TITLE

CAMP_Himalayas_Pyramid_20021001_20030331.sfc

CONTACT

Massimo Bollasina Epson Meteo Center Via M. Viganò de Vizzi 93/95 20092 Cinisello Balsamo - Milan - ITALY E-mail: massimo.bollasina@epson-meteo.org

DATE OF THIS DOCUMENT

17 February 2004

1. 0 DATASET OVERVIEW

1.1 Introduction

Intensive meteorological observations in the Khumbu Valley, Nepal Himalayas, have been conducted since the middle 90's (Ueno et al., 1996; Tartari et al., 1999; Bertolani et al., 2000; Ueno et al., 2001; Bollasina et al., 2002; Ueno and Pokhrel, 2002) in order to provide long-term monitoring of the monsoon at high altitude. This area, being located on the windward side of the Range with respect to the Indian monsoon, is well exposed to the summer winds. The studies conducted have demonstrated

that the region is a significant point of observation both of local climate and large-scale circulation. A network of Automated Weather Stations (AWSs) has been established in the Eastern Himalayas: the AWSs are located at different altitudes, over a 40 km stretch oriented approximately south to north. The observations of snow depth and of the four components of radiation are crucial for studying the feedback mechanisms and the physical exchange processes between the land and the atmosphere, very important in the modulation of the monsoon.

1.2 Time period covered by the data

Start: 1 October 2002, 00:00 End: 31 March 2003, 23:00

1.3 Temporal characteristics of the data

All parameters are recoded hourly. This station includes air temperature, relative humidity, dew point, specific humidity, station pressure, wind speed, wind direction, U wind component, V wind component, incoming shortwave radiation, outgoing shortwave radiation, incoming longwave radiation, outgoing longwave radiation, net radiation, snow depth and precipitation.

The following parameters are completely missing: incoming PAR, outgoing PAR and skin temperature.

1.4 Physical location of the measurement

Latitude: 27° 57′ 32.5″ N Longitude: 86° 48′ 47.6″ E Elevation: 5035 m a.s.l.

1.5 Data source

Original data provided by the Ev-K2-CNR Committee.

1.6 WWW address references

http://news.epson-meteo.org http://www.montagna.org

2.0 INSTRUMENTATION DESCRIPTION

2.1 Platform

The sensors are mounted on a 2-m and a 5-m masts.

2.2 Description of the instrumentation

Parameter	Model	Manifacturer
Air Temperature	DMA570	Lsi-Lastem (Italy)
Precipitation	DQA035	Lsi-Lastem (Italy)
Relative Humidity	DMA570	Lsi-Lastem (Italy)
Atmospheric Pressure	CX115P	Lsi-Lastem (Italy)
Wind Speed	DNA022	Lsi-Lastem (Italy)
Wind Direction	DNA022	Lsi-Lastem (Italy)
Downward Shortwave Radiation	CM3	Kipp&Zonen (The Netherlands)
Upward Shortwave Radiation	CM3	Kipp&Zonen (The Netherlands)
Downward Longwave Radiation	CG3	Kipp&Zonen (The Netherlands)
Upward Longwave Radiation	CG3	Kipp&Zonen (The Netherlands)
Snow Depth	SLU4/20	Micros (Italy)

2.3 Instrumentation specification

Parameter	Sensor Type	Height of s	sensor (m)	Accuracy
Resolution Air Temperature	Thermoresistan	ce 2		0.1°C
0.025°C Precipitation	Tipping Bucket	1	5	1% (0-1 mm/min);
0.2 mm		_		2% (1-3 mm/min)
Relative Humidity	Capacitive Plate	2	2.5%	0.2%

Atmospheric Pressure hPa	Slice of Silica	2		1 hPa	0.1
Wind Speed 0.05 m/s	3-cup anemometer	5		0.1 m/s	
Wind Direction 0.1°	Potentiometer	5		1%	
Downward Shortwave Radiation	Thermopile	2		10% (daily total) -	<u>-</u>
Upward Shortwave Radiation	Thermopile	2		10% (daily total) -	-
Downward Longwave Radiation	Thermopile	2		10% (daily total) -	-
Upward Longwave total) - Radiation	Thermopile		2	10% (da	ily
Snow Depth cm	Ultrasonic	2		1 cm	0.1

3.0 DATA COLLECTION AND PROCESSING

3.1 Description of data collection

Data are downloaded from the AWS twice every year, in spring and autumn. Then, data are sent to Italy, where they are processed.

3.2 Description of derived parameters and processing techniques used

Temperature, relative humidity and radiation are instantaneous values. Precipitation is accumulated on the previous hour. Atmospheric pressure is averaged over the previous hour. Wind speed and direction are the resulting average speed and direction over the previous hour (calculated by the datalogger by means of data recorded every 5 seconds): this to minimize data unreliability due to sudden gusts. Both of them are calculated weighting the frequency distribution of both variables within each hour. Snow depth is averaged over the previous hour.

3.3 Data format

These data are in the CEOP EOP-3 data format agreed to by the CEOP Scientific Steering Committee. This format is described in detail as part of the CEOP Reference Site Data Set Procedures Report which is available at the following URL:

http://www.joss.ucar.edu/ghp/ceopdm/refdata_report/ceop_sfc_met_format.html

4.0 QUALITY CONTROL PROCEDURES

For all parameters, the data has been visually checked, looking for extremely and unusual low/high values and/or periods with constant values. Nocturnal shortwave radiation data has been checked for non-zero values; wind speed and direction for sensor freezing (in that case recorded wind speed is zero and wind direction is 360°); precipitation data has been checked for delayed measurement due to the

melting of solid precipitation (in that case, the amount is usually measured around 10 local time of the morning of the following day). Snow depth values have been checked to delete hourly/daily fluctuations of the measured snow (in absence of real snow fall) due to the dependence of the sensor signal on air density; in fact, though the sensor is temperature compensated, more or less regular fluctuations (no greater than \pm 1-2 cm) are still recognisable.

Cross-checking among the variation of different measured parameters (ground heat flux, snow cover, etc.) was also performed to assure the consistency among the variations of different variables under the same conditions. The consistency of downward and upward shortwave radiation was also verified calculating the albedo (at high sun elevations).

The quality control flags follow the CEOP data flag definition document.

4.2 UCAR/JOSS Quality Control Procedures

UCAR/JOSS conducted two primary quality assurance/control procedures on the reference site data. First the data has been evaluated by a detailed QA algorithm that verifies the format is correct, examines any QC flags, and conducts basic checks on data values. Second, JOSS conducts a manual inspection of time series plots of each parameter.

5.0 GAP FILLING PROCEDURES

No gap filling procedure was applied.

- 6.0 DATA REMARKS
- 6.1 PI's assessment of the data
- 6.1.1 Instruments problems

None.

6.1.2 Quality issues

Due to sensor freezing, in some cases wind speed and direction were recorded as 0 and 360, respectively, and, thus, considered bad. Due to slow melting of solid precipitation in the not-heated rain gauge, precipitation is sometimes recorded with delay. These values were considered dubious. There is a general tendency of the sensor to over-estimate relative humidity and to reach saturation conditions. Dew deposition could be observed on the radiation sensor. Snow depth measured values have fluctuations related to air density variations.

6.2 Missing data periods

All data are missing on 1 October 2002 from 8:00 to 15:00 due to operations on the datalogger (i.e., channels configuration). Radiation and snow depth data are missing on 1 October 2002 from 00:00 to 16:00 due to sensor installation. Due to the

datalogger fault, radiation and snow depth data are missing on 27 October 2002 from 8:00 to 23:00. Due to operations on the datalogger (i.e., channels configuration), radiation and snow depth data are missing on 21 October 2002 at 08:00 and on 22 October 2002 at 10:00.

7.0 REFERENCE REQUIREMENTS

Original data was collected and is provided within the framework of the Ev-K2-CNR/RONAST

Joint Scientific and Technological Research Project, funded by Italian Ministries and National Research Council through the Ev-K2-CNR Committee.

8.0 REFERENCES

- Ueno K., and A. P. Pokhrel, 2002: Intra-seasonal air temperature variation in the Nepal Himalayas, Mausam, 53, 281-288.
- Bollasina, M., L. Bertolani, and G. Tartari, 2002: Meteorological observations in the Khumbu Valley, Nepal Himalayas, 1994-1999, Bull. Glac. Res., 19, 1-11.
- Ueno K., R. B. Kayastha, M. R. Chitrakar, O. R. Bajracharya, A. P. Pokhrel, H. Fujinami, T. Kadota, H. Iida, D. P. Manandhar, M. Hattori, T. Yasunari, and M. Nakawo, 2001: Meteorological observations during 1994-2000 at the Automatic Weather Station (GEN-AWS)
 - in Khumbu region, Nepal Himalayas, Bull. Glac. Res., 18, 23-30.
- Bertolani, L., M. Bollasina, and G. Tartari, 2000: Recent biennial variability of meteorological features in the Eastern Highland Himalayas, Geophys. Res. Lett., 17, 2185-2188.
- Tartari, G., G. P. Verza, and L. Bertolani, 1999: Meteorological data at the Pyramid Laboratory. In: A. Lami, R. Mosello, G. Giussani (Eds), Limnology of high altitude in the Khumbu Valley, Nepal. Documenta Ist. Ital. Idrobiol.
- Ueno K., H. Iida, H. Yabuki, K. Seko, A. Sakai, G. S. Lhakupa, R. B. Kayastha, A. P. Pokhrel, M. L. Shrestha, T. Yasunari, and M. Nakawo, 1996: Establishment of the GEN Automatic Weather Station (AWS) in Khumbu region, Nepal Himalayas, Bull. Glac. Res., 14, 13-22.

TITLE

CAMP Himalayas Pyramid 20030401 20030930.sfc

CONTACT

Massimo Bollasina and Laura Bertolani Epson Meteo Center Via M. Viganò de Vizzi 93/95 20092 Cinisello Balsamo – Milan – ITALY

E-mail: massimo.bollasina@epson-meteo.org; laura.bertolani@epson-meteo.org

DATE OF THIS DOCUMENT

05 October 2004

1. 0 DATASET OVERVIEW

1.1 Introduction

Intensive meteorological observations in the Khumbu Valley, Nepal Himalayas, have been conducted since the middle 90's (Ueno et al., 1996; Tartari et al., 1999; Bertolani et al., 2000; Ueno et al., 2001; Bollasina et al., 2002; Ueno and Pokhrel, 2002) in order to provide long-term monitoring of the monsoon at high altitude. This area, being located on the windward side of the Range with respect to the Indian monsoon, is well exposed to the summer winds. The studies conducted have demonstrated that the region is a significant point of observation both of local climate and large-scale circulation. A network of Automated Weather Stations (AWSs) has been established in the Eastern Himalayas: the AWSs are located at different altitudes, over a 40 km stretch oriented approximately south to north. The observations of snow depth and of the four components of radiation are crucial for studying the feedback mechanisms and the physical exchange processes between the land and the atmosphere, very important in the modulation of the monsoon.

1.2 Time period covered by the data

Start: 1 April 2003, 00:00

End: 30 September 2003, 23:00

1.3 Temporal characteristics of the data

All parameters are recorded hourly. Hour is UTC.

1.4 Physical location of the measurement

Latitude: 27° 57′ 32.5″ N Longitude: 86° 48′ 47.6″ E Elevation: 5035 m a.s.l.

1.5 Data source

Original data provided by the Ev-K²-CNR Committee.

1.6 <u>WWW address references</u>

http://news.epson-meteo.org http://www.montagna.org

2.0 INSTRUMENTATION DESCRIPTION

2.1 Platform

The sensors are mounted on a 2-m and a 5-m masts.

2.2 <u>Description of the instrumentation</u>

Parameter	Model	Manifacturer
Air Temperature	DMA570	Lsi-Lastem (Italy)
Precipitation	DQA035	Lsi-Lastem (Italy)
Relative Humidity	DMA570	Lsi-Lastem (Italy)
Atmospheric Pressure	CX115P	Lsi-Lastem (Italy)
Wind Speed	DNA022	Lsi-Lastem (Italy)
Wind Direction	DNA022	Lsi-Lastem (Italy)
Downward Shortwave Radiation	CM3	Kipp&Zonen (The Netherlands)
Upward Shortwave Radiation	CM3	Kipp&Zonen (The Netherlands)
Downward Longwave Radiation	CG3	Kipp&Zonen (The Netherlands)
Upward Longwave Radiation	CG3	Kipp&Zonen (The Netherlands)
Snow Depth	SLU4/20	Micros (Italy)

2.3 Instrumentation specification

Parameter	Sensor Type	Height of sensor (m)	Accuracy	Resolution
Air Temperature	Thermoresistance	2	0.1°C	0.025°C
Precipitation	Tipping Bucket	1.5	1% (0-1 mm/min); 2% (1-3 mm/min)	0.2 mm
Relative Humidity	Capacitive Plate	2	2.5%	0.2%
Atmospheric Pressure	Slice of Silica	2	1 hPa	0.1 hPa
Wind Speed	3-cup anemometer	5	0.1 m/s	0.05 m/s
Wind Direction	Potentiometer	5	1%	0.1°
Downward Shortwave Radiation	Thermopile	2	10% (daily total)	-
Upward Shortwave Radiation	Thermopile	2	10% (daily total)	-
Downward Longwave Radiation	Thermopile	2	10% (daily total)	-
Upward Longwave Radiation	Thermopile	2	10% (daily total)	-
Snow Depth	Ultrasonic	2	1 cm	0.1 cm

3.0 DATA COLLECTION AND PROCESSING

3.1 <u>Description of data collection</u>

Data are downloaded from the AWS twice every year, in spring and autumn. Then, data are sent to Italy, where they are processed.

3.2 <u>Description of derived parameters and processing techniques used</u>

Temperature and relative humidity are instantaneous values. Precipitation is accumulated on the previous hour. Atmospheric pressure and radiation is averaged over the previous hour. Wind speed and direction are the *resulting* average speed and direction over the previous hour (calculated by the datalogger by means of data recorded every 5 seconds): this to minimize data unreliability due to sudden gusts. Both of them are calculated weighting the frequency distribution of both variables within each hour. Snow depth is averaged over the previous hour.

The four parameters indicated below were computed by using "CEOP Derived Parameter Equations" available at: http://www.joss.ucar.edu/ghp/ceopdm/refdata_report/eqns.html. These data have the flag "I". In the case of calculated by using dubious value flagged "D", the data flag was put D".

```
Dew Point Temperature was computed by using (Bolton 1980):
  es = 6.112 * \exp((17.67 * T)/(T + 243.5));
  e = es * (RH/100.0);
  Td = log(e/6.112)*243.5/(17.67-log(e/6.112));
  where:
    T = temperature in deg C;
    es = saturation vapor pressure in mb;
    e = vapor pressure in mb;
    RH = Relative Humidity in percent;
    Td = dew point in deg C
Specific Humidity was computed by using (Bolton 1980):
  e = 6.112*exp((17.67*Td)/(Td + 243.5));
  q = (0.622 * e)/(p - (0.378 * e)):
  where:
    e = vapor pressure in mb;
    Td = dew point in deg C;
    p = surface pressure in mb;
    g = specific humidity in kg/kg.
U,V Components were computed by using (GEMPAK):
  U = -sin(direction) * wind_speed;
  V = -cos(direction) * wind speed;
Net radiation was computed by using (GEMPAK):
  NET radiation = down(in)short + down(in)long - up(out)short - up(out)long
```

4.0 QUALITY CONTROL PROCEDURES

For all parameters, the data has been visually checked, looking for extremely and unusual low/high values and/or periods with constant values. Nocturnal shortwave radiation data

has been checked for non-zero values; wind speed and direction for sensor freezing (in that case recorded wind speed is zero and wind direction is 360°) and/or unusual high values; precipitation data has been checked for delayed measurement due to the melting of solid precipitation. Snow depth values have been checked to delete hourly/daily fluctuations of the measured snow (in absence of real snow fall) due to the dependence of the sensor signal on air density; in fact, though the sensor is temperature compensated, more or less regular fluctuations (about \pm 1-2 cm) are still recognisable.

Cross-checking among the variation of different measured parameters (ground heat flux, snow cover, etc.) was also performed to assure the consistency among the variations of different variables under the same conditions. The consistency of downward and upward shortwave radiation was also verified calculating the albedo (at high sun elevations).

The quality control flags follow the CEOP data flag definition document.

5.0 GAP FILLING PROCEDURES

No gap filling procedure was applied.

6.0 DATA REMARKS

- 6.1 PI's assessment of the data
- 6.1.1 Instruments problems

None.

6.1.2 Quality issues

Due to sensor freezing, in some cases wind speed and direction were recorded as 0 and 360, respectively, and, thus, considered bad. Sometimes, unusual high values were recorded and they were classified as bad. Due to slow melting of solid precipitation in the not-heated rain gauge, precipitation is sometimes recorded with delay in case of below-zero air temperature. Zero-precipitation is also recorded during snowfall if air temperature is below 0°C. All these data were considered dubious. There is a general tendency of the sensor to over-estimate relative humidity and to reach saturation conditions. Dew deposition could be observed on the radiation sensor. Snow depth measured values have fluctuations related to air density variations.

6.2 Missing data periods

All data are missing on 5 April 2003 at 11:00 due to operations on the datalogger. Radiation and snow depth data are also missing on 5 April 2003 at 12:00 and from 7 September 2003 at 6:00 to 8 September at 5:00 due to operations on the datalogger (i.e., channels configuration).

7.0 REFERENCE REQUIREMENTS

Original data was collected and is provided within the framework of the Ev-K²-CNR/RONAST Joint Scientific and Technological Research Project, funded by Italian Ministries and National Research Council through the Ev-K²-CNR Committee.

8.0 REFERENCES

Ueno K., and A. P. Pokhrel, 2002: Intra-seasonal air temperature variation in the Nepal Himalayas, Mausam, **53**, 281-288.

Bollasina, M., L. Bertolani, and G. Tartari, 2002: Meteorological observations in the Khumbu Valley, Nepal Himalayas, 1994-1999, *Bull. Glac. Res.*, **19**, 1-11.

Ueno K., R. B. Kayastha, M. R. Chitrakar, O. R. Bajracharya, A. P. Pokhrel, H. Fujinami, T. Kadota, H. Iida, D. P. Manandhar, M. Hattori, T. Yasunari, and M. Nakawo, 2001: Meteorological observations during 1994-2000 at the Automatic Weather Station (GENAWS) in Khumbu region, Nepal Himalayas, *Bull. Glac. Res.*, **18**, 23-30.

Bertolani, L., M. Bollasina, and G. Tartari, 2000: Recent biennial variability of meteorological features in the Eastern Highland Himalayas, *Geophys. Res. Lett.*, **17**, 2185-2188.

Tartari, G., G. P. Verza, and L. Bertolani, 1999: Meteorological data at the Pyramid Laboratory. In: A. Lami, R. Mosello, G. Giussani (Eds), *Limnology of high altitude in the Khumbu Valley*, Nepal. Documenta Ist. Ital. Idrobiol.

Ueno K., H. lida, H. Yabuki, K. Seko, A. Sakai, G. S. Lhakupa, R. B. Kayastha, A. P. Pokhrel, M. L. Shrestha, T. Yasunari, and M. Nakawo, 1996: Establishment of the GEN Automatic Weather Station (AWS) in Khumbu region, Nepal Himalayas, *Bull. Glac. Res.*, 14, 13-22.