_Sensors.htm is in the Meta_Data on the first DVD. This file is also in a PDF file. To use this html file you will need to have the directory HLY0802_Sensors_files in the same directory as the html file.

Also in the Meta_Data directory are some PDF files for data that was collected but not part of the normal science routine.

APPENDIX:

Acquisition Problems and Events

This table summarizes problems with acquisition noted during this cruise including instrument failures, data acquisition system failures and any other factor affecting this data set. Times are reported in GMT (UTC, Z). You should look for more complete details for these events in the ELOG accounts.

Date	Time (UTC)	Event
03/27/08	17:45	Start LDS for HLY0804
03/29/08	20:04	New SVP for Seabeam from ARGO Float
03/29/08	20:53	Start SCS ACQ, start SAMOS
03/29/08	23:13	Replaced antenna 3 for Ashtech 3DGPS
03/29/08	23:51	SeaBeam into Survey mode
03/29/08	23:53	Knudsen started with 3.5Khz
03/29/08	23:59	ADCP75 started using trigger from SeaBeam
03/30/08	01:21	SeaBeam using external SSV
03/30/08	01:00	Science Seawater and underway sensors online
03/30/08	02:47	SRD-500 turned off. Transducer out of the water
03/30/08	09:13	Change ADCP 75 trigger mode to accept Alex's new time scheme
03/30/08	09:20	ADCP 75 Gyro Heading frozen
03/30/08	12:18	New SVP from Argo Buoy R4900799_038 for Seabeam
03/30/08	12:26	Gyro-synchro converter reset for ADCP Gyro
03/31/08	02:21	Flow Meter A was clogged 2112 – 0210Z
03/31/08	03:12	New SVP from CTD 1
03/31/08	03:35	Knudsen to pinger mode, not seeing anything
03/31/08	06:10	Knudsens swapped, now pinger mode is working
03/31/08	07:30	Knudsens to 3.5 mode, not working

Date	Time (UTC)	Event
03/31/08	08:09	Knudsens shutdown to swap Knudsens
03/31/08	08:54	Knudsens still not seeing bottom with original unit
03/31/08	16:18	Freed Flowmeter B from Blockage
03/31/08	18:23	SeaBeam SSV to Manual
03/31/08	18:31	Flowmeter A blockage cleared, blocked 1702-1821Z
03/31/08	19:35	SeaBeam SSV to External
03/31/08	21:35	Knudsen shutdown for repairs
03/31/08	22:32	Knudsen backup, 3.5 ok 12Khz not looking good
04/01/08	03:42	New SVP from CTD 4, deep from CTD 1
04/01/08	12:41	New SVP from CTD 5
04/02/08	01:15	New SVP from CTD 10, deep from CTD 1
04/02/08	18:29	Knudsen down for repairs
04/02/08	19:55	Knudsen backup, very weak on both 3.5 and 12Khz
04/02/08	21:08	SeaBeam SSV to Manual
04/02/08	21:12	Winch display problems, using lesser of 2 evils – Totco
04/02/08	21:20	SeaBeam SSV back to external
04/02/08	23:59	Knudsen backup and working, problem solved
04/03/08	04:45	TSG and other sensors getting clogged by ice
04/03/08	05:29	TSG and other sensors ice clog gone
04/03/08	07:18	SeaBeam SSV to Manual
04/03/08	09:51	Sea water flow clogged again
04/03/08	10:20	Sea water flow back, sensors working
04/03/08	19:05	Sea water flow clogged for station
04/03/08	21:24	SCS ACQ stop and restart to add ISUS data
04/03/08	22:05	Sea water flow clogged again
04/04/08	01:49	Sea water flow back, sensors working
04/04/08	02:05	Sea water flow clogged again
04/04/08	19:39	Test with Gyros and ADU5, will be on and off
04/04/08	23:29	Test with Gyros and ADU5 done
04/05/08	04:46	SCS ACQ stop and restart
04/05/08	13:48	ADCP 75 Gyro heading stuck
04/05/08	17:25	Gyro-synchro reset, ADCP 75 Gyro heading back

Date	Time (UTC)	Event			
04/05/08	22:35	Sea water has been clogged on and off for the last few hours			
04/05/08	22:58	All Sonars blocked by ice at this station			
04/06/08	01:48	All Sonars working again			
04/06/08	19:32	All Sonars blocked by ice at this station			
04/06/08	19:34	New 8mm tape (#2) for SeaBeam, previous was ejected some time			
04/07/08	00:00	Only Knudsen and Seabeam are blocked by ice			
04/07/08	04:05	Sonars all see bottom now			
04/07/08	22:35	new SVP from CTD 44, used ARGO R4901067_15 & CTD 1 for deep			
04/08/08	07:34	new SVP from CTD 45, used ARGO R4901067_15 & CTD 1 for deep			
04/08/08	09:56	new SVP from CTD 46, used ARGO R4901067_15 & CTD 1 for deep			
04/08/08	16:54	ADU5 down for tests with Gyros			
04/08/08	18:04	ADU5 back up			
04/08/08	18:42	New SVP from CTD 49, used ARGO R4901067_15 & CTD 1 for deep			
04/08/08	18:56	ADU5 and Gyros down for maintenance			
04/08/08	22:00	ADU5 starts putting out garbage			
04/08/08	23:00	SIO MET feed to SCS down for the next 7 minutes			
04/09/08	01:23	SCS stopped and started to create a Fahrenheit Temperature file			
04/09/08	08:14	Put ADU5 and Gyros back to normal			
04/09/08	09:02	New SVP from CTD 51, used ARGO R4901067_15 & CTD 1 for deep			
04/09/08	14:35	New SVP from CTD 53, used ARGO R4901067_15 & CTD 1 for deep			
04/09/08	18:43	Knudesn depth limit caused no data collected last 20 minutes			
04/09/08	22:16	MK39 Gyro shifted to inertial mode for testing			
04/10/08	09:30	ADCP75 Gyro heading stuck			
04/10/08	09:35	Knudesn depth limit caused no data collected since 0400Z			
04/10/08	10:56	Gyro-synchro converter reset, ADCP 75 heading back			
04/10/08	18:42	Note SeaBeam 8mm tape ejected, won't take a tape, will not use tapes any more			
04/10/08	19:16	reload SVP hly0801_01001.svp SeaBeam			
04/10/08	20:16	ADU5 down to work on MK39 Gyro			
04/10/08	23:13	ADU5 back running again			
04/10/08	23:16	MK39 on inertial with input GPS switch from Northstar to ADU5			
04/11/08	07:51	New SVP from CTD 56, used CTD 54 for deep			
04/11/08	09:47	ADCP75 Gyro heading stuck			

Date	Time (UTC)	Event			
04/11/08	10:32	New SVP from CTD 57, used CTD 54 for deep			
04/11/08	14:51	Gyro-synchro converter reset, ADCP 75 heading back			
04/11/08	15:54	New SVP from CTD 58, used SVP based on CTD 57 for deep			
04/11/08	21:06	Note large offset in SCS time stamp and Knudsen KEL data, Been there for years!			
04/11/08	23:07	Power outage SB2112 needed to restarted with older MO DISC			
04/12/08	00:26	SeaBeam running with proper pitch and roll biases			
04/12/08	00:32	SeaBeam and centerbeam LDS loggers stopped and restarted to log data			
04/21/08	06:53	SeaBeam SSV set to Manual of 1437			
04/13/08	20:44	ISUS Nitrate offline for 3 minutes to clean			
04/13/08	23:43	New SVP from CTD 74, used SVP based on CTD 62 for deep			
04/14/08	08:13	manually sync Knudsen clock to the Knudsen PC			
04/14/08	13:11	Lost some data due to wrong data window on Knudsen, reset			
04/16/08	09:11	new SVP from CTD 82, used ARGO R4900597_102 for deep			
04/16/08	19:18	Stop and start Knudsen			
04/17/08	05:11	ADU5 reset since no data output for last few hours			
04/17/08	06:54	new SVP from CTD 89, used ARGO R4900806_040 and Levitus for deep			
04/17/08	14:08	Knudsen depth window set wrong since 1100Z			
04/17/08	17:53	ADCP lost Gyro heading			
4/17/08	17:55	ADU5 GPS is all over the place. Needs to be reset?			
04/17/08	18:18	ADCP Gyro heading working again			
04/17/08	19:15	new SVP from CTD 90, used ARGO R4900806_040 CTD 46			
04/17/08	22:50	new SVP from CTD 91, used ARGO R4900806_046 and Levitus for deep			
04/18/08	13:29	new SVP from CTD 93, used ARGO R4900806_046, CTD91, and Levitus for deep			
04/18/08	23:53	New Sensor for TSG added. Pressure sensor			
04/19/08	21:51	new SVP from CTD103			
04/19/08	22:55	Stop and restart SCS to add Pressure sensor			
04/20/08	00:52	new SVP from CTD104			
04/20/08	03:28	new SVP from CTD105			
04/20/08	05:50	Speed log back in the water			
04/20/08	05:52	Gyro MK 39 using speed log. Out of damping mode			
04/20/08	08:06	Flouorometer files and directories in SCS renamed in SCS restart.			
04/20/08	08:07	new SVP from CTD106			

Date	Time (UTC)	Event			
04/20/08	11:20	new SVP from CTD105			
04/20/08	13:06	new SVP from CTD104			
04/20/08	16:38	Speed log back in the water around 15:15Z			
04/21/08	00:45	SCS stopped and restarted to rename Fluorometer files back to what they were			
04/21/08	06:42	new SVP from CTD 107, used ARGO R4900597_102 for deep			
04/21/08	15:56	new SVP from CTD 110, used ARGO R4900597_102 for deep			
04/22/08	00:38	New SVP changing the last SVP at the top			
04/22/08	01:16	New SVP used ARGO R4900597_102			
04/22/08	03:20	used SVP from 00:38 again			
04/22/08	03:54	SVP from ARGO R4900597_102 again			
04/22/08	12:02	New SVP used CTD 112			
04/22/08	13:27	Put sub bottom into pinger mode			
04/22/08	13:43	SeaBeam to Idle Mode			
04/22/08	15:40	SeaBeam to Survey Mode			
04/22/08	15:40	Sub Bottom recording data again			
04/22/08	15:41	There was no data for ADCP while SeaBeam in Idle			
04/22/08	17:25	Put sub bottom into pinger mode			
04/22/08	18:29	SeaBeam to Idle Mode			
04/22/08	18:59	SeaBeam to Survey Mode ADCP and fish finder getting data again			
04/22/08	18:59	Sub Bottom recording data again			
04/22/08	19:11	MK39 Gyro set to damp manual mode			
04/22/08	19:12	speed log out of the water			
04/22/08	19:58	New SVP from CTD 113 with CTD 112 for deep			
04/23/08	02:43	New SVP from CTD 114			
04/22/08	12:50	New SVP from CTD 116 with CTD 114 for deep			
04/23/08	13:07	note ADCP gyro heading stuck			
04/23/08	13:29	ADCP gyro heading working			
04/23/08	21:13	New SVP from CTD 120 with CTD 114 for deep			
04/23/08	23:36	New SVP from CTD 121 with CTD 114 for deep			
04/24/08	01:05	Adjusted angle of Aloft Con camera. Tilted for last few days			
04/24/08	01:26	New SVP from CTD 122 with CTD 114 for deep			
04/24/08	08:35	New SVP from CTD 125 with Levitus for deep			

Date	Time (UTC)	Event			
04/24/08	12:16	New SVP from CTD 126 with Levitus for deep			
04/24/08	15:35	New SVP from CTD 127 with Levitus for deep			
04/24/08	17:35	ADCP gyro Heading stuck			
04/24/08	18:06	ADCP gyro Heading working			
04/24/08	19:28	New SVP from CTD 128 with Levitus for deep			
04/24/08	21:23	Reset MK39 Gyro deep			
04/25/08	03:10	Switch MK39 GPS input from ADU5 to Northstar			
04/25/08	03:45	Taking MK39 Gyro down intermittently for testing			
04/25/08	03:46	Taking ADU5 down to switch antennas			
04/25/08	05:47	New SVP from CTD 132			
04/25/08	06:46	ADCP gyro Heading stuck			
04/25/08	07:43	Replace ADU5 with new one from stock			
04/25/08	14:28	ADCP gyro still Heading stuck			
04/25/08	16:58	New SVP from CTD 136 with CTD 112 for deep			
04/25/08	19:10	New SVP from CTD 126 and ARGO float R4900597_103 for deep			
04/25/08	22:50	New SVP from CTD 138 with CTD 112 for deep			
04/25/08	22:55	TSG, Fluorometer and Oxygen down for cleaning			
04/25/08	23:04	SeaBeam SSV to Manual mode with 1446			
04/25/08	23:22	ADCP gyro still Heading stuck			
04/25/08	23:22	ADCP gyro Heading Working			
04/26/08	00:25	TSG, Fluorometer and Oxygen up after cleaning			
04/26/08	00:28	SeaBeam SSV back to external			
04/26/08	02:02	New SVP from CTD 139 with CTD 138 for deep			
04/26/08	03:54	New SVP from CTD 140 with CTD 138 for deep			
04/26/08	04:40	MK39 out of manual damp mode			
04/26/08	05:13	New SVP from CTD 141 with CTD 138 for deep			
04/26/08	07:26	New SVP from CTD 142			
04/26/08	08:12	ADCP gyro Heading stuck			
04/26/08	12:44	New SVP from CTD 144			
04/26/08	16:20	ADCP gyro Heading Working			
04/26/08	18:09	New SVP from CTD 146 and ARGO float R4900597_103 for deep			
04/26/08	21:15	Reload SVP from CTD 139 with CTD 138 for deep			

Date	Time (UTC)	Event			
04/26/08	22:14	Reload SVP from CTD 138 with CTD 112 for deep			
04/27/08	01:34	New SVP from CTD 126 with CTD 147 for deep			
04/27/08	03:43	New SVP from CTD 148 with CTD 147 for deep			
04/27/08	09:01	New SVP from CTD 150 with CTD 147 for deep			
04/27/08	20:28	ADU5 going down for trouble shooting			
04/27/08	20:36	New SVP from CTD 155			
04/27/08	22:19	ADU5 back up			
04/28/08	16:19	It looks like at 14:30Z science seawater was turned off, no flow			
04/28/08	19:09	Seawater flowing again at about 18:40Z after change faucets			
04/28/08	22:04	All Sonars blocked starting at about 21:30Z			
04/29/08	05:03	All Sonars getting data again after we left station			
04/29/08	05:57	Sea water blocked again about 05:45Z			
04/29/08	12:41	New SVP from CTD 159 and Levitus			
04/30/08	01:26	At 16:20L gyro removed from ADCP for tests, reconnected at about 17:05L			
04/30/08	07:48	ADCP Gyro heading frozen			
04/30/08	10:33	ADCP Gyro working, gyro syncro converter reset at 10:30Z			
04/30/08	16:36	All Sonars blocked, at ice station			
04/30/08	16:48	Stop and start ADCP VMDas, to close files for rsynching			
05/01/08	01:10	All Sonars getting data again after we left station			
05/01/08	01:57	stop and start SCS, some data files not being written			
05/02/08	01:39	SIOMET computer rebooted somehow, lost 29 minutes of SIOMET data			
05/02/08	11:01	New SVP hly0802_159.svp from CTD 186 and CDT 159 for deep			
05/02/08	22:12	Knudsen stopped pinging. Can't write to Seaventure			
05/02/08	23:45	Knudsen rebooted and running. Can write to Seaventure			
05/03/08	00:19	Map-3 and 4 crashed. Rebooted and can't mount Seaventure			
05/03/08	02:37	stop and restart Knudsen EchoControl			
05/03/08	03:39	Seaventure was rebooted at 00:00Z. Too many processes and couldn't maintain mounts.			
05/03/08	05:22	New SVP from CTD 196			
05/03/08	06:03	New SVP from CTD 197			
05/03/08	17:50	ADCP 75 Gyro heading frozen			
05/03/08	18:23	Gyro heading synchro converter reset, heading working			
05/03/08	19:59	stop and restart Knudsen recording. Cleared strange error message			

Date	Time (UTC)	Event			
05/03/08	21:01	stop and restart SCS to toggle permissions			
05/03/08	22:10	New SVP from CTD 204			
05/03/08	22:36	stop at 22:08 and restart SCS now			
05/03/08	23:34	stop at 23:31 and restart SCS now			
05/03/08	23:44	stop at 23:43 and restart SCS now			
05/04/08	08:09	Knudsen stopped pinging and no Seaventure mount			
05/04/08	08:49	Knudsen restarted logging on the PC			
05/04/08	09:25	stop and restart SCS			
05/04/08	09:37	Knudsen stop recording and restart and can write to Seaventure now			
05/04/08	11:30	From 8:18 – 9:34 SCS was not logged on Seaventure but will be updated			
05/04/08	12:34	New SVP from CTD 213			
05/04/08	13:30	New SVP from CTD 214			
05/04/08	18:02	New SVP from CTD 216			
05/04/08	23:11	New SVP from CTD 221			
05/05/08	05:27	New SVP from CTD 226			
05/05/08	08:05	New SVP from CTD 228 and ARGO float R4988843_021 for deep			
05/05/08	09:43	New SVP from CTD 229 and SVP for CTD 228 for deep			
05/05/08	14:18	New SVP from CTD 231 and SVP for CTD 228 for deep			
05/05/08	15:59	New SVP from CTD 232 and SVP for CTD 228 for deep			
05/05/08	17:24	New SVP from CTD 230 and SVP for CTD 228 for deep			
05/05/08	23:25	New SVP from CTD 236 and ARGO float R4988843_021 for deep			
05/06/08	04:34	New SVP from CTD 239 and ARGO float R4988843_021 for deep			
05/06/08	05:21	New SVP from CTD 240 and ARGO float R4988843_021 for deep			
05/06/08	05:23	The speed log was just turned off. It was running for several hours			
05/06/08	06:56	New SVP from CTD 241 and ARGO float R4988843_021 for deep			
05/06/08	16:38	Stop ADCP 75			
05/06/08	16:43	Stop Knudsen			
05/06/08	16:46	SeaBeam to Idle			
05/06/08	16:49	Stop SCS			
05/06/08	16:50	Stop LDS			
05/06/08	16:52	Science Seawater stopped			
05/06/08	16:55	Science Data Acquisition is stopped for end of cruise arrival in Dutch Harbor.			

Comments that might help when using the data

The SCS system has stopped recording every now and then. If this is the case. you should look for the corresponding data in the LDS_Data directories. The data may have been recorded there.

The Knudsen data written into SCS_Data/Knudsen has an inconsistent time in the data. The time that the SCS writes to the start of the file should be used. The Knudsen internal clock adds about 22.8 seconds to the3 internal clock each day near 00:00. But this is reset when the recording program is started up. Use only the SCS time stamp for time in this data and it should be fine.

There is an extra directory is on the last DVD that has the Turbidity/Transmissometer data from the Science Sea Water system in it. The format for that data is in a PDF file that describes the data. The PDF file is the only place that this data is described.

The SeaBeam data is raw and unedited. This data needs MAJOR editing and care to use. The Knudsen sub bottom data is perhaps more accurate but it uses only the single Speed of Sound Velocity Profile of 1500 meters/second.

Information to calibrate the Optotech Oxygen Sensor from the Bio Chem lab is in a directory on the first DVD in the Meta_Data directory.

Underway Sensors and Calibrations

Sensors and Calibrations

HLY0802 Shipboard Sensors

Sensor	Description	Serial #	Last	Status	
			Calibration		
			Date		
Neteorology & Radiometers					
Port Anemometer	RM Young 09101	L001	02/06/07	Collected	
Stbd Anemometer	RM Young 09101	L003	03/07/07	Collected	
Barometer	RM Young 612011	BP01643	02/22/08	Collected	
Air Temp/Rel. Hum.	RM Young 41382V	13352	02/22/08	Collected	
Helo shack PAR	BSI QSR-2200	20270	01/09/07	Collected	
Shortwave Radiation	Eppley labs - PSP	35032F3	08/01/07	Collected	
Longwave Radiation	Eppley labs - PIR	34955F3	08/17/07	Collected	
Barometer	Paroscientific MET3A	101757	06/27/07	Collected	
Bow Temperature	Paroscientific MET3A	101757	06/27/07	Collected	
Precipitation	Paroscientific MET3A	101757	06/27/07	Collected	
Relative Humidity	Paroscientific MET3A	101757	06/27/07	Collected	
Jack Staff Ultrasonic	RM Young 85004	00703	09/20/07	Collected	
Anemometer					
Yard Arm Stb Ultrasonic	RM Young 85004	00704	09/20/07	Collected	
Anemometer					
Underway Ocean					
TSG A	SeaBird SBE45	0215	08/01/07	Collected	
TSG B	SeaBird SBE45	3107	01/16/08	Collected	
Remote Sea Temp	SeaBird SBE3S	4063	12/13/07	Collected	
Fluorometer B	Turner SCUFA	0600	12/15/07	Collected	
Fluorometer A	Seapoint SCF	SCF2957	12/15/07	Collected	
Oxygen Sensor A	SeaBird SBE-43	1307	09/28/07	Collected	
Oxygen Optode- B	Aanderaa Optode 3835	719	11/21/07	Collected	
Nitrate Sensor	MBARI ISUS v3	141	10/11/07	Collected	
Flowmeter A	Flocat C-ES45-B003	09061005	01/07/08	Collected	
Flowmeter B	Flocat C-ES45-B003	02030692	01/07/08	Collected	
AC-S Spectral Attenuation	Wetlabs	053	010/10/8	Colected	
and Absorption Meter					
Sonars					
Knudsen- subbottom	320 B/R	K2K-00-0013	N/A	Collected	
ADCP 150 kHz	Broad Band (BB150)	80	N/A	Not	
				Collected	
ADCP 75 kHz	Ocean Surveyor	172	N/A	Collected	
Multibeam	Seabeam 2112	?	N/A	Collected	
Speed log	Sperry	?	N/A	Collected	
_				some	

Sensor	Description	Serial #	Last Calibration Date	Status
Navigation				
P-Code GPS (aft)	Trimble Centurion	0220035469	N/A	Collected
Attitude GPS	Ashtech ADU5	AD52003351 3	N/A	Collected
DGPS	Trimble AGGPS- AG132	0224016199	N/A	Collected
POSMV	Model- MV V4	2306	N/A	Collected
P-Code GPS (fwd)	Rockwell	?	N/A	Collected
Glonass	?	?	N/A	Collected
GYRO 1	Sperry MK39 PN 03956-1982416-2	340	?	Collected
GYRO 2	Sperry MK27A 4800880-1	025	N/A	Collected

HLY0802- CTD Sensors

Sensor	Comments	Serial #	Last service/ Calibration Date	Status
CTD fish	SBE 911plus	639	01/18/08	
Pressure Sensor #1	Digiquartz with TC	83012	01/18/08	Collected
Temperature #1	SBE3- Primary	2855	01/21/08	Collected
Temperature #2	SBE3- Secondary	2796	01/27/08	Collected
Conductivity #1	SBE4- Primary	2568	01/18/08	Collected
Conductivity #2	SBE4- Secondary	2561	01/18/08	Collected
Pump	SBE5 Primary	3115	01/08	NA
Pump	SBE5 Secondary	3112	01/08	NA
Deck Unit	SBE 11-Plus V2	0417	12/07	NA
Altimeter	PSA916	843	01/08	Collected
Oxygen	SBE43	458	12/12/07	Collected
Fluorometer	Chelsea-Aquatrack3	088234	03/07	Collected
Transmisometer	Wetlabs	CST-390DR	01/08	Collected
PAR	Bioshperical QSP2300	70115	01/07	Collected
Carousel	SBE32- 12 place	347	01/08	NA

HLY0802 Sensor Calculations

The coefficients for temperature, conductivity, fluorometer and turbidity sensors can be found in the calibrations sheets below in the Appendix.

Calculating Temperature – ITS-90

```
T = decimal equivalent of bytes 1-4
Temperature Frequency: f = T/19 + 2100
Temperature = 1/\{g + h[ln(f_0/f)] + i[ln^2(f_0/f)] + j[ln^3(f_0/f)]\} - 273.15
(°C)
```

Calculating Conductivity – ITS-90

```
C = decimal equivalent of bytes 5-8
Conductivity Frequency f = sqrt(C*2100+6250000)
Conductivity = (g + hf<sup>2</sup> + if<sup>3</sup> + jf<sup>4</sup>)/[10(1 + \deltat + \epsilonp)] (siemens/meter)
t = temperature (°C); p = pressure (decibars); \delta = Ctcor; \epsilon = CPcor
```

Calculating Fluorometry Voltage

f = decimal equivalent of bytes 15-17
Fluorometry Voltage = f/819

Calculating Transmittance

Calculating PAR for surface PAR

```
raw data = mV
calibration scale = 6.08 \text{ V}/(\mu\text{Einstiens/cm}^2\text{sec})
offset (V<sub>dark</sub>) = 0.3 \text{ mV}
(raw mV - V<sub>dark</sub>)/scale x 10^4 \text{ cm}^2/\text{m}^2 \text{ x } 10^{-3} \text{ V/mV}= \mu\text{Einstiens/m}^2\text{sec}
or
(data mV - 0.3 \text{ mV}) x 1.65 (\mu\text{Einstiens/m}^2\text{sec})/\text{mV} = \mu\text{Einstiens/m}^2\text{sec}
```

Calculating Pyrgeometer Values

```
V = Eppley PIR Thermopile voltage
S = Sensitivity ( Calibration factor from Eppley Cal sheet)
S = 3.32
J = Stefan-Boltzmann Constant
J = 5.6697e - 8
B = [absorption constant (for Eppley Black paint formula) 0.985 / dome
glass IR transmission 0.5]
B= 3.5 for Stock Eppley PIR
Tb = Eppley Body Temperature in degrees Kelvin
Td = Eppley Dome Temperature in degrees Kelvin
Tb and Td calculated as follows:
T = 1/(a + ln(Vo/Irt)*(b + c*(ln(Vo/Irt)**2)));
Irt = (Vref-Vin)/R1
On Healy R1 = 82500
                                     Vref = 5.0
a= 0.0010295 b= 0.0002391 c = 1.568e-7
```

 $W/M2 = V/S + (J * Tb^4) + (B*J*(Tb^4 - Td^4))$

Calibrations

The following pages are replicas of current calibration sheets for the sensors used during this cruise.

Meteorology & Radiometers

R.M. Young Wind Bird, Starboard

Serial # L001

R. M. Young Wind bird Calibration Results Model # 09101, S/N L003 (Starboard Windbird) As per Young Meteorological Instruments Wind System Calibration Manual

Date: 07 Mar 07 Technician: ET1 Berringer / ETC Rodda

Wind speed torque: Passed

Maximum toque = 2.4 gm/cm	
Test results:	
CW	0.7
CCW	0.7

Wind direction torque: Passed

Maximum toque = 30 gm/cm

Test results:	
CW	
CCW	

CW 22 gm/cm

20 gm/cm

Wind speed signal:

Maximum % error = 1%

Test results: Passed

Actual RPM	Actual Wind Speed	Measured	% Error
200	1.90	1.9	0.21
500	4.76	4.8	0.84
1200	11.42	11.4	0.21
3600	34.27	34.3	0.08
5000	47.60	47.6	0.00

Note; Wind speed in knots = 0.00952 * shaft RPM

Wind direction signal:

Maximum error = +/- 2 degrees

Test results: Failed – off by 1 degree					
Actual	Meaured	Error			
0	358	-2			
30	27	3			
60	58	2			
90	88	2			
120	118	2			
150	149	1			
180	178	2			
210	207	3			
240	238	2			
270	268	2			
300	297	3			
330	327	3			

R.M. Young Wind Bird Port

Serial # L001

R. M. Young Wind bird Calibration Results Model # 09101, S/N L001 (Port Windbird)

As per Young Meteorological Instruments Wind System Calibration Manual

Date: 06 Feb 07

Technician: ET3 Daem / ET2 Davis

Wind speed torque: Passed

Maximum toque =2.40 gm/cm

Test results:	
CW	.2 gm/cm
CCW	.2 gm/cm

Wind direction torque: Passed

Maximum toque = 30 gm/cm

Test results: CW CCW

10gm/cm 10gm/cm

Wind speed signal: Passed

Maximum % error = 1%

Test results:

Actual RPM	Actual Wind Speed	Measured	% Error
200	1.90	1.9	0.21
500	4.76	4.8	0.84
1200	11.42	11.4	0.21
3600	34.27	34.3	0.08
5000	47.60	47.6	0.00

Note; Wind speed in knots = 0.00952 * shaft RPM

Wind direction signal: Passed

Maximum error = +/- 2 degrees

Test results:				
Actual	Meaured	Error		
0	359	-1		
30	29	1		
60	59	1		
90	90	0		
120	120	0		
150	150	0		
180	180	0		
210	210	0		
240	240	0		
270	269	1		
300	298	2		
330	330	0		

Barometer

Serial # BP01643

Baro Pres Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: BP01643 CALIBRATION DATE: 22-Feb-08 SENSOR ID: BPR80 Mfg: RM Young Model: 612011 Previous Cal Date: 01-Jan-00 Calibration Tech: CM CALIBRATION AT 25.0 DegC

A= 5.98528E+1 B= 8.02635E+2

Calibration Standard: Mfg: Paroscientific Model: 765-16B s/n: 101778 Polynomial Order = 1 Xcalc = A*X+B

SENSOR	STANDARD	SENSOR	SPRT-INST	SPRT-INST
VOLTS	DATA	New_Coefs	Prev_Coefs	New_Coefs
4.901	1095.960	1095.953	1.920	0.007
4.151	1051.090	1051.086	2.028	0.004
3.731	1025.970	1025.963	2.092	0.007
3.475	1010.640	1010.645	2.118	-0.005
3.306	1000.490	1000.479	2.159	0.011
3.314	1000.990	1000.986	2.151	0.004
2.939	978.480	978.517	2.165	-0.037
2.445	948.980	949.001	2.254	-0.021
2.004	922.570	922.555	2.355	0.015
1.998	922.190	922.205	2.326	-0.015
1.713	905.210	905.180	2.413	0.030

Air Temperture / Relative Humidity

Serial # 13352

Air Temperature Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 13352 CALIBRATION DATE: 22-Feb-08 SENSOR ID: HRH17 Mfg: RM Young Model: 41382V Previous Cal Date: 01-Jan-2000 Calibration Tech: CM

A= 1.01413E+2 B= -5.07642E+1

Calibration Standard: Mfg: Seabird Model: SBE35 s/n: 0006 Polynomial Order = 1 Xcalc = A*X+B

SENSOR	STANDARD	SENSOR	SPRT-INST	SPRT-INST
	DATA	New_Coefs	Prev_Coefs	New_Coefs
0.480	-2.122	-2.035	-0.652	-0.087
0.504	0.337	0.338	-0.557	-0.001
0.554	5.421	5.398	-0.513	0.023
0.603	10.448	10.418	-0.485	0.030
0.651	15.345	15.235	-0.386	0.110
0.699	20.190	20.154	-0.439	0.036
0.748	25.029	25.113	-0.539	-0.084
0.796	29.914	29.920	-0.442	-0.006
0.840	34.361	34.382	-0.439	-0.021

HUMIDITY Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 13352 CALIBRATION DATE: 24-Feb-08 SENSOR ID: HRH17 Mfg: RM Young Model: 41382V Previous Cal Date: 01-Jan-2000 Calibration Tech: CM

A= 1.04836E+2 B= -6.79727E-1

Calibration Standard: Mfg: GE Sensing Model: Humilab s/n: 0240507 Polynomial Order = 1 Xcalc = A*X+B

SENSOR	STANDARD DATA	SENSOR New_Coefs	SPRT-INST Prev_Coefs	SPRT-INST New_Coefs
0.791	82.450	82.266	2.539	0.184
0.794	82.710	82.560	2.516	0.150
0.866	90.460	90.108	2.994	0.352
0.530	53.570	54.904	0.020	-1.334
0.301	31.000	30.876	0.599	0.124
0.192	19.920	19.396	0.579	0.524

Biospherical Instruments Inc.

CALIBRATION CERTIFICATE

Calibration Date	1/9/2007				
Model Number	QSR-2200				
Serial Number	20270				
Operator	TPC				
Standard Lamp	F-863				
Probe Excitation Voltage Range:		6	to	18	VDC(+)
Output Polarity:	Positive				

Probe Conditions at Calibration(in air):

Calibration Voltage:	6	VDC(+)
Probe Current:	4.0	mA

Probe Output Voltage:

Probe Illuminated	95.87	mV
Probe Dark	1.32	mV
Probe Net Response	94.55	mV

Corrected Lamp Output:

Output In Air (same condition as calibration):

Calibration Factor:

(To calculate irradiance, divide the net voltage reading in Volts by this value.)

Dry: 1.00E-17 V/(quanta/cm²sec) 6.04E+00 V/(uE/cm²sec)

Notes:

1. Annual calibration is recommended.

2. Calibration is performed using a Standard of Spectral Irradiance traceable to the

National Institute of Standards and Technology (NIST).

3. The collector should be cleaned frequently with alcohol.

4. Calibration was performed with customer cable, when available.

QSR240R 05/24/95

Shortwave Radiation Pyranometer

Serial # 35032F3

Longwave Radiation Pyrgeometer

Serial # 34955F3

THE EPPLEY LABORATORY, INC.

12 Sheffield Ave., P.O. Box 419, Newport, RI 02840 USA Telephone: 401-847-1020 Fax: 401-847-1031 Email: info@eppleylab.com Internet: www.eppleylab.com

Scientific Instruments for Precision Measurements Since 1917

STANDARDIZATION OF EPPLEY PRECISION INFRARED RADIOMETER Model PIR

Serial Number: 34955F3

Resistance:	708	Ω at	23	°C
Temperature Compensation Range:	-20	to	40	°C

This pyrgeometer has been compared against Eppley's Blackbody Calibration System under radiation intensities of approximately 200 watts meter² and an average ambient temperature of 25°C as measured by Standard Omega Temperature Probe, RTD#1.

As a result of a series of comparisons, it has been found to have a sensitivity of:

3.32 x 10⁶ volts/watts meter²

The calculation of this constant is based on the fact that the relationship between radiation intensity and emf is rectilinear to intensities of 700 watts meter². This radiometer is linear to within $\pm 1.0\%$ up to this intensity.

The calibration of this instrument is traceable to the International Practical Temperature Scale (IPTS) through a precision low-temperature blackbody.

Eppley recommends a minimum calibration cycle of five (5) years but encourages annual calibrations for highest measurement accuracy. Unless otherwise stated in the remarks section below or on the Sales Order, the results are "AS FOUND / AS LEFT".

Shipped to:			Date of Test: May 31, 2007
UCSD/SIO La Jolla, CA			In Charge of Test P.T. Grenan
S.O. Number: Date:	61272 August 17	, 2007	Reviewed by: Thomas , Kub

Remarks:

Jack Staff MET Station

Serial # 101757

	Paroscien Pressure Instrur	tific, Inc nent Con	figuration
SN: 101757 Part	Number: 1539-004 Mod	el:MET3A	Port:
Calibration Date	e: 27-Jun-07 Report N	lo: 7238	Technician: WMR
Pressure Range:	500 to 1100 bPa Ter	rperature	Range: -50 to +60
ricobare Manger			anger se co se
Customer: Scripp	ps Inst. of Oceanograp)	hy	Report Date: 27-Jun-07
Address : 8825 H	Biological Grade		Sales Order: 24387
La Jol	11a, CA 92037 USA		S/R Number :
Con	figuration	Cal	ibration Coefficients
BL: 0	PT: N	U0 :	5.766908 µsec
BR: 9600	QD: -	Y1:	-4015.975 deg C / µsec
DD: -	QD: -	Y2 :	-17065.37 deg C / µsec?
DL: -	SL: -	Y3 :	-140256.4 deg C / µsec*
DM: -	SN: 101757	C1 :	94.87589 psi
D0: -	ST: -	C2 :	3.545282 psi / µsec
DP: ···	SU: -	C3 :	-114.9551 psi / µsec*
ID: 01	TI: -	D1:	0.0345157
IM: -	TR: 00952	D2 :	0.0000000
LL: -	TU: -	T1:	28.00064 µsec
LH : -	UF: 1.000000	T2 :	0.837535 µsec / µsec
MC: Y	UL: -	T3 :	16.78157 µsec / µsec?
MD: 0	UM: -	T4 :	-150.7085 µsec / µsec*
MN : -	UN: 3	T5 :	-129.729 µsec / µsec*
OP: -	US: -	TC:	0.6782145
PF: -	VR: M1.02	PA:	0.0000000
PI: -	ZI: -	PM:	1.0000000
PL: -	ZS: -		
PO: ·	ZL: -		
PR: 00238	ZV: -	1	
PS: -			
1 · · · · · · · · · · · · · · · · · · ·		11	

Met3/3A Coefficients					
E1: -0.551136	E2: 0.84				
F1: -264.3591	F2: 3.152				
G1: 12.56743	G2: 0.00216				
H1: RHT694	H2: 0.0036				
K1: 01842	K2: 0.00511				
Ml: L	M2: 1				
Z1; 0	Z2: 0				

Faroscientific, Inc. 4500 148th Ave. N.S. Redmond, WA 98052 Fhome: (425)883-8700 Fax: (425)857-5607 Web:http://www.paroscientific.com Email: support@paroscientific.com Page 1 of 1

Paroscientific, Inc.

4500 148th Avenue N. E. Facsimile: (425) 867-5407 Redmond, WA 98052-5194 Email:salessupport@paroscientific.com Telephone: (425) 883-8700 Internet:http://www.paroscientific.com

CERTIFICATE OF CALIBRATION

TRANSDUCER MODEL: MET3A

SERIAL NUMBER: 101757

The Paroscientific transducer(s) identified above has been calibrated and tested with one or more of the following primary pressure and temperature standards. All have traceability to the National Institute of Standards and Technology.

Bell and Howell Primary Pressure Standard

Pneumatic Absolute or Gauge Dead Weight Tester Part Number: 6-201-0001, S/N 4034 and S/N 1014

- Piston/Cylinder: 6-001-0002, P2-919/C2-1523, Weight Set 1: 6-002-0002
 Range: 1.5 to 50 psi [10 to 345 kPa]
 Accuracy: 0.010 percent of reading
- Piston/Cylinder: 6-001-0002, P2-652/C2-1378, Weight Set 2: 6-002-0002
 Range: 1.5 to 50 psi [10 to 345 kPa]
 Accuracy: 0.010 percent of reading

Piston/Cylinder: 6-001-0001, P1-949/C1-922, Weight Set 2: 6-002-0002 Range: 0.3 to 5 psi [2 to 34 kPa] Accuracy: 0.015 percent of reading

DH Primary Pressure Standard

Pneumatic Absolute or Gauge Dead Weight Tester Part Number: PG7601 S/N 161

Piston/Cylinder: S/N 305, Mass Set: S/N 2052 Range: 0.7 to 50 psi [5 to 345 kPa] absolute mode, 0.29 to 50 psi [2 to 345 kPa] gauge mode Accuracy: 0.002 percent of reading

Accuracy. 0.002 percent of reading

DH Primary Pressure Standard

Pneumatic Gauge Dead Weight Tester, Model 5203, S/N 5557

Piston/Cylinder: S/N 4845, Mass Sets: S/N 2032, S/N 3293 Range: 20 to 1,600 psi [0.14 to 11 MPa] Accuracy: 0.005 percent of reading

DH Primary Pressure Standard

Oil Operated Gauge Dead Weight Tester, Model 5306, S/N 3505

- Piston/Cylinder: S/N 3375, Mass Set: S/N 2032 Range: 40 to 20,000 psi [0.3 to 138 MPa] Accuracy: 0.01 percent of reading above 200 psi [1.4 MPa] or 0.02 psi [0.14 kPa] at lower pressure
- Piston/Cylinder: S/N 3511, Mass Set: S/N 2032 Range: 145 to 72,500 psi [1 to 500 MPa] Accuracy: 0.02 percent of reading above 725 psi [5 MPa] or 0.145 psi [1 kPa] at lower pressure

Hart Scientific Precision Thermometer (MET3A only)

 Black Stack model 1560 S/N 97568, PRT Scanner model 2562 S/N A34523, Temperature Probe Model A1959: S/Ns 4424A-02, 4424A-04, 4424A-05, 4424A-06 and 5177C-02. Range: -50° to 60° C. Accuracy: .015°C.

TEST Tested By: DATE 6-27-07

Digiquartz[®] Pressure Instrumentation Document No. 8145-001, Rev. M 4/18/07

Underway Ocean Flow through Sensors

Seabird ThermoSalinograph

Serial # 0215

Temperature

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0215 CALIBRATION DATE: 01-Aug-07 SBE 45 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

ITS-90 COEFFICIENTS

a0	-	-1.277283e-006
a1	- 1	2.800988e-004
a2	\equiv	-2.767325e-006
a3	-	1.635307e-007

INSTRUMENT OUTPUT	INST TEMP (ITS-90)	(ITS-90)
657810.B	0.9939	-0.3002
562392.3	4.5000	0.0000
358334.1	14,9999	-0.0000
310251.4	18,5000	-0,0001
248855.2	24,0001	0.0002
204884.7	29.0000	-0.0001
179404.2	32.5000	0.0000
	INSTRUMENT OUTPUT 557810.8 562392.3 358334.1 310251.4 248855.2 204884.7 179404.2	INSTRUMENT (INST TEMP OUTPUT (ITS-90) 557810.8 0.9939 562392.3 4.5000 358834.1 14.9939 310251.4 18.5000 248855.2 24.0001 204884.7 29.0000 179404.2 32.5000

Temperature [TS-90 = $1/(a0 + a1[in(n)] + a2[in^2(n)] + a3[in^3(n)]] - 273.15$ (*C)

Residual = instrument temperature - bath temperature

Date, Delta T (mdeg C)

Conductivity

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0215 CALIBRATION DATE: 01-Aug-07 SBE 45 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

đ	-	-9.817728e-001
1	-	1.408375e-001
i	-	-1.6716240-004
f	-	3.431539e-005

CPeor	-	-9.5700e-008
CTcor	-	3.2500c-006
WEGTC	-	2.4202e-005

BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22,0000	0,0000	0.00000	2641.45	0.00000	0.00000
1.0000	34.8934	2.98192	5363.53	2.38193	0.00001
4.5000	34.8731	3.28955	5504.48	3.28955	-0.00000
15.0000	34.8297	4.27308	6101.73	4.27307	-0.00001
18.5001	34.8207	4.61890	5297,94	4.61889	-0.00001
24.0000	34.8111	5,17793	5502.44	5,17794	0,00001
29.0001	34.8062	5.70086	6874.67	5.70088	0.00002
32.4999	34.8046	6.07417	7062.34	6.07415	-0.00002

f = INST FREQ * sqrt(1.0 + WBOTC * t) / 1000.0

$$\begin{split} Conductivity = & \left(g + hf^2 + if^3 + jf^4\right) / \left(1 + \delta t + \epsilon p\right) \\ Siemens/meter \\ t = temperature[°C)]; \ p = pressure[decibars]; \ \delta = CTcor, \ \epsilon = CPcor; \end{split}$$

Residual = instrument conductivity - bath conductivity

Remote Sea Temperature (Sea Chest)

Serial # 4063

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4063 CALIBRATION DATE: 13-Dec-07

SBE3 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

ITS-90 COEFFICIENTS

g =	4.29921671e-003
h =	6.36406488e-004
i =	2.06912541e-005
j =	1.52019386e-006
£0 =	1000.0

IPTS-68 COEFFICIENTS					
a =	3.68121265e-003				
= ď	5.99688417e-004				
c =	1.61521904e-005				
d =	1.52164480e-006				
f0 =	2721.791				

BATH TEMP (ITS-90)	INSTRUMENT FREO (Hz)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
-1.5000	2721.791	-1.5000	-0.00002
1.0000	2878.781	1.0000	0.00003
4.5000	3109.455	4.5000	0.00002
8.0000	3353.176	8.0000	-0.00001
11.5000	3610.316	11.5000	-0.00001
15.0000	3881.236	15.0000	0.00002
18.5000	4166.278	18.5000	-0.00004
22.0000	4465.803	22.0000	0.0000
25.5000	4780.134	25.5000	0.00003
29.0000	5109.596	29.0000	0.00002
32.5000	5454.501	32.5000	-0.00002

Temperature ITS-90 = $1/\{g + h[ln(f_0/f)] + i[ln^2(f_0/f)] + j[ln^3(f_0/f)]\} - 273.15$ (°C) Temperature IPTS-68 = $1/\{a + b[ln(f_0/f)] + c[ln^2(f_0/f)] + d[ln^3(f_0/f)]\} - 273.15$ (°C)

Following the recommendation of JPOTS: T_{68} is assumed to be 1.00024 * T_{90} (-2 to 35 °C) Residual = instrument temperature - bath temperature

Date, Offset(mdeg C)

Fluorometer **B**

Serial # 0600

Fince 10130059 Scol	a fimil top	ribbaar			1.5	
Elecurcation		0600			1	
(IN:		12210	7	1.64		
ate:		File				
IIUEI.	2000-006	2	000-007	2000-008	2000-005 20	00-010 Range
in.	2000 000	DC			A CONTRACTOR	12.5V
nuuar		1216				12.2+/-0.2V
LE EV"		CH7				5.5+0-0.3V
2 21/2		738				3.3V +/-0.1V
3.3V	1000	797				3.3V +/-0.1V
/CC		11 GX		and the second		5+/-0.1V
(a)		-5.04			1.1	"-5 */- 0.2V"
130 officiat		0.00				<15 mV
100 offset	N/A	3.46			N/A	<15 mV
ize, onset	10/1	12				<+/-50
fuch Officet	NIA	25		and the second second	N/A	<+/-50
Current cont . Bower ON	inter-	100				<60 mA
Come V Excelored		152		100000000		15-15.5 V
Diver-V Enestion		is a	tornale	and the second s		<20 mV p-p
Signal offset noise	N/A	the for	wroger -		N/A	<20 mV p-p
Tura Offset noise	10/4	H.W.	1	The second second	and the second second	Ambient +/- 1° C
Temp Readout check	Mark Carefor	Territory To	Pla ale	1	Carl Series	State of the Street of the
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Unit Coning	Aler A	MC # 1	Var	No	
Turbidity	No.	Yes		Vas	No	
Temp. Compensation	Yes.	Yes		Vee	No	
Internal Data Logger	Yes.	Yes		Tes.	140	A Real Property in the second
	Calibration	Incas	Chandard 9	Ranaa		
	Blank %	Range	Standard 76	2245		
CHL	0.89%	0-0.03	1000	49.70		
TRB	0.011	0-0.03	21.12	43-70		
RWT		0-0.09		7.0-15.0		
TRB		0-0.05		20.5-70.0		
PC		0-0.03		0.5-1.Z		
TRB						
FLU		0-0.05		2.0-10.0		
TRB		0-0.05		1.0-5.0		
Internal Data Logger Test	IDL: (ON-	or OFF (Ciri	cle-one)		
	IDL	Tested (DK.			
「おいた」の「ない」	Analog out	put calibra	tian	127		1 11
Analog Out 1	6	22				
Analog Out 2	2	161				
Pressure test	& Burn In					
Date	Pa / Y	501	T			
Lotiol:	0.10	11A				
Drange ing	87 012	cqu/	ST #15	ST #20	ST #23	
Pressure PSI	1000	-	970	1000	1000	
Den tost we abt	0167	810	17			
Aller heat weight	By and		-			
Priter test weight	Burn.					< 0.5 gram
LArrarence	4) Dhed at	d TPD : 2	5+601			
1) NOTES: Analog out:	T) Prida al	101 KD. 2	ISU/			Contraction of the second
	2) CHL 0.	250 +1-0.0	ISV .			
	3) FLO: 0.2	(30 +)- 0.0	NV Developm			

		SCUPA(IM)	TEST LOG		
		USE PEN	ONLY		
Burn In Test					1
Start	100	Finish			
)ate:	01/22	Date of Lag			
Time.	1000	lainat 7000			
nicial	60	mistan.			
Obert / configure	tion last		1		
Check / configura	tion test			2000 005 2200 0	40
Configuration	2000-006	2000-007	2000-008	2000-005 2000-0	10 ATA
Date:		onde			Rill and
lime:		400			Eut - 48 92.4
nitial		047			= 40.107
Turbidiby (Plack Rod)	N/A	0.02		N/A	
Functionary (Black Noti)	1	0.000			
Tubidity (Solid Std)	N/A	92 911 100		N/A	
Sia Bra amp. Out	in (Taring too			<+/-50
Sig. Pre-amp. Out	N/A (*	ICI dopter 2		N/A	<+/-50
Analog Out 1	1000	1.22			(1)
Analog Out 2		2 201 STUL			(1)
IDI	ON T	AND ON	ON	OFF	
Temp Comp	ON	ON	ON	OFF	
Temp Readout check	1	1230			Ambient +/- 1°C 15
CINAL INSTRE	IMENT CONF	IGURATION (FOR CUS)	TOM ORDERS (DNLY)	
Refer	to 2000-010 C	Configuration Instructions	(TD130063)		
There		ret algerate a second			
Shop Order #:	IDL	Temp Comp	Turbidity	Date: 17	
2000-010	an	ON	ON	Initial(1) Initial (2)
DNIT 1. S/N 2. S/N 3. S/N 4. S/N 5. S/N BU	URN-IN: DATE IN DATE OUT	DEL # 2000_00 S/O# DEL #	5357		
ې ۱	OST BURN-IN	CIG 7			
COM	BOX:	81-1.1	_		
TD130060		TD130117	3		Page 3 of 2

Oxygen Sensor A

Serial # 1307

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SEI	RIAL NUMBER: ON DATE: 28-Sej	1307 p-07p	SBE 43 OF	CYGEN CALIBRATION	DATA
COEFFICIEN	ITS		TCor =	0.0025	
Soc = 0.	3834		PCor -	1 3500-04	
Bog = 0.1	0000		1001 -	1.0000-01	
Voffset -	-0.4781				
BATH OX (ml/l)	BATH TEMP ITS-90	BATH SAL PSU	INSTRUMENT OUTPUT(VOLTS)	INSTRUMENT OXYGEN(ml/l)	RESIDUAL (ml/l)
1.22	2.00	0.00	0.805	1.22	-0.01
1,24	12.00	0.01	0.898	1.25	0.01
1.24	20.00	0.01	0.966	1.25	0.01
1.24	26.00	0.01	1.016	1.25	0.00
1.25	6.00	0.00	0.848	1.25	0.00
1.25	30.00	0.01	1.057	. 1.26	0.01
4.11	20.00	0.01	2.086	4.11	0.00
4.13	26.00	0.01	2.254	4.11	-0.01
4.13	12.00	0.01	1.870	4.14	0.02
4.15	2,00	0.00	1.583	4.11	-0.03
4.15	30.00	0.01	2.382	4.15	-0.00
4.15	6.00	0.00	1.705	4,15	-0.00
6.57	30.00	0.01	3.491	6.57	-0.01
6.58	26.00	0.01	3.311	6.56	-0.02
6.60	20.00	0.01	3.061	6.61	0.01
6.62	12.00	0.01	2.712	6.65	0.03
6.61	5.00	0.00	2.447	6.67	0.02
6.71	2.00	0.00	2.273	6.68	-0.03

oxygen (ml/l) = (Soc * (V + Voffset)) * cxp(Tcor * T) * Oxsat(T,S) * exp(Pcor * P) V = voltage output from SBE43, T = temperature [deg C], S = salinity [PSU] Oxsat(T,S) = oxygen saturation [ml/l], P = pressure [dbar] Residual = instrument oxygen - bath oxygen

Date, Delta Ox (ml/l)

28-Sep-07p 0.01

CTD Sensors

Pressure Sensor

Serial # 83012

Pressure Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 639 CALIBRATION DATE: 18-JAN-2008 Mfg: Seabird Model: SBE9P CTD Prs s/n: 83012

C1= -3.841449E+4 C2= 4.630485E-1 C3= 1.014581E-2 D1= 3.051116E-2 D2= 0.000000E+0 T1= 3.019016E+1 T2= -1.746821E-4 T3= 4.517296E-6 T4= -9.087207E-9 T5= 0.000000E+0 AD590M= 1.27551E-2 AD590B= -9.09133E+0 Slope = 1.0 Offset = 0.0

Calibration Standard: Mfg: Ruska Model: 2400 s/n: 34336 t0=t1+t2*td+t3*td*td+t4*td*td*td w = 1-t0*t0*f*f Pressure = (0.6894759*((c1+c2*td+c3*td*td)*w*(1-(d1+d2*td)*w)-14.7)

Temperature #1

Serial # 2855

Temperature Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 2855 CALIBRATION DATE: 21-JAN-2008 Mfg: Seabird Model: SBE3Plus Previous Cal Date: 24-Jan-07 Calibration Tech: CM

g= 4.35951439E-3 h= 6.45648951E-4 i= 2.38075037E-5 j= 2.35385504E-6 f0 = 1000.0 Slope = 1.0 Offset = 0.0

Calibration Standard: Mfg: ASL Model: F18 s/n: 245-5149 Temperature ITS-90 = 1/{g+h[in(f0/f)]+i[in2(f0/f)]+j[in3(f0/f)]} - 273.15 (°C)

SBE3		SBE3	SPRT-SBE3	SPRT-SBE3
Freq	SPRT	New_Coefs	Prev_Coefs	New_Coefs
5479.6760	28.1875	28.1875	0.00140	0.00002
5798.0010	31.2142	31.2142	0.00189	-0.00002
5174.8630	25.1737	25.1737	0.00101	0.00002
4839.0220	21.7073	21.7073	0.00066	-0.00000
4563.9390	18.7410	18.7410	0.00045	-0.00003
4313.5900	15.9306	15.9306	0.00036	-0.00000
4062.6960	12.9964	12.9964	0.00029	0.00002
3819.2680	10.0242	10.0242	0.00019	-0.00001
3580.6660	6.9771	6.9771	0.00011	-0.00001
3359.2520	4.0167	4.0167	0.00007	0.00004
3216.0510	2.0264	2.0264	-0.00010	-0.00004
3143.3570	0.9916	0.9916	-0.00010	0.00002
3042.0950	-0.4792	-0.4792	-0.00018	0.00003
3003.6410	-1.0471	-1.0471	-0.00029	-0.00003
2934.0140	-2.0888	-2.0888	-0.00036	-0.00001

Temperature #2

Serial # 2796

Temperature Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 2796 CALIBRATION DATE: 21-JAN-2008 Mfg: Seabird Model: SBE3Plus Previous Cal Date: 27-Jan-07 Calibration Tech: CM

g= 4.30545772E-3 h= 6.41541965E-4 i= 2.26535491E-5 j= 2.15838215E-6 f0 = 1000.0 Slope = 1.0 Offset = 0.0

Calibration Standard: Mfg: ASL Model: F18 s/n: 245-5149 Temperature ITS-90 = 1/{g+h[in(f0/f)]+i[in2(f0/f)]+j[in3(f0/f)]} - 273.15 (°C)

SBE3		SBE3	SPRT-SBE3	SPRT-SBE3
Freq	SPRT	New_Coefs	Prev_Coefs	New_Coefs
5034.9080	28.1869	28.1869	0.00129	-0.00001
5327.3120	31.2134	31.2134	0.00145	0.00001
4754.9570	25.1736	25.1736	0.00117	-0.00003
4446.4900	21.7075	21.7075	0.00113	0.00003
4193.8400	18.7414	18.7414	0.00105	0.00000
3963.9100	15.9311	15.9311	0.00097	-0.00004
3733.4680	12.9969	12.9969	0.00098	0.00001
3509.8970	10.0249	10.0248	0.00098	0.00005
3290.7460	6.9777	6.9777	0.00087	-0.00002
3087.3980	4.0175	4.0175	0.00082	-0.00001
2955.8690	2.0273	2.0273	0.00077	-0.00001
2889.1220	0.9928	0.9928	0.00074	-0.00001
2796.0920	-0.4783	-0.4783	0.00068	-0.00002
2760.7580	-1.0463	-1.0463	0.00070	0.00001
2696.7970	-2.0881	-2.0881	0.00067	0.00003

Conductivity #1

Serial # 2568

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9865 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERVICE	U NUMBER 2 IDATE: IS-Jac	2568 -03	SBE4 C PSS 191	ONDUCTIVITY 78: C(35,15,0) – 4	CALIBRATION DATA 2914 Seinens/netzr
OTH COMPRE	EN S		ABCD?	4 COBIFICIENT	8
σ = −1.03633	0721e-001		d -	3.84933×72e+0	004
6 - 1.4846	36029-000		ь –		ede -
1 = 3.4849	57/04-007			038673014	ee 1
2 - 0.1646 2 - 6.1692	7602-2007			9 1000000000 A	
- e.lozo	-03Za-000		E. •	6.263736-3e ÷ 	000
CPCCT = -?.	57002-008 ((romina))	31. -	3.5	
CTeor - 3.	25005-006-0	(non(ina))	Offer	9.5700a-0	(lonzarol) 800
BATH TEMP (11S-90)	BATH SAU (PSU)	BATH COND (Siemens/m)	INST FREO (MEz)	INST COND (Siemeastin)	RESEDUAL (Sizmens/m)
0.0000	0.0000	0.00000	2.64369	0.00000	0.001000
-1,0000	04,9397	2,81315	5.08747	2,81012	-0.1000003
1.0000	34.9240	2.98306	5.19962	2.96506	0.00002
15.0000	3419362	4.28454	5137907	4.26458	0.00004
18,3000	34.9339	4,63208	6.17084	4.63307	-C.OCUCL
29,0000	36.9293	3.71876	6.73469	5,71967	$-C_{1,1}(0,0)C(0,0)$
32.5000	34.9158	5.09199	6.91777	6.09204	0.00005

$$\begin{split} & \text{Conductivity} = (\underline{t} + b f^2 + i f^3) + j f^4) < 0 (1 - St - cp) \text{ Siemensingeter} \\ & \text{Conductivity} = (a f^2 + b f^2 + c + dt) + j (0 (1 - cp) \text{ Scemensineter}) \end{split}$$

 $t \sim temperature[PC)$; $p = pressure[decibars]; \delta = CTeer; s \sim CPeer; -$

 $Residual = (instrument \ conductivity - bath \ conductivity) \ using \ g, \ h, \ i, \ j \ coefficients.$

Date, Stope Correction

Conductivity #2

18.5800

29.0000

32.5000

54.9295

33.9198

Serial # 2561

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9868 Fax (425) 643 - 9954 Email: 30ab rd@soabird.com

SENSOR'S CRIA CALLBRATION	DA DE 18-Jan	2561 -08	NBM CONDUCTIVITY CALIBRATION DATA P\$\$ 1978: C(35,15.5) + 4.2914 Seiners/incto:			
on: comma	ENTS		ABCDI	M COEFFICIENT	8	
$q_1 = -1.0328$	1213e(001		. ·	0.3693399.3g-	305	
$b \rightarrow -1.0331^\circ$	3009e1000		÷. –	1.623910486-	200	
41.07300	09754-000		c	1.052278236+	301	
· - 2,0030-	694.ua 204		d	8.700804436-	305	
- 1 - com = −9.0	800-6403	(notioal)	a	4.7		
Clear = 0.2500e-006 (nominal)			CPco r	9.5700e-	008 (rom8+41)	
BATH TBMP (TPS-90)	BATH SAL (PSU)	BATH COND (Signens/m)	INST FREQ (kHz)	DIST COND (Siemens/m)	RESIDUAL (Signors/m)	
0.0000	0,0000	0.00000	2,34142	3.00000	0.0000	
-1.0000	34.9337	2.813.5	6.86880	2.8_31	-0.00203	
1.0000		2.98506	4.197 ± 73	2.3050	0.0000.8	
1.1.0000	34.9340	4.28454	3.71950	4.20458	$(\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot)$	
13.5800	34,9309	4.63226	5,90204	4.62228	-0.00000	

5.0023

6.61409

e.cccc/

c.çccos

5.71967

6.09204

Conductivity - $(g = 1)^2 = (f^2 = j)^4 / 10(1 \pm 5) + sp)$ Signer since Conductivity = $(af^{(0)} + bf^{(1)} + a + dt) \neq [10]$ (1 top) Siemens-meter the temperature [°C)]: $p = pressure[decibers]; \delta = CTech; s = CPeor;$

5.71374

6.09199

Residual = (instrument conductivity - bath conductivity) using g, h, i, j coefficients

Oxygen

Serial # 0458

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0458 CALIBRATION DATE: 12-Dec-07p

SBE 43 OXYGEN CALIBRATION DATA

TCor = 0.0006

PCor = 1.350e-04

COEFFICIENTS

Soc = 0.4060 Boc = 0.0000 Voffset = -0.4927

BATH OX (ml/l)	BATH TEMP ITS-90	BATH SAL PSU	INSTRUMENT OUTPUT(VOLTS)	INSTRUMENT OXYGEN(ml/l)	RESIDUAL (ml/l)
1.27	20.00	0.01	0.979	1.27	-0.01
1.28	26.00	0.01	1.037	1.27	-0.01
1.28	12.00	0.01	0.909	1.28	0.00
1.28	2.00	0.00	0.820	1.28	0.00
1.29	6.00	0.00	0.858	1.29	0.01
1.29	30.00	0.01	1.085	1.29	0.00
4.15	26.00	0.01	2.265	4.13	-0.01
4.16	20.00	0.01	2.083	4.15	-0.02
4.17	12.00	0.01	1.847	4.17	0.00
4.18	30.00	0.01	2.419	4.19	0.02
4.19	2.00	0.00	1.556	4.18	-0.01
4.19	6.00	0.00	1.677	4.20	0.01
6.59	30.00	0.01	3.535	6.62	0.03
6.78	20.00	0.01	3.082	6.75	-0.03
6.79	26.00	0.01	3.397	6.77	-0.02
6.80	12.00	0.01	2.706	6.81	0.01
6.82	6.00	0.00	2.420	6.83	0.01
6.84	2.00	0.00	2.234	6.84	-0.00

oxygen (ml/l) = (Soc * (V + Voffset)) * exp(Tcor * T) * Oxsat(T,S) * exp(Pcor * P)

V = voltage output from SBE43, T = temperature [deg C], S = salinity [PSU]

Oxsat(T,S) = oxygen saturation [ml/l], P = pressure [dbar], Residual = instrument oxygen - bath oxygen

Fluorometer

Serial # 088234

CERTIFICATE OF CALIBRATION

All test equipment and standards used are of known accuracy and are traceable to national standards. Details of test equipment and standards relevant to this certificate are available upon request.

Date of issue	06 March 2007
Description	Mk III Aquatracka (Chlorophyll-a)
Serial Number	088234
Part No	3598C

REPORT

The fluorimeter was exposed to various concentrations of Chlorophyll-a dissolved in acetone in addition to pure water and pure acetone. The following formula was derived from the readings to relate instrument output to chlorophyll-a concentration.

Conc. =
$$(0.00779 \times 10^{Output}) - 0.0211$$

Where -

Conc. = fluorophor concentration in µg/l Output = Aquatracka output in volts

The above formula can be used in the range 0 - 100 microgrammes per litre to an uncertainty of 0.02 microgrammes per litre plus 5% of value.

Notes

The above formula has been derived using Chlorophyll-a dissolved in acetone. No guarantee is given as to the performance of the instrument to biologically active chlorophyll in sea-water.

The zero offset has been determined in the laboratory using purified water from a reverse osmosis/ion exchange column. It is possible that purer water may be found in clean deep ocean conditions. Under these conditions, the offset shown in the above formula should be replaced by the antilogarithm of the Aquatracka output in the purest water found, multiplied by the scale factor.

Serial number 88234 Page 1 of 2

Chelsea Technologies Group

55 Central Avenue West Molesey Surrey KT8 202 United Kingdom Tel: +44 (0)20 8481 9000 Fax: +44 (0)20 8941 9319 seles@chelsea.co.uk www.chelsea.co.uk

Group Companies

Chelsea Technologies Ltd Chelsea Instruments Ltd Chelsea Environmental Ltd Marine Acoustics Ltd

Transmisometer

Serial # CST-390DR

PO Box 518 620 Applegate St. Philomath, OR 97370

(541) 929-565 Fax (541) 929-527 www.wetlabs.com

C-Star Calibration

Date February	27, 2007 Custo	mer US Coast Guard	Work order now
Job# 0012004	S/N	S/N# CST-390DR	Pathlength 25 cm
V _d V _{air} V _{ref}		Analog meter 0.058 V 4.788 V 4.707 V	
Temperature of ca Ambient temperat	alibration water ure during calibration		18.8 °C
	and the second	or suggestion was an experience of the second of the second s	23.4 °C

Relationship of transmittance (Tr) to beam attenuation coefficient (c), and pathlength (x): $Tr = e^{-cx}$

To determine beam transmittance: $Tr = (V_{sig} - V_{dark}) I (V_{ret} - V_{dark})$

To determine beam attenuation coefficient: c = -1/x * In (Tr)

Meter output with the beam blocked. This is the offset. Vd

Meter output in air with a clear beam path. Vak

V_{ref} Meter output with clean water in the path.

Temperature of calibration water: temperature of clean water used to obtain $V_{\mbox{\scriptsize ref}}$

Ambient temperature: meter temperature in air during the calibration. Measured signal output of meter. Vsig

Serial # 70115

		er volt er volt		
19511	diance.	cm²-sec p cm²-sec p	soc	Test Irrad. (quanta/ cm ² ·sec) 9.43E+15 9.66E+14 1.30E+14 1.02E+13 1.02E+13
Job No.:	incident irra ark Voltage)	µEinsteins/ µEinsteins/	µEinsteins/cm ²	Transmission Error (%) 0.0 4.2 -9.3 -17.7 -27.4
	e log of the tage - 10^D	5.34E-06 9.00E-06	0.01566	Measured Trans. 100.00% 34.66% 10.22% 1.35% 0.07%
VDC (+)	ional to the Signal Volt	volt volt	2000	Voltage % Error 0% 6% 61%
£	s proport 10^Light	1 ² ·sec per	mA Volts quanta/cm	Expected Voltage 3.467 3.024 2.434 1.512 0.194
đ	Itage that i rmula: n factor * (quanta/cm quanta/cm	3.5 6. 9.43E+15 0.594	Sensor Voltage 3.467 3.467 3.467 2.478 1.608 1.608 0.500 Volts Volts Volts Volts Volts
01/09/07 05P2300 70116 TPC -863(9/30/05)	utput is a vo , use this fo = Calibration	3.22E+12 5.42E+12	tts ²⁾ Current (Dark): Supply Voltage: AR Irradiance: Ion Coefficient:	Calibrated Trans. 100.00% 36.10% 9.27% 1.11% 0.05% 0.003 3.467 0.003 0.003 0.003
bration Date: odel Number: srial Number: Operator: ndard Lamp: f ltage Range:	QSP-2300 ou te irradiance Irradiance :	ion Factor: ion Factor:	Data and Resu Sensor Supply mp Integrated F SC3 Immers	Expected Transmission 100% 50% 32% 10% 0.10% 0.10% 0.10% Dark Before: Average Dark Average Dark and for more adve
Cali Mc Sc Sta Sta Sta Operating Vo	Note: The To calculat	Dry Calibrat Vet Calibrat	Sensor Test La	Nominal Filter OD 0.3 0.5 1 2 2 3 2 2 3 0.5 1 1 1 bar bar bar bar
		- >		Notes: 1. Annual cali

Instrument Locations on the Healy

Layout plot of instrument locations

Page 62 of 67

Table of Survey measurements

Conso	lidated Surv	vey Data	•		•	
	Elements of:					
		Avondale Survey				
		Westlake Survey				
		Lamont Survey				
	All Measu	rements in <u>Meters</u> rela	tive to MRP unless otherw	wise stated		
	X = fore &	aft with + foreward				
	Y = port &	z starboard with + to s	tarboard			
	Z= vertica	l with + upwards				
				X	Y	Z
<u>Item</u>	<u>Survev</u>	<u>Description</u>		<u>North</u>	<u>East</u>	<u>Elevation</u>
1	Avondale	MRP	See discussion Westlake Final Report	34.30	0.00	9.15
2	Westlake	MRP	by Definition	0.00	0.00	0.00
3	Westlake	Seabeam 2112				
		Transverse Array	Centerline	-7.679	0.030	9.242
		Longitudinal Array	Centerline	-4.386	0.711	9.238
4	Westlake	Transducers				
		Starboard - Forward	to Aft			
		Transducer -	Bathy 2000 3.5 kHz	-10.252	1.362	9.243
		Transducer -	Bathy 1500 34 kHz *	-11.866	1.559	9.245
		Transducer -	Doppler Speed Log	-12.168	0.414	9.245
		Transducer -	Spare Transducer Well	-13.081	1.449	9.237
5	Westlake	Port - Forward to Af	ť			
		Transducer -	VM 150	-9.726	-1.395	9.230
		Transducer -	Ocean Surveyor 75 kHz	-10.819	-1.290	9.230
		Transducer -	Bathy 2000 12 kHz	-11.859	-1.492	9.234
		Transducer -	Spare Transducer Well	-13.078	-1.394	9.235
6	Westlake	Gyros				
		Starboard Gyro	Centerline	4.741	0.207	-19.604

		Port Gyro	Centerline	4.746	-0.207	-19.609
7	Westlake	Antennas				
		REF DWG TBD	Antenna 9-4 * - GPS Antenna (4.1.5)	4.587	-6.622	-24.000
			Antenna 4-6 * - Northstar GPS (4.1.1)	9.374	-4.970	-23.406
			Antenna 4-2 * - Northstar (4.1.2)	9.362	-3.617	-23.451
			P CODE GPS Antenna *	9.368	-2.645	-23.609
			Antenna 4-3 * - Northstar (4.1.4)	9.355	3.638	-23.363
			GLONAS GPS Antenna *	9.379	5.066	-23.515
			Antonno hogo (1A)	52 970	0.011	22.025
			Antenna base (4A)	-55.872		-22.025
			Antenna base (4D)	-49.738	1.620	-22.010
			Antenna base (4C)	-49.783	1.029	-22.020
					1.540	22.000
			Trimble Centurion**	-52.726	-1.717	-21.113
			Time Server **	-52.671	1.838	-21.115
8	Westlake	Vertical Ref				
			MRV-M-MV -			
			Measured at Top of mounting bracket			
			Center (mid-point) - calculated	-2.100	0.291	-0.775
			TSS 333B - Marine Motion Sensor -			
			scribe atop mounting plate			
			Center of TSS 333B	1.210	0.329	-0.013
9	LDEO	POS/MV				
		From	ТО	X	Y	Z
		IMU	Port Antenna (Master)	-2.9719	-3.9140	-5.5310
		MRP		-49.5710	1.7110	-16.7990
			Deat Art (21 - 1)	-4.3860	0.7110	9.2380
	W7 41 - 1		Port Antenna (Master)	-52.5429	-2.2030	-22.3300
10	westlake	ran lall				

Raw				
	Aft/Port	-86.737	-4.906	-3.617
	Forward/Port	-77.600	-4.881	-3.589
	Forward/Starboard	-72.590	6.676	-3.653

SBE 21 SEACAT Thermosalinograph Data Output Formats

This is extracted from page 33 of the SBE 21 SEACAT Thermosalinograph User's Manual (SeaBird Manual Version #022, 03/30/07).

The SBE 21 outputs data in raw, hexadecimal form as described below.

The inclusion of some output parameters is dependent on the system configuration - if the specified sensor is not enabled (see *Command Descriptions* above), the corresponding data is not included in the output data stream, shortening the data string.

• SBE 21 Format (F1) - ttttccccrrrrruuuvvvwwwxxx (use this format if you will be using SEASAVE to acquire real-time data and/or SBE Data Processing to process the data)

• SBE 16 Format (F2) - #ttttccccrrrrruuuvvvwwwxxxnnnn (custom format)

where

tttt = primary temperature

cccc = conductivity

rrrrr = remote temperature (from SBE 38 or SBE 3 remote sensor)

uuu, vvv, www, xxx = voltage outputs 0, 1, 2, and 3 respectively

= attention character

nnn = lineal sample count (0, 1, 2, etc.)

Data is output in the order listed, with no spaces or commas between parameters. Shown with each parameter is the number of digits.

Calculation of the parameter from the data is described below (use the decimal equivalent of the hex data in the equations).

1. Temperature

temperature frequency (Hz) = (tttt / 19) + 2100

2. Conductivity

conductivity frequency (Hz) = square root [($\csc * 2100$) + 6250000]

3. SBE 3 secondary temperature (if **SBE3=Y**)

SBE 3 temperature frequency (Hz) = rrrrrr / 256

4. SBE 38 secondary temperature (if **SBE38=Y**)

SBE 38 temperature *psuedo* frequency (Hz) = rrrrrr / 256

- 5. External voltage 0 (if 1 or more external voltages defined with SVx) external voltage 0 (volts) = uuu / 819
- 6. External voltage 1 (if 2 or more external voltages defined with SVx) external voltage 1 (volts) = vvv / 819
- 7. External voltage 2 (if 3 or more external voltages defined with SVx) external voltage 2 (volts) = www / 819
- 8. External voltage 3 (if 4 external voltages defined with **SVx**) external voltage 3 (volts) = xxx / 819

Example: SBE 21 with SBE 38 and two external voltages sampled, example scan = ttttccccrrrrruuuvvv = A80603DA1B58001F5A21

- Temperature = tttt = A806 (43014 decimal); temperature frequency = (43014 / 19) + 2100 = 4363.89 Hz
- Conductivity = cccc = 03DA (986 decimal); conductivity frequency =
- square root [986 *2100) + 6250000] = 2884.545 Hz
- SBE 38 = rrrrrr = 1B5800 (1,792,000 decimal)

```
temperature pseudo frequency (Hz) = (1,792,000 / 256) = 7000 Hz
```

• First external voltage = uuu = 1F5 (501 decimal); voltage = 501 / 819 = 0.612 volts

```
• Second external voltage = vvv = A21 (2593 decimal);
voltage = 2593 / 819 = 3.166 volts
```

Note:

SBE 21 always outputs an even number of voltage characters. If you enable 1 or 3 voltages, it adds a 0 to the data stream before the last voltage, as shown below:

- Remote temperature and 1 voltage enabled
 - ttttccccrrrrrr0uuu or

#ttttccccrrrrr0uuunnnn

• Remote temperature and 3 voltages enabled -

ttttccccrrrrrruuuvvv0www

#ttttccccrrrrrruuuvvv0wwwnnnn

Notes:

• Sea-Bird's software (SEASAVE and SBE Data Processing) uses the equations shown to perform these calculations; it then uses the calibration coefficients in the configuration (.con) file to convert the raw frequencies and voltages to engineering units. Alternatively, you can use the equations to develop your own processing software.

• See *Notes on SBE 38 Remote Temperature Data Output Format* below for details on how Sea-Bird handles SBE 38 data.

HLY0802 Data DVD Dates

This DVD is the first in a series of DVDs that contain the data from HLY0802 (BEST) from March 29, 2008, to May 6, 2008.

The first DVD has the ASCII data collected underway for Oceanographic, meteorological and navigation sensors for the whole cruise. In the directory Meta_Data are files that describe the data files that are in this data set. In Meta_Data file HLY0802_data.pdf has a description of the data from this cruise. Also the file HLY0802_Sensors.htm(pdf) has the formats of each data type.

The second and subsequent DVDs contain data from the ship's Sonar sensors. This data is the ADCP(s), Knudsen EchoSounder and the SeaBeam data collected underway. This series of disks is written as the cruise progresses and this data becomes large enough to fit on to a DVD. As an example the SeaBeam data for this whole cruise is on all of these DVDs.

For more information about getting a copy of these DVDs or about this cruise please contact: Chief Scientist: Carin Ashjian Woods Hole Oceanographic Institution 508-289-3457 <u>cashjian@whoi.edu</u>

Data Archive at LDEO:	Bob Arko
	arko@ldeo.columbia.edu

DVD Contents by Time:

The times here are close but not exact. Different files open and close at different times. Use this table to guide you but look at the data itself to be sure how the data is included from one DVD to the next.

File Name	Dates	Start time	End time
Media Vol 1	27 March – 06 May 08	17:45	17:00
Media Vol 2	27 March – 06 April 08	17:45	15:00
Media Vol 3	06 April -14 April 08	15:00	08:30
Media Vol 4	14 April -21 April 08	08:30	20:50
Media Vol 5	21 April - 27 April 08	20:50	14:00
Media Vol 6	27 April - 05 May 08	14:00	18:00
Media Vol 7	05 May - 06 May 08	18:00	17:00