# Atqasuk Meteorological Station Handbook



January 2005



Work supported by the U.S. Department of Energy Office of Science, Office of Biological and Environmental Research

ARM TR-036

# **Atqasuk Meteorological Station Handbook**

January 2005

M. T. Ritsche

Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research

# Contents

| 1. | General Overview                 | . 1 |
|----|----------------------------------|-----|
| 2. | Contacts                         | .1  |
| 3. | Deployment Locations and History | .2  |
| 4. | Near-Real-Time Data Plots        | . 2 |
| 5. | Data Description and Examples    | . 3 |
| 6. | Data Quality                     | .9  |
| 7. | Instrument Details               | 10  |

# Tables

| 1.  |                           | 2   |
|-----|---------------------------|-----|
| 2.  | NSA Met Tip Tower         | 3   |
| 3.  | Snow Depth Sensor         | 4   |
| 4.  | Present Weather Sensor    | 4   |
| 5.  | Chilled Mirror Hygrometer | 4   |
| 6.  | NSA Met Tip Tower         | . 5 |
| 7.  | Snow Depth Sensor         | 6   |
| 8.  | Present Weather Sensor    | 6   |
| 9.  | Chilled Mirror Hygrometer | . 7 |
| 10. | NSA Met Tip Tower         | . 7 |
| 11. | Snow Depth Sensor         | . 8 |
| 12. | Present Weather Sensor    | . 8 |
| 13. | NSA Met Tip Tower         | . 8 |
| 14. | Snow Depth Sensor         | . 8 |
| 15. | Present Weather Sensor    | 9   |
| 16. | Chilled Mirror Hygrometer | 9   |

# 1. General Overview

The Atqasuk meteorology station (AMET) uses mainly conventional *in situ* sensors to measure wind speed, wind direction, air temperature, dew point and humidity mounted on a 10m tower. It also obtains barometric pressure, visibility and precipitation data from sensors at or near the base of the tower. Additionally, a Chilled Mirror Hygrometer is located at 1m for comparison purposes. Temperature and relative humidity probes are mounted at 2m and 5m on the tower. The data collection and methods of data collection along with some sensors changed in October 2003. Explanation of the system that was installed in October 2003 can be found at <u>Surface and Tower Meteorological Instrumentation at Atqasuk (METTWR2H)</u>.

# 2. Contacts

# 2.1 Mentor

Michael Ritsche Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 Phone: 630-252-1554 Fax: 630-252-5498 E-mail: <u>mtritsche@anl.gov</u>

# 2.2 Instrument Developer

# Wind Speed and Direction, Temperature and Relative Humidity, Barometric Pressure, Present Weather

Vaisala 100 Commerce Way Woburn, MA 01801-1068 Phone: 617-933-4500 Fax: 617-933-8029

# **Aspirated Radiation Shields**

R.M. Young Company 2801 Aero-Park Drive Traverse City, MI 49686 Phone: 616-946-3980 Fax: 616-946-4772

# **Chilled-Mirror Hygrometer**

Meteolabor AG Hofstrasse 92 CH-8620 Wetzikon Schweis Phone: (+41) 1 932 18 81 Fax: (+41) 1 932 32 49 Website: www.meteolabor.ch

# Computer

Gateway2000 610 Gateway Drive P.O. Box 2000 North Sioux City, SD 57049-2000 Phone: 605-232-2000 Fax: 605-232-2023

# **RocketPort 485 Multport Board**

Control Corporation 900 Long Lake Road St. Paul, MN 55112 Phone: 612-631-7654 Fax: 612-631-8117

#### **BridgeVIEW** software

National Instruments 6504 Bridge Point Parkway Austin, TX 78730-5039 Phone: 512-794-0100 Fax: 512-794-8411

#### 3. Deployment Locations and History

This system was installed in March 1998 and changed to a new data collection system in October 2003. See <u>Surface and Tower Meteorological Instrumentation at Atqasuk (METTWR2H)</u> for an explanation on the current data, sensors and measurement methods.

#### Table 1.

| Location | Date Installed | Date Removed | Status  |
|----------|----------------|--------------|---------|
| NSA/C2   | 03/1998        | N/A-changed  | Changed |

# 4. Near-Real-Time Data Plots

This section is not applicable to this instrument.

# 5. Data Description and Examples

# 5.1 Data File Contents

# 5.1.1 Primary Variables and Expected Uncertainty

| Quantity Variable                         |                  | Unit | Measurement<br>Level | Measurement<br>Interval | Resolution |
|-------------------------------------------|------------------|------|----------------------|-------------------------|------------|
| Barometric Pressure                       | atmos_pressure   | hPa  | 4m                   | 1 min                   | 0.01       |
| Mean Wind Speed                           | wind_spd_mean    | m/s  | 10m                  | 1 min                   | 0.001      |
| Maximum Wind Speed                        | wind_spd_max     | m/s  | 10m                  | 1 min                   | 0.001      |
| Minimum Wind Speed                        | wind_spd_min     | m/s  | 10m                  | 1 min                   | 0.001      |
| Vector-averaged<br>Wind Speed             | wind_spd_vec_avg | m/s  | 10m                  | 1 min                   | 0.001      |
| Vector-averaged<br>Wind Direction         | wind_dir_vec_avg | deg  | 10m                  | 1 min                   | 0.001      |
| Std Dev of<br>Wind Direction              | wind_dir_sd      | deg  | 10m                  | 1 min                   |            |
| Maximum<br>Wind Direction                 | wind_dir_max     | deg  | 10m                  | 1 min                   | 0.001      |
| Minimum<br>Wind Direction                 | wind_dir_min     | deg  | 10m                  | 1 min                   | 0.001      |
| Mean Air Temperature or<br>Hardware Error | temp_mean        | С    | 2m, 5m               | 1 min                   | 0.001      |
| Maximum<br>Air Temperature                | temp_max         | С    | 2m, 5m               | 1 min                   | 0.001      |
| Minimum<br>Air Temperature                | temp_mean        | С    | 2m, 5m               | 1 min                   | 0.001      |
| Mean Relative Humidity                    | relh_mean        | %    | 2m, 5m               | 1 min                   | 0.01       |
| Maximum<br>Relative Humidity              | relh_max         | %    | 2m, 5m               | 1 min                   | 0.01       |
| Minimum<br>Relative Humidity              | relh_min         | %    | 2m, 5m               | 1 min                   | 0.01       |
| Mean Dew Point<br>Temperature             | dew_pt_temp_mean | С    | 2m, 5m               | 1 min                   | 0.001      |
| Maximum Dew Point<br>Temperature          | dew_pt_temp_max  | С    | 2m, 5m               | 1 min                   | 0.001      |
| Minimum Dew Point<br>Temperature          | dew_pt_temp_min  | С    | 2m, 5m               | 1 min                   | 0.001      |
| Mean Vapor Pressure                       | vap_pres_mean    | hPa  | 2m, 5m               | 1 min                   | 0.001      |
| Maximum<br>Vapor Pressure                 | vap_pres_max     | hPa  | 2m, 5m               | 1 min                   | 0.001      |
| Minimum<br>Vapor Pressure                 | vap_pres_min     | hPa  | 2m, 5m               | 1 min                   | 0.001      |

# Table 2. NSA Met Tip Tower

#### January 2005, ARM TR-036

| Table 3. | Snow Depth | Sensor |
|----------|------------|--------|
|----------|------------|--------|

| Quantity   | Variable   | Unit | Measurement<br>Level | Measurement<br>Interval | Resolution | Uncertainty |
|------------|------------|------|----------------------|-------------------------|------------|-------------|
| Snow Depth | snow_depth | m    | sfc                  | unk                     | unk        | unk         |

Table 4. Present Weather Sensor

| Quantity                              | Variable                            | Unit  | Measurement<br>Level | Measurement<br>Interval | Resolution |
|---------------------------------------|-------------------------------------|-------|----------------------|-------------------------|------------|
| NWS Code                              | present_weather_sensor_<br>NWS_code | N/A   | 3m                   | 1 min                   | N/A        |
| One Minute<br>Visibility              | one_minute_visibility               | m     | 3m                   | 1 min                   | 1          |
| Ten Minute<br>Visibility              | ten_minute_visibility               | m     | 3m                   | 1 min                   | 1          |
| One Minute<br>PW code                 | one_minute_PW_code                  | N/A   | 3m                   | 1 min                   | N/A        |
| Ten Minute<br>PW Code                 | ten_minute_PW_code                  | N/A   | 3m                   | 1 min                   | N/A        |
| One Hour<br>PW code                   | one_hour_PW_code                    | N/A   | 3m                   | 1 min                   | N/A        |
| Precipitation Rate                    | precip_rate                         | mm/hr | 3m                   | 1 min                   | 0.01       |
| Cumulative Liquid<br>Water Equivalent | cumul_liq_water_equiv               | mm/hr | 3m                   | 1 min                   | 0.01       |
| Cumulative Snow                       | cumul_snow                          | mm/hr | 3m                   | 1 min                   | 0.01       |

 Table 5.
 Chilled Mirror Hygrometer

| Quantity              | Variable    | Unit | Measurement<br>Level | Measurement<br>Interval | Resolution |
|-----------------------|-------------|------|----------------------|-------------------------|------------|
| Air temperature       | air_temp    | С    | 2m                   | 10 min                  | 0.1        |
| Dew point temperature | dew_pt_temp | С    | 2m                   | 10 min                  | 0.01       |
| Relative humidity     | relh        | %    | 2m                   | 10 min                  | 0.1        |

# 5.1.1.1 Definition of Uncertainty

We define uncertainty as the range of probable maximum deviation of a measured value from the true value within a 95% confidence interval. Given a bias (mean) error *B* and uncorrelated random errors characterized by a variance  $\sigma^2$ , the root-mean-square error (RMSE) is defined as the vector sum of these,

$$RMSE = \left(B^2 + \sigma^2\right)^{1/2}$$

(*B* may be generalized to be the sum of the various contributors to the bias and  $\sigma^2$  the sum of the variances of the contributors to the random errors). To determine the 95% confidence interval we use the Student's *t* distribution:  $t_{n;0.025} \approx 2$ , assuming the RMSE was computed for a reasonably large ensemble. Then the *uncertainty* is calculated as twice the RMSE.

# 5.1.2 Secondary/Underlying Variables

This section is not applicable to this instrument.

# 5.1.3 Diagnostic Variables

| Variable                                               | Measurement Interval              | Measurement<br>Level | Min   | Max  |
|--------------------------------------------------------|-----------------------------------|----------------------|-------|------|
| Barometric Pressure<br>out of range error              | atmos_pressure_out_of_range_error | 4m                   | 800   | 1100 |
| Barometric Pressure<br>read timeout error              | atmos_pressure_read_timeout_error | 4m                   |       |      |
| PTB Serial Error                                       | atmos_pressure_PTB_Serial_Error   | 4m                   |       |      |
| Std Dev of Wind Speed                                  | wind_spd_sd                       | 10m                  |       |      |
| Std Dev of Air Temperature                             | temp_sd                           | 2m, 5m               |       |      |
| Std Dev of Relative Humidity or<br>Hardware Error Code | relh_sd                           | 2m, 5m               |       |      |
| Std Dev of Dew Point<br>Temperature                    | dew_pt_temp_sd                    | 2m, 5m               |       |      |
| Std Dev of Vapor Pressure                              | vap_pres_sd                       | 2m, 5m               |       |      |
| Wind Speed out of range error                          | wind_spd_out_of_range_error       | 2m, 5m               | 0     | 100  |
| Wind Direction<br>out of range error                   | wind_dir_out_of_range_error       | 2m, 5m               | 0     | 360  |
| Air Temperature<br>out of range error                  | temp_out_of_range_error           | 2m, 5m               | -50   | 30   |
| Relative Humidity<br>out of range error                | relh_out_of_range_error           | 2m, 5m               | -2    | 104  |
| Dew Point Temperature<br>out of range error            | dew_pt_temp_out_of_range_error    | 2m, 5m               | -60   | 30   |
| Vapor Pressure<br>out of range error                   | vap_press_out_of_range_error      | 2m, 5m               | 0.002 | 43   |
| Internal Voltage<br>out of range error                 | internal_voltage_out_of_range     | 2m, 5m               | 21.5  | 28.5 |
| Internal Temperature<br>out of range error             | internal_temp_out_of_range_error  | 2m, 5m               | -50   | 100  |
| Air Temperature<br>Hardware Error                      | temp_hardware_error               | 2m, 5m               | N/A   | N/A  |

**Table 6**.NSA Met Tip Tower

| Variable                                                | Measurement Interval  | Measurement<br>Level | Min | Max |
|---------------------------------------------------------|-----------------------|----------------------|-----|-----|
| Dew Point Temperature Hardware<br>Error                 | dew_pt_hardware_error | 2m, 5m               | N/A | N/A |
| Number of timeout readings of the met tower data by QLI | read_timeout_count    | N/A                  | N/A | N/A |
| Mean Air Temperature Difference                         | mean_temp_diff        | N/A                  | -5  | 5   |
| Std Dev of Mean Air Temperature Difference              | temp_sd_diff          | N/A                  | N/A | N/A |
| Maximum Air Temperature<br>Difference                   | temp_max_diff         | N/A                  | N/A | N/A |
| Minimum Air Temperature<br>Difference                   | temp_min_diff         | N/A                  | N/A | N/A |

# Table 7. Snow Depth Sensor

| Quantity           | Variable                      | Measurement<br>Interval | Min | Max |
|--------------------|-------------------------------|-------------------------|-----|-----|
| Out of Range Error | snow_depth_out_of_range_error | unk                     | 0   | 2   |
| Read Timeout Error | snow_depth_read_timeout_error | unk                     | N/A | N/A |
| SR50 Serial Error  | snow_depth_serial_error       | unk                     | N/A | N/A |

# Table 8. Present Weather Sensor

| Variable                                     | Measurement Interval                | Min | Max   |
|----------------------------------------------|-------------------------------------|-----|-------|
| One Minute Visibility<br>out of range error  | one_minute_vis_out_of_range_error   |     | 50000 |
| Ten Minute Visibility<br>out of range error  | ten_minute_vis_out_of_range_error   | 0   | 50000 |
| One Minute PW code<br>out of range error     | one_min_pw_code_out_of_range_error  |     | 99    |
| Ten Minute PW code<br>out of range error     | ten_min_pw_code_out_of_range_error  | 0   | 99    |
| One Hour PW code<br>out of range error       | one_hour_pw_code_out_of_range_error | 0   | 99    |
| PWS Precipitation Rate<br>out of range error | precip_rate_out_of_range_error_     | 0   | 999   |

| Variable                                      | Measurement Interval                     | Min | Max |
|-----------------------------------------------|------------------------------------------|-----|-----|
| Liquid Water Equivalent<br>out of range error | cumul_liq_water_equiv_out_of_range_error | 0   | 999 |
| Cumulative Snow<br>out of range error         | cumul_snow_out_of_range_error            | 0   | 999 |
| Present Weather Sensor<br>Serial Error        | pws_serial_error                         | N/A | N/A |
| Present Weather Sensor<br>Read Timeout Error  | pws_read_timeout_error                   | N/A | N/A |

# Table 9. Chilled Mirror Hygrometer

| Quantity                                    | Variable                       | Measurement<br>Interval | Min | Max |
|---------------------------------------------|--------------------------------|-------------------------|-----|-----|
| Air temperature<br>out of range error       | air_temp_out_of_range_error    | 10 min                  | unk | unk |
| Dew point temperature<br>out of range error | dew_pt_temp_out_of_range_error | 10 min                  | unk | unk |
| Relative Humidity<br>out of range error     | relh_out_of_range_error        | 10 min                  | unk | unk |
| Read timeout error                          | read_timeout_error             | 10 min                  | unk | unk |
| Serial port read error                      | serial_read_error              | 10 min                  | unk | unk |

# 5.1.4 Data Quality Flags

# Table 10. NSA Met Tip Tower

| Quantity                                  | Variable            | Measurement<br>Level | Measurement<br>Interval | Min   | Max  | Delta |
|-------------------------------------------|---------------------|----------------------|-------------------------|-------|------|-------|
| Barometric Pressure                       | qc_atmos_pressure   | 4m                   | 1 min                   | 800   | 1100 | 10    |
| Mean Wind Speed                           | qc_wind_spd_mean    | 10m                  | 1 min                   | 0     | 100  | 20    |
| Vector-averaged Wind<br>Direction         | qc_wind_dir_vec_avg | 10m                  | 1 min                   | 0     | 360  | 90    |
| Mean Air Temperature<br>or Hardware Error | qc_temp_mean        | 2m, 5m               | 1 min                   | -60   | 30   | 10    |
| Mean<br>Relative Humidity                 | qc_relh_mean        | 2m, 5m               | 1 min                   | -2    | 104  | 30    |
| Mean Dew Point<br>Temperature             | qc_dew_pt_temp      | 2m, 5m               | 1 min                   | -60   | 30   | 10    |
| Mean Vapor Pressure                       | qc_vap_pres_mean    | 2m, 5m               | 1 min                   | 0.002 | 43   | 10    |
| Mean Air Temperature<br>Difference        | qc_temp_mean_diff   | N/A                  | 1 min                   | -5    | 5    | 2     |

#### January 2005, ARM TR-036

| Table 11.         Snow Depth Sen |
|----------------------------------|
|----------------------------------|

| Quantity   | Variable               | Measurement<br>Interval | Min | Max | Delta |
|------------|------------------------|-------------------------|-----|-----|-------|
| Snow Depth | snow_depth_internal_QC | unk                     | 162 | 210 |       |

Table 12. Present Weather Sensor

| Quantity                              | Variable                 | Measurement<br>Interval | Min | Max   | Delta |
|---------------------------------------|--------------------------|-------------------------|-----|-------|-------|
| One Minute Visibility                 | qc_one_minute_visibility | 1 min                   | 0   | 50000 | 5000  |
| Ten Minute Visibility                 | qc_ten_minute_visibility | 1 min                   | 0   | 50000 | 5000  |
| One Minute PW Code                    | qc_one_minute_PW_code    | 1 min                   | 0   | 99    | N/A   |
| Ten Minute PW Code                    | qc_ten_minute_PW_code    | 1 min                   | 0   | 99    | N/A   |
| One Hour PW Code                      | qc_one_hour_PW_code      | 1 min                   | 0   | 99    | N/A   |
| Precipitation Rate                    | qc_precip_rate           | 1 min                   | 0   | 999   | 100   |
| Cumulative Liquid<br>Water Equivalent | qc_cumul_liq_water_equiv | 1 min                   | 0   | 999   | 100   |
| Cumulative Snow                       | qc_cumulative_snow       | 1 min                   | 0   | 999   | 100   |

# 5.1.5 Dimension Variables

Table 13. NSA Met Tip Tower

| Variable    | Measurement Interval                          | Unit                                   |
|-------------|-----------------------------------------------|----------------------------------------|
| base_time   | base_time 1 min seconds since YYYY-mm-dd XX:X |                                        |
| time_offset | 1 min                                         | seconds since YYYY-mm-dd XX:XX:XX X:XX |
| lat         | 1 min                                         | degrees                                |
| lon         | 1 min                                         | degrees                                |
| alt         | 1 min                                         | meters above sea level                 |

# Table 14. Snow Depth Sensor

| Variable    | Measurement Interval         | Unit                                   |
|-------------|------------------------------|----------------------------------------|
| base_time   | 1 min                        | seconds since YYYY-mm-dd XX:XX:XX X:XX |
| time_offset | 1 min                        | seconds since YYYY-mm-dd XX:XX:XX X:XX |
| lat         | 1 min                        | degrees                                |
| lon         | 1 min                        | degrees                                |
| alt         | 1 min meters above sea level |                                        |

#### January 2005, ARM TR-036

| Variable    | Measurement Interval | Unit                                   |
|-------------|----------------------|----------------------------------------|
| base_time   | 1 min                | seconds since YYYY-mm-dd XX:XX:XX X:XX |
| time_offset | 1 min                | seconds since YYYY-mm-dd XX:XX:XX X:XX |
| lat         | 1 min                | degrees                                |
| lon         | 1 min                | degrees                                |
| alt         | 1 min                | meters above sea level                 |

#### Table 15. Present Weather Sensor

#### Table 16. Chilled Mirror Hygrometer

| Variable    | Measurement Interval | Unit                                   |
|-------------|----------------------|----------------------------------------|
| base_time   | 1 min                | seconds since YYYY-mm-dd XX:XX:XX X:XX |
| time_offset | 1 min                | seconds since YYYY-mm-dd XX:XX:XX X:XX |
| lat         | 1 min                | degrees                                |
| lon         | 1 min                | degrees                                |
| alt         | 1 min                | meters above sea level                 |

# 5.2 Annotated Examples

This section is not applicable to this instrument.

# 5.3 User Notes and Known Problems

This section is not applicable to this instrument.

#### 5.4 Frequently Asked Questions

This section is not applicable to this instrument.

#### 6. Data Quality

#### 6.1 Data Quality Health and Status

This section is not applicable to this instrument.

#### 6.2 Data Reviews by Instrument Mentor

Each data measurement value was compared to upper and lower limits by the data acquisition and processing program. If a single value obtained during the one-minute processing interval was outside of these limits, a flag was set and included in the data record for that minute.

# 6.3 Data Assessments by Site Scientist/Data Quality Office

This section is not applicable to this instrument.

# 6.4 Value-Added Procedures and Quality Measurement Experiments

Many of the scientific needs of the ARM Program are met through the analysis and processing of existing data products into "value-added" products or VAPs. Despite extensive instrumentation deployed at the ARM CART sites, there will always be quantities of interest that are either impractical or impossible to measure directly or routinely. Physical models using ARM instrument data as inputs are implemented as VAPs and can help fill some of the unmet measurement needs of the program. Conversely, ARM produces some VAPs not in order to fill unmet measurement needs, but instead to improve the quality of existing measurements. In addition, when more than one measurement is available, ARM also produces "best estimate" VAPs. A special class of VAP called a Quality Measurement Experiment (QME) does not output geophysical parameters of scientific interest. Rather, a QME adds value to the input datastreams by providing for continuous assessment of the quality of the input data based on internal consistency checks, comparisons between independent similar measurements, or comparisons between measurement with modeled results, and so forth. For more information, see the <u>VAPs and QMEs</u> web page.

# 7. Instrument Details

# 7.1 Detailed Description

# 7.1.1 List of Components

**Wind speed sensors**: Vaisala WAA251 cup anemometers with heated cups and shafts are used to measure wind speed at each height. Vaisala quotes a starting threshold of about 0.5 m, a distance constant of 2.7 m, and a linear output with an accuracy of  $\pm -0.17$  m/s between 0.4 to 75 m/s.

**Wind direction sensors**: Vaisala WAV251 wind vanes with heated shafts are used to measure wind direction at each height. Vaisala quotes a starting threshold of 0.4 m/s, a damping ratio of 0.14, an overshoot ratio of 0.65, and a delay distance of 0.4 m.

**Temperature and relative humidity sensors**: Vaisala HMP35D or HMP45D Relative Humidity and Temperature Probes are used to measure air temperature and relative humidity at each height. They are mounted in R. M. Young 43408-2 Aspirated Radiation Shields. Vaisala quotes an accuracy of +/-2%RH (0% to 90%RH) and +/-3%RH (90% to 100% RH).

**Data converters**: Vaisala QLI50 Sensor Collectors are used at each height to convert the wind speed, wind direction, temperature, and relative humidity sensor signals to digital data.

**DC power supplies**: Vaisala WHP25 power supplies at each tower level power the instrumentation at that level.

**Chilled-mirror hygrometer**: A Meteolabor AG VTP6 Ventilated Thermohygrometer is used to measure air and dew point temperatures at 2 m. It runs on a 10 minute cycle. Meteolabor AG quotes a resolution of 0.1 deg C resolution and an accuracy of +/- 0.15 deg C between -20 deg C and +50 deg C and +/-0.25 deg C between -65 deg C and -20 deg C.

**Present weather sensor**: A Vaisala FD12P Present Weather Sensor produces visibility and precipitation data. It also produces NWS and WMO weather codes. Vaisala quotes the visibility accuracy to be +/-10% between 10 and 10,000 meters and +/-20% for 10,000 to 50,000 meters and a precipitation accuracy of +/-30%.

**Barometric pressure sensor**: A Vaisala PTB220 Digital Barometer is used to measure the station barometric pressure. The barometer has a resolution of 0.1 hPa and an accuracy of 0.25 hPa.

**Data acquisition and processing system**: A Gateway2000 G6-300 computer is used to acquire and process the data.

# 7.1.2 System Configuration and Measurement Methods

A set of sensors for measuring wind speed, wind direction, air temperature, and relative humidity and a Sensor Collector which converts the signals from the sensors into digital data are deployed on each of 4 booms mounted on the 40 m tower. A chilled-mirror hygrometer is mounted at 2 m near the 2 m boom. An optical precipitation sensor is mounted on an arm at the base of the tower. A Present Weather Sensor and a digital barometer are located nearby.

# Wind speed at 10 m

The cup anemometers use a photo-chopper to produce a 10 Hz per m/s signal. The Sensor Collectors determine the frequency by obtaining the average period between pulses and convert them to wind speeds. Both the cups and the shafts of these sensors are heated in order to prevent ice buildup from affecting the accuracies of the measurements. One minute means, vector-averages, and standard deviations are reported with a precision of 0.001 m/s but have a resolution of only 0.02 m/s. Minima and maxima are reported with a precision of 0.1 m/s

#### Wind direction at 10 m

The wind vanes use an optically detected GRAY code disk with a 5.6 deg resolution. The Sensor Collectors convert the GRAY code into a binary value. The shafts of these sensors are heated in order to prevent ice buildup from affecting the accuracies of the measurements. Vector-averages and standard deviations are reported with a precision of 0.001 deg but have a resolution of only 0.1 deg. Minima and maxima are reported with 1 deg precision.

#### Air temperature at 2 and 5 m

The air temperature sensors, 4-wire 100 ohm platinum resistance thermometers, are included in the same probe as the relative humidity sensors. The probes are mounted in aspirated radiation shields to minimize radiation and self-heating errors. The Sensor Collectors supply a 1.2 mA constant-current excitation and measure the voltages across the sensors. They then compute the temperatures from the voltages. Means and standard deviations are reported with a precision of 0.001 C. Minima and maxima are reported with a precision of 0.01 C.

#### Relative humidity at 2 and 5 m

The relative humidity probes use Vaisala HUMICAP sensors and associated electronics to produce a 0 to 1 V output corresponding to an RH of 0 to 100%. The Sensor Collectors use A/D converters to measure the voltages and convert them to % RH. They also compute the Dew Points from the air temperatures and relative humidities. Means and standard deviations of relative humidity are reported with a precision of 0.001% RH but have resolution of only 0.1% RH. Minima and maxima are reported with a precision of 0.1% RH.

#### Air and dew point temperatures at 2 m

The Meteolabor AG VTP6 Ventilated Thermohygrometer uses a chilled-mirror hygrometer to measure the dew point temperature and a thermocouple to measure the air temperature. The hygrometer cycle incorporates a heater, a mirror cleaning feature, and automatic differentiation between ice and water films on the mirror. It makes 10 measurements within a 40 second period every 10 minutes and transmits averaged values. The data acquisition system obtains the past hour's readings a few minutes after the hour and writes the data to a separate file.

# Visibility and Present Weather

The Present Weather Sensor is a microprocessor controlled, intelligent sensor that uses a forward scatter visibility meter, a capacitive rain detector, and a platinum resistance thermometer to measure visibility and amount and type of precipitation. By monitoring the LED transmitted light intensity, the sensor compensates for temperature and aging effects. It has a digital (RS-232) output. Visibilities are reported in meters, precipitation in mm/hr, liquid water equivalence in mm, and total snow in mm.

#### **Barometric pressure**

The barometer produces a digital output from measurements of a silicon capacitive absolute pressure sensor. The sensor is located next to the computer in the shelter but has a port to the outside. It reports atmospheric pressure with a 0.1 hPa resolution.

# Data acquisition and processing

National Instruments' BridgeVIEW, a superset of LabVIEW, is used on a Pentium II computer operating under WindowsNT4.0 to acquire and process the data. The Sensor Collectors, the optical precipitation sensor, the barometer, and the Present Weather Sensor are all digital output devices. The computer polls the Sensor Collectors every 2 seconds and computes means, standard deviations, minima, and maxima over periods of 1-minute duration. It also computes vapor pressures and vector-averaged winds. Once a minute it polls the barometer, the precipitation sensor, and the Present Weather Sensor. Once an hour it polls the chilled-mirror hygrometer. All incoming data are compared to limits and flags are set if any are outside those limits.

# 7.1.3 Specifications

The specifications are given under List of Components, Section 7.1.1., and are further discussed under System Configuration and Measurement Methods, Section 7.1.2., above.

# 7.2 Theory of Operation

Each of the primary measurements of wind speed, wind direction, air temperature, relative humidity, barometric pressure, and rate of rainfall are intended to represent self-standing data streams that can be used independently or in combinations. The theory of operation of each of these sensors is similar to that for sensors typically used in other conventional surface meteorological stations. Some details can be found under Description of System Configuration and Measurement Methods but further, greatly detailed description of theory of operation is not considered necessary for effective use of the data for these rather common types of measurements. The instrument mentor or the manufacturers can be contacted for further information.

# 7.3 Calibration

# 7.3.1 Theory

The AMET is not calibrated as a system. The sensors along with the Sensor Collectors and the instruments are calibrated separately. The system was installed using components that had a current calibration. The sensor, Sensor Collector, and instrument calibrations are checked in the field by comparison to calibrated references. Any unit that fails a field check is returned to the manufacturer for recalibration.

Wind speed calibrations are checked by rotating the anemometer shafts at a series of fixed rpm's using an R. M. Young Model 18810 Anemometer Drive. The reported wind speeds are compared to a table of expected values and tolerances. If the reported wind speeds are outside the tolerances for any rate of rotation, the sensor is replaced by one with a current calibration.

Wind direction calibrations are checked by using a vane angle fixture, R. M. Young Model 18212, to position the vane at a series of angles. The reported wind directions are compared to the expected values. If any direction is in error by more than 5 degrees, the sensor is replaced by one with a current calibration.

Air temperature and relative humidity calibrations are checked by comparison with the Meteolabor AG Ventilated Thermohygrometer. If the reported temperature and relative humidity vary by more than the sensor uncertainty from the reference, the probe is replaced by one with a current calibration.

Barometric pressure calibration is checked by comparison with a reference Vaisala PA-11 Barometer. If the reported pressure varies by more than the sensor uncertainty from the reference, the sensor is replaced by one with a current calibration.

The Present Weather Sensor is check calibrated following the manufacturer's recommendation.

# 7.3.2 Procedures

This section is not applicable to this instrument.

# 7.3.3 History

All equipment were calibrated at the manufacturers prior to installation.

# 7.4 Operation and Maintenance

#### 7.4.1 User Manual

This section is not applicable to this instrument.

# 7.4.2 Routine and Corrective Maintenance Documentation

This section is not applicable to this instrument.

# 7.4.3 Software Documentation

ARM netCDF file header descriptions were contained in the Mettiptwr, Present Weather Sensor (PWS), and Snow Depth Sensor Data Object Design Change files. Contact the mentor for a copy.

# 7.4.4 Additional Documentation

This section is not applicable to this instrument.

#### 7.5 Glossary

See the <u>ARM Glossary</u>.

#### 7.6 Acronyms

See the ARM Acronyms and Abbreviations.

# 7.7 Citable References

None