TITLE

CAMP_SiberiaTaiga_Tulagino_20021101_20030331.sfc

CONTACT

Hiroyuki Tsutsui Department of Civil Engineering, School of Engineering, The University of Tokyo Bunkyo-ku, Tokyo 113-8656, Japan TEL: +81-3-5841-6105 FAX: +81-3-5841-6130 E-mail: tsutsui@hydra.t.u-tokyo.ac.jp

Toshio Koike Department of Civil Engineering, School of Engineering, The University of Tokyo Bunkyo-ku, Tokyo 113-8656, Japan TEL: +81-3-5841-6106 FAX: +81-3-5841-6130 E-mail: tkoike@hydra.t.u-tokyo.ac.jp

DATE OF THIS DOCUMENT

Updated 5 October 2006

1. 0 DATASET OVERVIEW

1.1 Introduction

Objectives

The purpose of snow depth measurements is to obtain ground truth data for validation of a snow satellite algorithm for the Advanced Microwave Scanning Radiometer (AMSR) and the AMSR for Earth Observation System (AMSR-E).

1.2 Time period covered by the data

Start: 01 November 2002, 01:00 End: 31 March 2003, 23:00

1.3 Temporal characteristics of the data

All parameters are recoded every 2 hours.

1.4 Physical location of the measurement

: 62.25500 N
: 129.87000 E
: m a.s.l.
: Open field

Soil Characteristics: Sandy soil

1.5 Data source

Original data provided by the University of Tokyo supported by the Japan Aerospace Exploration Agency (JAXA).

1.6 WWW address references

N/A

2.0 INSTRUMENTATION DESCRIPTION

Parameter	Range	Model	Manufacturer	Platform
Air Temperature	0 - 200cm	107 Temperature Probe	CAMBEL	1 0 m
Snow Depth	-50 - +100deg.C	SR-50	CAMBEL	1.2 111

2.3 Instrumentation specification

Air Temperature (1.2m)	: Air Temperature at the 1.2 m height (deg.C)
Snow Depth (1.2m)	: Snow depth at the 1.2 m height (cm)

3.0 DATA COLLECTION AND PROCESSING

Snow depth sensor set has three components:

- Snow depth sensor
- Data logger
- Air temperature sensor

The sensor is based on a 50 kHz (Ultrasonic) electrostatic transducer. The SR50 determines the distance to a target by sending out ultrasonic pulses and listening for the returning echoes that are reflected from the target.

Data logger is CR10X. This data logger is a fully programmable data logger controller with non-volatile memory and a battery backed clock in a small, rugged sealed module.

Air temperature is used to compensate the snow data which is measured by using snow depth sensor. A temperature compensated distance from SR50 to snow surface is obtained by multiplying the SR50 reading by the square root of the air temperature in degree Kelvin divided by 273.15.

DISTANCE = READINGSR50×root(T (K) / 273.15(K))

4.0 QUALITY CONTROL PROCEDURES

For all parameters, the data has been visually checked using the CAMP Quality Control Web Interface. The quality control flags follow the CEOP data flag definition document.

5.0 GAP FILLING PROCEDURES

Filled in gap by the Missing value "-999.99".

6.0 DATA REMARKS

- 6.1 PI's assessment of the data
- 6.1.1 Instruments problems

None.

6.1.2 Quality issues

None.

6.2 Missing data periods

The missing data period are listed in chapter 9.0.

7.0 REFERENCE REQUIREMENTS

Original data was collected and is provided within the framework of the AMSR/AMSR-E verification experiment of the Japan Aerospace Exploration Agency (JAXA), financially supported by JAXA.

8.0 REFERENCES

N/A

9.0 Missing Data Periods

None

TITLE

CAMP_SiberiaTaiga_Tulagino_20031014_20040331.sfc

CONTACT

Hiroyuki Tsutsui Department of Civil Engineering, School of Engineering, The University of Tokyo Bunkyo-ku, Tokyo 113-8656, Japan TEL: +81-3-5841-6105 FAX: +81-3-5841-6130 E-mail: tsutsui@hydra.t.u-tokyo.ac.jp

Toshio Koike Department of Civil Engineering, School of Engineering, The University of Tokyo Bunkyo-ku, Tokyo 113-8656, Japan TEL: +81-3-5841-6106 FAX: +81-3-5841-6130 E-mail: tkoike@hydra.t.u-tokyo.ac.jp

DATE OF THIS DOCUMENT

17 May 2006 (Updated 5 October 2006)

1. 0 DATASET OVERVIEW

1.7 Introduction

Objectives

The purpose of snow depth measurements is to obtain ground truth data for validation of a snow satellite algorithm for the Advanced Microwave Scanning Radiometer (AMSR) and the AMSR for Earth Observation System (AMSR-E).

1.8 Time period covered by the data

Start: 14 October 2003, 01:00 End: 31 March 2004, 23:00

1.9 Temporal characteristics of the data

All parameters are recoded every 2 hours.

1.10 Physical location of the measurement

Latitude	: 62.25500 N
Longitude	: 129.87000 E
Elevation	: m a.s.l.

Landscape : Open field Soil Characteristics: Sandy soil

1.11 Data source

Original data provided by the University of Tokyo supported by the Japan Aerospace Exploration Agency (JAXA).

1.12 <u>WWW address references</u>

N/A

2.0 INSTRUMENTATION DESCRIPTION

Parameter	Range	Model	Manufacturer	Platform
Air Temperature	0 - 200cm	107 Temperature Probe	CAMBEL	1.0 m
Snow Depth	-50 - +100deg.C	SR-50	CAMBEL	1.2 111

2.4 Instrumentation specification

Air Temperature (1.2m)	: Air Temperature at the 1.2 m height (deg.C)
Snow Depth (1.2m)	: Snow depth at the 1.2 m height (cm)

3.0 DATA COLLECTION AND PROCESSING

Snow depth sensor set has three components:

- Snow depth sensor
- Data logger
- Air temperature sensor

The sensor is based on a 50 kHz (Ultrasonic) electrostatic transducer. The SR50 determines the distance to a target by sending out ultrasonic pulses and listening for the returning echoes that are reflected from the target.

Data logger is CR10X. This data logger is a fully programmable data logger controller with non-volatile memory and a battery backed clock in a small, rugged sealed module.

Air temperature is used to compensate the snow data which is measured by using snow depth sensor. A temperature compensated distance from SR50 to snow surface is obtained by multiplying the SR50 reading by the square root of the air temperature in degree Kelvin divided by 273.15.

DISTANCE = READINGSR50×root(T (K) / 273.15(K))

4.0 QUALITY CONTROL PROCEDURES

For all parameters, the data has been visually checked using the CAMP Quality Control Web Interface. The quality control flags follow the CEOP data flag definition document.

5.0 GAP FILLING PROCEDURES

Filled in gap by the Missing value "-999.99".

6.0 DATA REMARKS

- 6.1 PI's assessment of the data
- 6.1.1 Instruments problems

None.

6.1.2 Quality issues

None.

6.2 Missing data periods

The missing data period are listed in chapter 9.0.

7.0 REFERENCE REQUIREMENTS

Original data was collected and is provided within the framework of the AMSR/AMSR-E verification experiment of the Japan Aerospace Exploration Agency (JAXA), financially supported by JAXA.

8.0 REFERENCES

N/A

9.0 Missing Data Periods

File Name : CAMP_SiberiaTaiga_Tulagino_20031014_20040331.sfc Data Period : 2003/10/14 01:00 - 2004/03/31 23:00

Air Temperature 2003/10/14 01:00

Snow Depth 2003/10/14 01:00