

Data Synopsis for HLY0803

July 3 – July 31, 2008 Dutch Harbor to Dutch Harbor

Chief Scientist- Raymond Sambrotto Healy Captain- Captain Frederick Sommer

Prepared by: Tom Bolmer, David Forcucci, David Hassilev, & Steve Roberts

Table of Contents

PROJECT SUMMARY	4
CRUISE TRACK	5
PERSONNEL	6
Science Party Personnel	6
Ship's Crew	9
SCIENCE COMPONENTS AND THEIR MAJOR SAMPLING ACTIVITIES	11
DISTRIBUTION CONTENTS	13
Introduction to Data	13
Data Directories: 1_Minute_Averaged_Data: SCS_Data: Extra files in the directory SCS_Data: LDS_Data: Meta_Data: Raw: /Satellite_Images: ice_observations: Contents by directory:	14 14 15 15 17 17 17 18 18 18 18 18 18
MERGED DATA	20
LDEO Averaged One Minute Data File	20
FILE FORMATS OF DATA COLLECTED UNDERWAY	23
APPENDIX:	23
Acquisition Problems and Events	23
Comments that might help when using the data	29
CRUISE WEATHER SUMMARY	30
UNDERWAY SENSORS AND CALIBRATIONS	31
Sensors and Calibrations HLY0803 Shipboard Sensors HLY0802- CTD Sensors HLY0802 Sensor Calculations Calculating Temperature – ITS-90	31 31 33 34 34

Coloulating Conductivity ITS 00	24
Calculating Conductivity – 115-90	34 24
Calculating Fluoronnetry Voltage	34 24
Calculating DAD for surface DAD	34 24
Calculating PAR for sufface PAR	54 25
Calculating Appendix Ovugan Litilization (AOL) in the 1 minute everage file	33 25
Calculating Apparent Oxygen Othzation (AOO) in the 1 minute average file	33
Calibrations	36
Meteorology & Radiometers	36
R.M. Young Wind Bird, Starboard	36
R.M. Young Wind Bird Port	37
Barometer	38
Air Temperture / Relative Humidity	39
Shortwave Radiation Pyranometer	42
Longwave Radiation Pyrgeometer	43
Jack Staff MET Station	44
Underway Ocean Flow through Sensors	46
Seabird ThermoSalinograph	46
Temperature	46
Conductivity	47
Remote Sea Temperature (Sea Chest)	48
Oxygen Sensor A	49
CTD Sensors	50
Pressure Sensor	50
Temperature #1	51
Temperature #2	52
Temperature #3	53
Conductivity #1	54
Conductivity # 2	55
Oxygen	56
Fluorometer	57
Transmisometer	58
PAR	59
Instrument Locations on the Healy	60
Layout plot of instrument locations	60
Table of Survey measurements	61
SBE 21 SEACAT Thermosalinograph Data Output Formats	64

Project Summary

The Bering Ecosystem Study Project (BEST) focuses on the impact of seasonal sea ice on the environment of the eastern Bering Sea. More specifically, BEST seeks to clarify how sea ice influences the ecological pathways of nutrients and organic matter that lead to the abundant upper trophic levels and valuable fisheries on this extensive, high latitude continental shelf. More extensive background information can be found on the BEST home page (<u>http://www.fish.washington.edu/research/best/</u>). BEST also is part of a larger interagency effort to model the response of upper trophic levels to variations in climate forcing and more information on these collaborative efforts can be found on the web site of the Bering Sea Integrated Ecosystem Response Project (BSIERP; <u>http://bsierp.nprb.org/index.htm</u>).

The cruise described in this document is the third NSF funded, dedicated cruise for the BEST project. The first two took place in April-May of 2007 and 2008 and focused on the conditions directly associated with the retreating ice edge. HLY0803 will examine the summer conditions on the eastern Bering Sea shelf. Although this region is ice-free in summer, the presence of ice earlier in the year influences the subsequent development of physical and biological conditions. We hope to improve the understanding of these influences significantly during HLY0803. We will sample on the eastern shelf of the Bering Sea. The cruise will cover the entire shelf from the Aleutian Islands to St. Lawrence Island. A multidisciplinary sampling plan will be carried out that includes the deployment of moorings and physical oceanography, a hydrographic survey that will collect discrete samples for a variety of chemical and biological analyses, zooplankton and ichthyoplankton net hauls, sediment sampling with a coring device, a variety of biological rate measurements that will be done in on-board incubators on the bow, the deployment and retrieval of sediment traps that require small boat operations, as well as a variety of underway observations both from autonomous instruments sampling the sea chest water and visual observation of birds and marine mammals form the bridge.

The overall science objective for the cruise is to further the aims of the Bering Ecosystem Project that seeks to understand the role of sea ice in the structure and regulation of biological populations on the eastern Bering Sea shelf, and in particular the invertebrate, fish and marine mammal populations of importance to people. The specific objectives for the HLY0803 cruise will be to characterize summer conditions on the eastern shelf, particularly as they relate to the impact of the ice distribution from the prior winter. This includes the seasonal evolution of the nutrient and phytoplankton fields, as well as the distribution and abundance of the zooplankton and icthyoplankton.

Cruise Track

Personnel

Science Party Personnel

Name	Institution	Position	Phone	Email	Date On	Date Off
Ana M	11050000000	1 050000			2000 000	<i>~</i> JJ
Aguilar-Islas	UAF	postdoc.	907-474- 1524	jwu@iarc.uaf.edu	07/17/08	07/31/08
Megan Bernhardt	UW	technician	206-543- 9658	megdawg@u.washingt on.edu	07/02/08	07/31/08
Kristen Blattner	Univ Maryland	technician	410-221- 8423	kblattner@hpl.umces. edu	07/02/08	07/31/08
Tom Bolmer	WHOI	LDEO support	508-289- 2628	tbolmer@whoi.edu	07/02/08	07/31/08
Greg Brusseau	West Wash Univ	undergrad	360-306- 0051	brusseg@cc.wwu.edu	07/02/08	07/31/08
Didier Burdloff	LDEO	researcher	845-365- 8619	burdloff@ldeo.columb ia.edu	07/02/08	07/31/08
John Casey	BIOS	researcher	441-297- 1880	john.casey@bios.edu	07/02/08	07/31/08
Amy Cash	UW	grad. student	206-543- 0272	amycash@u.washingt on.edu	07/02/08	07/31/08
Edward Cokelet	NOAA/ PMEL	researcher	206-526- 6820	edward.d.cokelet@noa a.gov	07/17/08	07/31/08
Eurico J. D'Sa	LSU	PI	225-578- 0212	ejdsa@lsu.edu	07/02/08	07/31/08
Lisa Eisner	NOAA/ Auk Bay	researcher	907-789- 6602	lisa.eisner@noaa.gov	07/02/08	07/17/08
Virginia Engel	UW	grad student	206-543- 9658	vlengel@u.washingto n.edu	07/02/08	07/31/08
Bill Floering	NOAA/ PMEL	researcher	206-526- 6480	William.Floering@no aa.gov	07/02/08	07/31/08
Gary Friedrechsen	NOAA/NMFS	researcher	707 822- 6543	gary@jacobycreek.net	07/02/08	07/31/08
Joaquim I. Goes	Bigelow Lab.	PI	207-633- 9668	jgoes@bigelow.org	07/02/08	07/31/08
Maria Fatima Helga do R. Gomes	Bigelow Lab.	PI	207-633- 9628	hgomes@bigelow.org	07/02/08	07/31/08
David Hassilev	ESU	Network Tech	206-217- 6592	david.hassilev@uscg. mil	0702/08	07/31/08
Ron Heintz	NOAA/ AFSC	researcher	907-789- 6058	Ron.Heintz@noaa.gov	07/02/08	07/17/08

						Date
Name	Institution	Position	Phone	Email	Date On	Off
Scott Hiller	SIO	CTD operations	858-534- 1907	shiller@ucsd.edu	07/02/08	07/31/08
Nicola Hillgruber	UAF/SFOS	PI	907-796- 6288	n.hillgruber@uaf.edu	07/02/08	07/17/08
Jimmy Johnson	UW	engineer	206-685- 9563	jimj@apl.washington. edu	07/02/08	07/17/08
David Kachel	NOAA/ PMEL	tech/computer	206-526- 6195	dave.kachel@noaa.go v	07/02/08	07/17/08
John Karavias	Armada	teacher	631-588- 2660	zeus130@verizon.net	07/02/08	07/31/08
Pat Kelly	URI	researcher	401-874- 6273	rokelly@gso.uri.edu	07/02/08	07/31/08
Andrew Koehn	NOAA/PMEL	technician	425-775- 5725	<u>andrew.koehn@noaa.</u> gov	07/17/08	07/31/08
Dave Leech	UAF	engineer	907-224- 4319	leech@ims.uaf.edu	07/02/08	07/17/08
Scot Loehrer	NCAR/EOL	data management	303-497- 2631	loehrer@ucar.edu	07/17/08	07/31/08
Kali McKee	LDEO	undergrad	516-889- 8927	km2292@barnard.edu	07/02/08	07/31/08
Calvin Mordy	Genwest	PI	206-526- 6870	calvin.w.mordy@noaa .gov	07/02/08	07/31/08
Charles Morgan	Lyon College	undergrad	410-326- 7261	<u>cm3620@lyon.edu</u>	07/02/08	07/31/08
Chris Moser	OSU	Core Tech	541-737- 5217	cmoser@coas.oregons tate.edu	07/02/08	07/31/08
Puneeta Naik	LSU	grad stud	225-578- 0213	pnaik2@lsu.edu	07/02/08	07/31/08
Alex Nanez	MATE	trainee	323-401- 0228	al.nan85@gmail.com	07/02/08	07/31/08
Alexei Pinchuk	Univ Ak	PI	907-224- 4313	ftaip1@uaf.edu	07/02/08	07/31/08
Rachel Pleuthner	Univ Maryland	researcher	410-326- 7384	edu	07/02/08	07/31/08
David Porter	US F&WS	Bird Observor	907-733- 2388	porter@mtoopline.net	07/02/08	07/17/08
Mark Rauzon	US F&WS	Bird Observor	510-531- 3887	mjrauz@aol.com	07/17/08	07/31/08
Rob Rember	UAF	technician	907-534- 8257	rrember@iarc.uaf.edu	07/17/08	07/31/08
Sue Reynolds	SIO	operations	858-534- 8257	smreynol@ucsd.edu	07/02/08	07/31/08
Dylan Righi	JISAO/UW	researcher	206-526- 6508	v	07/17/08	07/31/08

Nama	Institution	Position	Phone	Fmail	Data On	Date Off
Inume	Institution	I DEO	202 407	Lmuu	Dule On	UJJ
Steve Roberts	NCAR	support	2637	sroberts@ucar.edu	07/02/08	07/31/08
Sigrid Salo	NOAA/PMEL	researcher	206-526- 6802	Sigrid.A.Salo@noaa.g ov	07/02/08	07/17/08
Raymond Sambrotto	LDEO	Chief Scientist	845-365- 8402	sambrott@ldeo.colum bia.edu	07/02/08	07/31/08
Janet Scannell	NCAR	data management	303-497- 1093	anstett@ucar.edu	07/02/08	07/17/08
Tracy Shaw	OSU	techician	541-867- 0306	Tracy.Shaw@noaa.go v	07/02/08	07/31/08
David Shull	West Wash Univ	PI	360-650- 3690	david.shull@wwu.edu	07/02/08	07/31/08
Elizabeth Siddon	UAF/NOAA	grad student	907-789- 6027	Elizabeth.Siddon@noa a.gov	07/02/08	07/17/08
Dean Stockwell	UAF	researcher	907-474- 5556	dean@ims.uaf.edu	07/02/08	07/31/08
Diane Stoecker	Univ Maryland	researcher	410-221- 8407	stoecker@hpl.umces.e du	07/02/08	07/31/08
Paul Suchanek	US F&WS	Bird Observor	907-463- 4891	paulms@gci.net	07/02/08	07/17/08
Karen Taylor	Univ Maryland	grad student	410-326- 7261	taylor@cbl.umces.edu	07/02/08	07/31/08
Kevin Taylor	UAF	technician	907-474- 7839	kevin.d.taylor@gmail. com	07/02/08	07/17/08
Matt Tiahlo	BIOS	researcher	441-297- 1880	Matt.Tiahlo@bios.edu	07/02/08	07/31/08
Tom Van Pelt	NPRB	prog. manager	907-644- 6715	tvanpelt@nprb.org	07/17/08	07/31/08
Tom Weingartner	UAF	PI	907-474- 7993	weingart@ims.uaf.edu	07/02/08	07/31/08
Heather Whitney	UW	grad. student	206-543- 7521	hwhitney@u.washingt on.edu	07/02/08	07/31/08
Jillian Worssam	PolarTrec	teacher	928-607- 2837	jworssam@earthlink.n et	07/02/08	07/31/08

Ship's Crew

HEALY Sailing List for July 03, 2008.

Sommer, Frederick CAPT Bateman, Dale CDR Stewart, Jeffrey LCDR Petrusa, Douglas LCDR Angelo, James YNC Appleberry, Jason LT Ayers, Silas LT Bartlett, Charles MST1 Baldwin, Robin FS3 Beasley, Corey HSCS Bender, Zachary ENS Berringer, Mike ETC Bitzer, Mary 1/C Blas, Paul FN Brogan, John MKC Brown, Betty MK3 Buford, Aimee BM2 Combast, Jonathan ET3 Coombe, Jeffrey MK2 Dabe, Jeffrey IT1 Davis, Jonathon ET2 Dolton, Peter ENS Dull, Steven FS2 Dunning, Lara BM3 Fernandez, Chelsey SN Ford, Angela SN Galvez, Oscar R. LT Gaudette, Katherine 1/C George, Lisa FS2

Glenzer, William BM1 Ghosn, Kathleen FN Grey, Deidre SN Hamilton, H. Mark FS3 Harbinsky, Mark ET2 Harris, Daniel SK1 Huneycutt, Gaines BM2 Hurtado, Daniell EM1 Imgarten, Christopher DC1 Irwin, Paul EM2 Jacobs, Bryson ENS Jones, Greg MKCS Kidd, Wayne BMC Kruger, Thomas MST3 Laisure, Jeremy SK2 Lambert, Douglas MKC Layman, Rich MST1 Liebrecht, Brian ET1 Lyons, Sean R CWO3 Manangan, Sorjen OSC Marsden, George DCC Mastrota, Leigh FN McNally, Terence SK1 McNeil, Albert DC3 McManus, Gene SN McQuillan, William 3/C Merten, James SN Miller, Valerie CWO2 Murphy, Nicholas MK2

Murray, Justin SN Myatt, Lisa ENS Olson, James EM3 O' Connor, Patrick MK2 O'Sullivan, Brandon MK2 Passalacqua, Joseph ETCM Peterson, Jennifer 1/C Podhora, Curtis EMCM Powell, Gregory ET3 Quichocho, Robert MK1 Redd, Davion DC2 Reis, Brian BM1 Rieg, Mark MSTC Rivera-Maldonado, Abner SKC Rodermund, Michael, SA Rose, John CWO Roy, Evan BM3 Rudibaugh, Kenneth MK1 Schendorf, Tara ENS Shaffer, Hans EM1 Siciak, Anthony MK3 Smith, Corey MK3 Smith, Josh LTJG Starling, Wendy MK2 Sullivan, Timothy BMCS Swanson, Shawn ET1 Thomas, Tasha ENS Thompson, Emily SN Tysin, Alley SNFS

Von Kauffmann, Daniel IT1

Wagner, Alexander FN

Whiting, Allan, MK1

Williams, Tony FSCS

Wilson, Thomas BMCM

Worrell, Kenneth EM1

Wright, Tiffany MST1

Yeckley, Andy BM3

Zehringer, Meghan 3/C

Zitting, Arrene FS1

Science	Components	and	their	major	sampling	activities

Project	On the ship team	Sampling Activities
Physics	Tom Weingartner	This group will deploy 10 moorings during the cruise
	Jim Johnson	and require up to 6 hours of wire time at each
	Dave Leech	deployment.
	Kevin Taylor.	
Hydrography	Cal Mordy	This group will analyze salts, nutrients, oxygen and
	Bill Floering	chlorophyll from the Niskin casts at each station as well
	Dean Stockwell	as help manage cruise event information.
	Sigrid Salo and Dave	
	Kachel (leg 1)	
	Dylan Righi and Ned	
	Cokelet (leg 2).	
Carbon	John Casey	This group will collect water for productivity
Productivity	Matt Tiahlo.	experiments on special casts and water for various
_		other analyses from the standard casts.
Nitrogen uptake	Ray Sambrotto	This group will collect water for rate experiments on
and cycling	Didier Burdloff	special casts and water for various other analyses from
	Kali McKee.	the standard casts.
Particle flux	Roger Kelly	Roger will deploy floating sediment traps that will
		collect for 24 hr. periods as well as estimate
		productivity from the 3 isotopes of oxygen.
Iron analyses	Rob Rember	This group will collect samples on special casts from
(leg 2 only)	Ana M Aguilar-Islas.	trace metal clean samplers.
Euphausiid and	Alexei Pinchuk,	Alexei will collect macrozooplankton with a
macrozooplankton	Tracy Shaw	MOCNESS and CalVET net for quantitative
collections		distributions. Tracy will collect live euphausiids with a
		Bongo net for rate measurements and organic tracer
		assays.
Euphausiid rate	Megan Bernhardt	UW (Lessard group) will perform grazing, growth and
measurements	Tracy Shaw	reproduction experiments with euphausiids collected
	Virginia Engel	with Bongo nets using water collected on CTD casts.
Organic tracers of	Rachel Pleuthner	UMD (Harvey Group) will extract organic pools from
trophic	Karen Taylor	zooplankton and their prey from net tows and water
transfer/euphausiid	Charles Morgan	from CTD casts.
population age		
structure		
Ichthyolplankton	Nicola Hillgruber	This group will collect larval fish in collaboration with
	Elizabeth Siddon	A. Pinchuk's net hauls.
	Ron Heintz.	
Microzooplankton	Diane Stoecker	This group will perform grazing experiments on water
grazing	Kristin Blattner	collected with the Niskin rosette from special casts.
Benthic	David Shull, and Greg	This group will collect benthic samples with the
characterization	Brusseau	multicorer in collaboration with Chris Moser.
and fluxes		

Project	On the ship team	Sampling Activities
Benthic	Heather Whitney	This group will perform benthic flux measurements on
biogeochemical	Amy Cash	cores retrieved from the multicorer.
fluxes		
Bird distribution	Paul Suchanek	They will make observations from the bridge during the
and abundance	David Porter (leg 1)	day.
	Tom Van Pelt	
	Mark Rauzon (leg 2).	
CTD operations	Scott Hiller	
and support	Sue Reynolds	
Cruise data	Steve Roberts	
visualization	Tom Bolmer	
Data support	Janet Scannell (leg 1)	
	Scott Loehrer (leg 2)	
Education	Jillian	
component on	Worsssam(PolarTrek)	
board	John Karavias (Armada)	
	Alex Nanez (MATE	
	intern)	
Marine mammal	Gary Friedrechsen,	Gary will make observations from the bridge during the
distribution and		day.
abundance		
Bio-optical and	Lisa Eisner	Lisa will add two instruments to the underway suite – a
phytoplankton		hyperspectral absorption instrument and a nitrate
variations		sensor. She will also collect samples from the Niskin
		rosette.
Water column bio-	Joaquim Goes	This group will measure profiles in the upper 100 m
optics	Eurico J. D'Sa	with their own bio-optical package that includes an
	Puneeta Naik	FRRF. They will also collect discrete samples from the
	Maria Fatima Helga do	Niskin rosette using newly developed fluorescent
	R. Gomes.	methods for phytoplankton characterization.

Distribution Contents

Introduction to Data

The Healy data acquisition systems continuously log data from the instruments used during the cruise. This document describes:

- The structure and organization of the data on the distribution media.
- The format and contents of the data strings.
- Formulas for calculating values.
- Information about the specific instruments in use during the cruise.
- A log of acquisition problems and events during the cruise that may affect the data.
- Scanned calibration sheets for the instruments in use during the cruise.

The data is distributed on a small USB disk drive.

IMPORTANT: Read the section, "Acquisition Problems and Events," for important information that may affect the processing of this data.

There are two logging system on the Healy. The ship (ESU) runs the SCS logging system and the LDEO support group runs the LDS logging system. This provides some redundancy in logging. The main purpose of LDS is to support the sonars and the output is saved in LDS_Data.

The Scientific Computer System (SCS) (version 4.2) is a data acquisition, and display system designed for Oceanographic, Atmospheric, and Fisheries research applications. It acquires sensor data from shipboard oceanographic, atmospheric, and fisheries sensors and provides this information to scientists in real time via text and graphic displays, while simultaneously logging the data to disk for later analysis. SCS also performs quality checks by monitoring I/O, providing delta/range checks and plotting data after acquisition.

The LDEO Data System is somewhat distant relative of the logging code that has grown through more than a decade of use at LDEO. It is a significant revision of the current (2004) code used on the R/V Ewing (the Ewing Data System) and is architecturally much different. Because of this, LDS is still growing and at the moment (2008) this is the only operational implementation.

Data

Data are received via RS-232 serial connections. In SCS a time tag is added at the beginning of each line of data in the form,

mm/dd/yyyy,hh:mm:ss.sss,[data stream from instrument] where:

	Format	Value used
ım		digit month of the year
d		digit ay of the year
ууу		digit year
h		digit hour of the day
ım		digit minute
SSS .		conds

An example string from the Seabeam Centerbeam file is:

04/13/2007,06:49:20.920,\$SBCTR,2007,4,13,06:49:09.437,57.158792,-165.664322,69.15,60*00

All times are reported in UTC. Each file type has it's own NEMA string name (\$SBCTR as an example).

The delimiters that separate fields in the raw data files are commas. Care should be taken when reprocessing the data that the field's separations are clearly understood.

Directories:

1_Minute_Averaged_Data:	This directory contains all of the under way data averaged over a 1 minute window in time.
SCS_Data:	This directory contains serial data collected by the SCS version 4.2 data collection system in different directories. Directory names are labeled by the instrument name and string type of the data collected. A description of the data contained in this directory is below.
LDS_Data:	This directory contains serial data collected by the Lamont LDS data collection system in different directories. Directory names are labeled by the instrument name and string type of the data collected. A description of the data contained in this directory is below.
Raw:	This directory contains raw data as recorded by individual instruments and put into different directories. Directory names are labeled by the instrument name and string type of the data collected. A description of the data contained in this directory is below.
Meta_data:	This directory contains documents useful in the post analysis of the data on this DVD media set. The data type are separated into different directories by type. A description of these directories is below.

1_Minute_Averaged_Data:

HLY0803_distance.csv.gz	Distance along track from port.
HLY0803_Averaged.csv.gz	All the Under way data averaged for 1 minute.
Shapefile	All of the 1 minute under way data averaged at 1 minute spacing in shp, shx and dbf GIS files.

SCS_Data:	
/aft_a_frame	Wire tension, wire out, and wire speed for the Aft A frame sheaves.
/air_temp_f	Temperature data from the RM Young wind sensor in Fahrenheit. Data is derived from data from files in the rmyoung_air directory
/ashtech_attitude	Attitude in NMEA format from the Ashtech ADU5 GPS receiver
/ashtech_gga	Position data in NMEA GGA format from the Ashtech ADU5 GPS receiver
/ashtech_gll	Position data in NMEA GLL format from the Ashtech ADU5 GPS receiver
/ashtech_hdt	Heading data in NMEA HDT format from the Ashtech ADU5 GPS receiver
/dew_point_f	Dew point temperature derived from air temp
/flomet_a	Flow meter data just upstream of the A TSG and Fluorometer.
/fluro_a	Flurometer for A TSG sensor.
/glonass_gga	Position data in NMEA GGA format from the GLONASS GPS receiver.
/glonass_gll	Position data in NMEA GLL format from the GLONASS GPS receiver.
/gyro_mk27	Heading data in NMEA HDT format from the Sperry MK27gyro compass
/gyro_mk39	Heading data in NMEA HDT format from the Sperry MK39 gyro compass
/ibs_waypoints	Waypoints from the Healy's Integrated Bridge System
/isus	ISUS Nitrate Sensor small file
/isus3v	ISUS Nitrate Sensor 3V full file
/knudsen	Depth data in a proprietary PKEL format received from Knudsen 320 B/R serial output
/met3a_sen	Meterology data from the top of the Jackstaff.
/oxygen_a	Oxygen values from A TSG.

/pcode_aft_gga	Position data in NMEA GGA format from the Trimble Centurion receiver located in the Computer lab
/pcode_aft_gll	Position data in NMEA GLL format from the Trimble Centurion receiver located in the Computer lab
/pcode_aft_vtg	Course and speed over ground in NMEA VTG format from the Trimble Centurion receiver located in the Computer lab
/pcode_aft_zda	Time and date data in the NMEA ZDA format. Data retrieved from the Trimble Centurion receiver located in the Computer lab
/pcode_bridge_gga	Position data in NMEA GGA format from the Trimble GPS receiver located on the bridge.
/pcode_bridge_gll	Position data in NMEA GLL format from the Trimble GPS receiver located on the bridge.
/pcode_bridge_vtg	Course and speed over ground data in NMEA VTG format from the Trimble GPS receiver located on the bridge.
/posmv_gga	Position data in NMEA GGA format from the POS/MV
/posmv_gst	Pseudorange error statistics in NMEA GST format from the POS/MV
/posmv_hdt	Heading data in NMEA HDT format from the POS/MV
/posmv_pashr	Roll, pitch and heave from POS MV inertial navigation system.
/posmv_vtg	Course and speed over ground in NMEA VTG format from the POS/MV
/posmv_zda	Time and date data in NMEA ZDA format from the POS/MV
/pressure_sen	Pressure sensor in the Uncontaminated Seawater System before the Bio Chem Lab which measures header pressure in PSI.
/rmyoung_air	Temperature, humidity, air pressure data in NMEA XDR format from the RM Young meteorological system
/rmyportwind	Wind speed and direction data in NMEA WMV format from the RM Young weather vane on the port side of the Healy.
/rmystbdwind	Wind speed and direction data in NMEA WMV format from the RM Young weather vane on the starboard side of the Healy.
/samos_data	Meterology data for SAMOS.
/sbd_a_frame	Wire tension, wire out, and wire speed for the starboard A frame sheaves.
/seabeam_center	Center depth data from the Seabeam 2112
/solar_radiometers	Solar Radiometer data for SW and IW.
/sperry_speedlog	ground/water speed data from the Sperry Speed Log
/surface_par	Photosynthetic Active Radiation volts and Microeinstens/m2 se from the surface par sensor
/sv2000	Sound Velocity data from the SV2000 sound velocimeter located in the ADCP BB150 sonar well
/true_wind_port	True wind speed data derived from gyro data and rmyportwind

/true_wind_stbd	True wind speed data derived from gyro data and rmystbdwind
/winch_data	Line out and speed data from the winch system.
/wind_sen_a	Wind data from the Jack Staff.
/wind_sen_b	Wind data from the Yard.

Extra files in the directory SCS_Data:

ACQLOG.LOG	Contains the d data collection	ata as to what occurred with SCS data. It shows when was started and stopped.
Incidents_YYYYMMDD-TTTT	ГТ.DTM SCS.	Contains any incident data, which were triggered in
sensor_YYYYMMDD-TTTTTT	.scf Contain configured by	ns the configuration file for data collection as SCS.

LDS_Data:

/AloftConCam	Contains picture files separated by folders named by YearJulian (YYYYJJJ). The picture files are in 5 minute JPEG format.
/FantailCam	Contains picture files separated by folders named by YearJulian (YYYYJJJ).). The picture files are in 5 minute JPEG format.
/adu5	Contains the data from the ADU5 GPS.
/aggps	Contains the data from the AG GPS.
/bgm221	Contains the data from the BGM221 Gravimeter.
/bgm222	Contains the data from the BGM222 Gravimeter.
/events	Contains the logs of event for different systems.
/mk27	Contains the data from the MK27 Gyro.
/mk30	Contains the data from the MK30 Gyro.
/posatt	Contains the attitude data from the POSMV GPS.
/posnav	Contains the navigation data from the POSMV GPS.
/posreform2sb	Contains the navigation data from the POSMV GPS reformatted for the SeaBeam.
/sbctr	Contains the center beam data from the SeaBeam.
/sbsv	Contains the surface sound velocity data for the SeaBeam.
/seabeam	Contains the raw SeaBeam 2112 multibeam data.
/tsg_met	Contains the all data from SIO TSG and Met sensors.

Meta_Data:	
/elog	Contains the technician's narrative of important events, which occurred both to the network and to individual sensors.
/Bridge_Logs	
DDMMMYY.doc	The "smooth log" containing events recorded by the bridge watch.
DDMMMYYWX.xls	Weather log recorded by the watch.
DDMMMYYNAV.xls	Navigation logs recorded by the watch.
/WHOisWHO	Contains files of Science Party Members emails and addresses.
/Sensor_Formats	Contains Html and PDF file of the formats of all the files collected under way during the cruise.
Raw:	
/adcp75	75 KHz ADCP data (not on HLY0803)
/adcp150	150 Khz ADCP data
/ctd	CTD data in directories by Cast number.
/xbt	Expendable Bathythermograph data. (not on HLY0803)
/knudsenraw	Knudsen 320B/R data

/Satellite_Images:

	Contains satellite imagery in jpeg format
/dmsp	dmsp folders labeled by Year, Month, Day
/hrpt	hrpt folders labeled by Year, Month, Day

ice_observations:

Directories of the Ice Observations taken for each day March 14 to March 25. (not on HLY0803)

Contents by directory:

SCS Data: aft a frame air temp f ashtech_attitude ashtech gga ashtech gll ashtech hdt dew point f flomet a fluro a glonass_gga glonass gll gyro_mk27 gyro_mk39 ibs waypoints isus knudsen met3a sen oxygen a pcode aft gga pcode aft gll pcode aft vtg pcode_aft_zda pcode_bridge_gga pcode bridge gll pcode bridge vtg posmv_gga

posmv gst posmv hdt posmv pashr posmv_vtg posmv zda rmyoung air rmyportwind rmystbdwind samos data seabeam center solar radiometers sperry speedlog stbd a frame surface_par surface temp sv2000 true wind port true wind stbd tsg a wind sen a wind sen b Raw: adcp150 adcp75 ctd knudsenraw

xbt

Satellite Images: dmsp hrpt LDS Data: AloftConnCam FantailCam adu5 aggps bgm221 bgm222 events mk27 mk30 posatt posnav posreform2sb sbctr sbsv seabeam tsg met Meta Data: Bridge Logs Systems_Calibration_Data Elog **WHOisWHO** Sensor Formats

Merged Data

LDEO Averaged One Minute Data File

The data are summarized into an averaged one (1) minute data file by the LDEO technician. This file takes the average value centered around the minute, (30 seconds either side of the whole minute). The data are the raw values as they are logged. There has been no quality control done on these files. Those wishing more accurate and quality controlled values should process the data in the directories described below in the document.

HLY0803_track.csv

25485,2008/07/20 10:15,56.8421422,-

173.2905390,354.9,11.3,352.2,158.1,7.546,7.652,33.1845,32.084,1.828,0.183,0.000,0.011,2.97,0.0 8,367.54,281.33,281.32,1.66,8.05,100.00,1009.72,11.88,298.92,14.40,267.05,12.75,286.31,13.58,2 51.95,13.35,6.269,7.652,0.083,-6.128,3,-377,8,0,1,-156,1,0,18.73,251.2,6.78,0.51

25486,2008/07/20 10:16,56.8452412,-

173.2910445,354.7,11.2,352.0,160.5,7.546,7.666,33.1987,32.086,1.783,0.178,0.000,0.011,2.97,0.2 0,364.65,281.34,281.33,1.66,8.05,100.00,1009.73,11.87,300.49,14.68,269.73,13.17,287.56,13.94,2 53.32,13.17,6.263,7.666,0.144,-4.494,3,-377,8,0,1,-157,1,0,19.06,258.4,6.78,0.51 25487,2008/07/20 10:17,56.8483228,-

 $173.2915862,354.4,11.2,351.5,161.9,7.550,7.684,33.2140,32.086,1.754,0.175,0.000,0.011,2.97,0.2\\0,364.71,281.36,281.32,1.66,8.04,100.00,1009.71,11.88,301.11,15.82,271.81,14.19,287.68,13.41,2\\53.85,13.21,6.256,7.684,0.001,-8.363,3,-378,8,0,1,-157,1,0,19.02,261.3,6.77,0.52$

Field	Data	Example	Units
01	ID	25485	sample count
02	date	2008/07/20	date & time UTC (year/month/day hour:minute)
		10:15	
03	lat	56.8421422	\$INGGA, POSMV Latitude (decimal degrees)
04	lon	-173.2905390	\$INGGA, POSMV Longitude (decimal degrees)
05	cog	354.9	\$INVTG, POSMV Course Over Ground (angular distance
			from 0 (North) clockwise through 360, 1 minute average)
06	sog	11.3	\$INVTG, POSMV Speed Over Ground (Knots, 1 minute
			average
07	heading	352.2	\$PASHR, POSMV ship heading (angular distance from 0
			(North) clockwise through 360, 1 minute average)
08	depth	158.1	\$SBCTR, Seabeam centerbeam depth(meters, 1 minute
			average)
09	SST	7.546	\$PSSTA, SBE3s RemoteTemperature, Sea Chest intake
			(Celsius, 1 minute average)
10	TSG_InTemp	7.652	\$PSTSA, SBE45 internal temperature (Celsius, 1 minute
			average)
11	TSG_Cond	33.1845	\$PSTSA, SBE45 Water Conductivity
			(millisiemens/centimeter, 1 minute average)
12	TSG_Sal	32.084	\$PSTSA, SBE45 Water Salinity (PSU, 1 minute average)
13	SCF-FL	1.828	\$PSFLA, SCF Fluorometer (Ug/l, 1 minute average)
14	SCF-FL-V	0.183	\$PSFLA, SCF Fluorometer (Volts, 1 minute average)
15	SCF-Turb	0.000	\$PSFLA, SCF Turbidity (NTU, 1 minute average)

Field	Data	Example	Units
16	SCF-Turb-V	0.011	\$PSFLA, SCF Turbidity (Volts, 1 minute average)
17	tsg_flow_A	2.97	\$PSFMA, Flowmeter in-line with PSTSGA, PSOXA,
			PSFLA (LitersPerMinute, minimum value in 1 minute
			interval)
18	SWR	0.08	\$PSSRA, Short Wave Radiation (W/M^2, 1 minute average)
19	LWR	367.54	\$PSSRA, Long Wave Radiation (W/M^2, 1 minute average)
20	LWR_Dome_T	281.33	\$PSSRA, LWD Dome Temperature (Deg K, 1 minute
			average)
21	LWR_Body_T	281.32	\$PSSRA, LWD Body Temperature (Deg K, 1 minute
			average)
22	PAR	1.66	\$PSSPA, Surface PAR (uE/Sec/M^2, 1 minute average)
23	MET3A_Temp	8.05	\$PSMEA, MET3A Air Temperature (Deg C, 1 minute
			average)
24	MET3A_RH	100.00	\$PSMEA, MET3A Relative Humidity (%, 1 minute average)
25	MET3A_Baro	1009.72	\$PSMEA, MET3A Barometric Pressure (millibars, 1 minute
			average)
26	MET3A_Precip	11.88	\$PSMEA, MET3A Precipitation (mm, 1 minute average)
27	JS_WndDirR	298.92	\$PSWDA, Jackstaff Relative wind direction (deg, 1 minute
			average)
28	JS_WndSpdR	14.40	\$PSWDA, Jackstaff Relative wind speed (m/s, 1 minute
			average)
29	JS_WndDirT	267.05	\$PSWDA, Jackstaff True wind direction (deg, 1 minute
			average)
30	JS_WndSpdT	12.75	\$PSWDA, Jackstaff True wind speed (m/s, 1 minute
			average)
31	MM_WndDirR	286.31	\$PSWDB, Main Mast Relative wind direction (deg, 1 minute
			average)
32	MM_WndSpdR	13.58	\$PSWDB, Main Mast Relative wind speed (m/s, 1 minute
			average)
33	MM_WndDirT	251.95	\$PSWDB, Main Mast True wind direction (deg, 1 minute
			average)
34	MM_WndSpdT	13.35	\$PSWDB, Main Mast True wind speed (m/s, 1 minute
	(DD) 0	<i></i>	average)
35	SBE_Oxy	6.269	\$PSOXA, SBE-43 Oxygen (ml/l, 1 minute average)
36	SBE_Oxy_T	7.652	\$PSOXA, SBE-43 Oxygen Temperature(Deg C, 1 minute
27	T 1	0.002	average)
37	Isus_1	0.083	\$PSN1A, Isus Aux I(Volts, 1 minute average)
38	Isus_2	-6.128	\$PSN1A, Isus Aux 2(Volts, 1 minute average)
39	WinchAft	3	Aft A-Frame Winch number
40	TensionAft	-377	Aft A-Frame Winch Wire tension (Pounds, 1 minute
4.1		0	average)
41	WireOutAft	8	Aft A-Frame Winch Wire out (Meters, 1 minute average)
42	SpeedAft	U	AIT A-Frame Winch Wire speed (Meters/minute, 1 minute
42	W:	1	average)
43	WinchSbd	1	Starboard A-Frame Winch number
44	rensionSbd	-130	Starboard A-Frame winch wire tension (Pounds, 1 minute
45	WineQ (01.1	1	average)
43	wireOutSbd	1	Starboard A-Frame winch wire out (Meters, 1 minute

Field	Data	Example	Units
			average)
46	SpeedSbd	0	Starboard A-Frame Winch Wire speed(Meters/minute, 1
			minute average)
47	StbdWndSpdT	18.73	RMYoung True Wind Speed, starboard (Knots, 1 minute
			average)
48	StbdWndDirT	251.2	RMYoung True Wind Direction, starboard (angular distance
			from 0 (North) clockwise through 360, 1 minute average)
49	OxySat	6.78	Dissolved oxygen (DO) saturation as a funciton of T and S
			(Weiss)(ml/L, 1 minute average)
50	AOU	0.51	Apparent Oxygen Utilization (AOU)(ml/L,1 minute average)

File Formats of Data Collected Underway

The formats of the Under way data files that were collected on this cruise are in a separate document named HLY0803_Sensors. This is now a separate document due to it's large size. The file HLY0803_Sensors.htm is in the Meta_Data. This file is also in a PDF file. To use this html file you will need to have the directory HLY0803_Sensors_files in the same directory as the html file.

Also in the Meta_Data directory are some PDF files for data that was collected but not part of the normal science routine.

APPENDIX:

Acquisition Problems and Events

This table summarizes problems with acquisition noted during this cruise including instrument failures, data acquisition system failures and any other factor affecting this data set. Times are reported in GMT (UTC, Z). You should look for more complete details for these events in the ELOG accounts.

Date	Time	Event	
	(UTC)		
07/03/08	17:23	Start LDS for HLY0803	
07/03/08	21:01	Start SeaBeam 2112 for HLY0803	
07/03/08	21:02	Start Knudsen Sub Bottom for HLY0803	
07/03/08	21:10	Start ADCP 150 for HLY0803	
07/03/08	21:21	Science Seawater requested to be turned on	
07/03/08	21:35	SCS started for HLY0803	
07/04/08	07:05	New SVP from CTD 002	
07/04/08	10:01	Note that no data from the SIO Met Sensors on the Yard Arm	
07/04/08	19:59	New SVP from CTD 008	
07/04/08	22:17	SIO Met Sensors on the Yard Arm working	
07/05/08	02:58	SCS secured to work on shared disks and then restarted	
07/05/08	20:11	Note drop outs in SIO data to SCS, due to hlymet01 web page????	
07/05/08	20:31	New SVP from CTD 011	
07/06/08	02:38	Gyro input to ADCP 150 has been frozen for awhile	
07/06/08	05:54	New SVP from CTD 014 and ARGO array float R4900799_047	
07/06/08	10:36	New SVP from CTD 015 and ARGO array float R4900799_047	
07/06/08	17:08	New SVP from CTD 017 and ARGO array float R4900799_047	
07/06/08	17:20	Gyro input to ADCP 150 reset and working	
07/06/08	20:33	New SVP from CTD 018 and ARGO array float R4900799_047	
07/07/08	01:04	New SVP from CTD 0189	
07/07/08	15:45	Reload SVP from CTD 018 and ARGO array float R4900799_047	
07/07/08	18:01	Winch data interval from 1 to 4 per second	

Date	Time	Event
0 - 10 0 10 0	(UTC)	
07/08/08	00:47	ADUS lost Attitude
07/08/08	01:06	ADUS no Lat/Long since ////23:54Z
0'//08/08	01:51	ADU5 reset with no improvement
07/08/08	02:53	New SVP from CTD 025
07/08/08	06:38	ADU5 ft antenna connector replaced, working again
07/08/08	11:04	change setup for ADCP 150
07/08/08	11:16	New SVP from CTD 026 and CTD 25 for deep
07/08/08	19:03	Stop SCS
07/08/08	1910	Restart SCS
07/08/08	22:24	New SVP from CTD 027 and CTD 25 for deep
07/08/08	23:00	Knudsen from Sub Bottom mode to 12 Khz to search for Optics package
07/09/08	02:57	Knudsen back to Sub Bottom mode
07/09/08	09:14	Gyro input to ADCP 150 reset since it was frozen
07/09/08	10:27	New SVP from CTD 030 and CTD 25 for deep
07/09/08	10:28	Note Gyro to ADCP 150 frozen again
07/09/08	15:44	Note Gyro to ADCP 150 is working again
07/09/08	21:53	New SVP from CTD 035
07/10/08	00:54	New SVP from CTD 036
07/10/08	04:54	New SVP from CTD 037
07/10/08	09:14	SeaBeam shutdown for generator changeover
07/10/08	09:28	Knudsen to Internal timing since SeaBeam is down and no trigger
07/10/08	11:04	SeaBeam running again Tape #2
07/10/08	11:04	Knudsen triggering off of SeaBeam
07/10/08	14:51	New SVP from CTD 040 and CTD 25 for deep
07/10/08	16:38	Note Gyro to ADCP 150 lost again
07/10/08	16:49	Gyro to ADCP 150 working again
07/10/08	18:48	New SVP from CTD 042 and CTD 25 for deep
07/10/08	21:46	Reload SVP from CTD 033
07/10/08	23:06	Knudsen to 12 Khz to compare with Sub Bottom
07/10/08	23:33	New SVP from CTD 043
07/10/08	23:58	Knudsen back to Sub Bottom mode
07/11/08	03:44	Set top 200 of SVP 043 to 1469.5
07/11/08	08:30	New SVP from CTD 045
07/11/08	11:23	Reload SVP from CTD 042
07/11/08	14:16	Set Knudsen to Internal timing since no SeaBeam
07/11/08	14:18	Shutting down SeaBeam since no data since 13:15
07/11/08	14:35	SeaBeam back running, no idea why stopped, Tape #3
07/11/08	14:39	Set Knudsen to External timing off of SeaBeam
07/11/08	17:34	SeaBeam to Idle to Release Mooring
07/11/08	17:34	ADCP 150 stopped to Release Mooring
07/11/08	17:34	No Knudsen data since no SeaBeam Trigger
07/11/08	18:22	ADCP 150 restarted
07/11/08	18:22	SeaBeam to Survey
07/11/08	18:23	Knudsen data since SeaBeam Trigger is working again
07/12/08	04:52	New SVP from CTD 049
07/12/08	07:33	New SVP from CTD 050
07/12/08	18:48	New SVP from CTD 053

Date	Time	Event	
	(UTC)		
07/12/08	22:18	New SVP from CTD 054	
07/13/08	00:26	New SVP from CTD 055	
07/13/08	02:44	Note ADCP 150 Gyro input frozen again, for how long?	
07/13/08	03:29	New SVP from CTD 056	
07/13/08	04:20	Manually adjust SVP from CTD 056 down to 200m to 1464.5	
07/13/08	07:56	Reload SVP from CTD 045	
07/13/08	14:46	New SVP from CTD 029 and CTD 25 for deep	
07/13/08	16:38	ADCP150 gyro reset at 1855 (L)	
07/13/08	18:32	New SVP from CTD 058 and CTD 25 for deep	
07/13/08	18:57	Note ADCP150 gyro frozen again	
07/13/08	19:14	Note ADCP150 gyro working again	
07/13/08	19:27	Reload SVP from CTD 027	
07/13/08	23:36	Knudsen to 12KHz more for awhile and then back to Subbottom	
07/13/08	23:58	Knudsen using 12KHz and Subbottom	
07/13/08	23:59	SeaBeam to Idle	
07/14/08	00:53	SeaBeam to Survey	
07/14/08	00:58	Knudsen using only Subbottom	
07/14/08	03:33	New SVP from CTD 060	
07/14/08	04:52	ADCP150 getting gyro from new card but data is 40 degrees too high	
07/14/08	06:09	New SVP from CTD 061	
07/14/08	09:44	New SVP from CTD 062 and CTD 25 for deep	
07/14/08	11:46	ADCP150 Gyro heading stuck again	
07/14/08	14:54	New SVP from CTD 065 and CTD 25 for deep	
07/14/08	20:53	New SVP from CTD 068	
07/14/08	22:27	New SVP from CTD 069	
07/14/08	23:10	SCS stopped, to change ISUS settings	
07/14/08	23:16	SCS restarted	
07/15/08	01:12	New SVP from CTD 070	
07/15/08	06:45	New SVP from CTD 072 and ARGO float R4900843 028 for deep	
07/15/08	10:35	New SVP from CTD 073 and ARGO float R4900843 028 for deep	
07/15/08	15:04	New SVP from CTD 075 and ARGO float R4900843 028 for deep	
07/15/08	18:53	New SVP from CTD 077 and ARGO float R4900843 028 for deep	
07/15/08	21:40	New SVP from CTD 078 and Levitus for deep	
07/16/08	01:57	Knudsen to pinger mode for multicore	
07/16/08	02:01	SeaBeam to Idle mode for multicore	
07/16/08	06:21	Knudsen to SubBottom mode	
07/16/08	06:22	SeaBeam to Survey	
07/16/08	08:25	ADCP150 Gyro heading stuck again	
07/16/08	12:37	Lost some depths in Knudsen Sub Bottom with minimum setting too deep	
07/16/08	14:03	Strange dip at 10L00Z noted on TSG	
07/17/08	00:22	New SVP from CTD 080	
07/17/08	00:27	SCS stopped to implement ISUS changes	
07/17/08	00:28	SCS restarted	
07/17/08	00:46	Reload SVP from CTD 077	
07/17/08	02:45	Reload SVP from CTD 073	
07/17/08	02:50	ADCP150 gyro heading still frozen	
07/17/08	04:42	New SVP from CTD 082	

Date	Time	Event			
	(UTC)				
07/17/08	07:01	Reload SVP from CTD 072			
07/17/08	07:54	New SVP from CTD 083			
07/17/08	08:46	Reload SVP from CTD 081			
07/17/08	09:11	Lost some Knudsen Sub Bottom data with minimum too deep			
07/17/08	10:52	New SVP from CTD 084 and CTD 69 for deep			
07/17/08	16:39	ater depths here should be questionable as we sit off of the island			
07/17/08	23:06	UPS for BioChem is finally died			
07/18/08	06:05	SeaBeam is acting funny since 0523Z, Nav is very erratic			
07/18/08	06:10	SeaBeam center beam is being recorded OK			
07/18/08	06:57	SeaBeam shutdown and restarted with no improvement, new 8mm tape			
07/18/08	07:19	SeaBeam \$NVZDA time is 7 minutes slow			
07/18/08	07:43	IBS work done at time the SeaBeam navigation became erratic			
07/18/08	10:02	IBS rebooted to PCODE time sync			
07/18/08	10:02	SeaBeam back to normal			
07/18/08	11:03	SeaBeam rebooted just to be safe, same tape used, SVP from CTD 073			
07/18/08	18:21	New SVP from CTD 090 and CTD 78 and ARGO float R4900843_028 for			
		deep			
07/18/08	20:36	Reload SVP from CTD 077			
07/18/08	20:57	Reload SVP from CTD 080			
07/18/08	21:41	Reload SVP from CTD 078			
07/18/08	23:06	BioChem UPS replaced			
07/18/08	23:07	ADCP 150 shutdown for circuit board changes			
07/18/08	23:27	ADCP 150 back up and heading is right			
07/19/08	00:05	New SVP from CTD 092			
07/19/08	03:29	Reload SVP from CTD 080			
07/19/08	04:59	New SVP from CTD 093 and CTD 092 for deep			
07/19/08	06:33	ADU5 has no Attitude data since 00:45Z			
07/19/08	06:53	ADU5 reset			
07/19/08	07:21	Reload SVP from CTD 090			
07/19/08	10:24	Knudsen lost some data due to Minimum set too deep			
07/19/08	11:52	New SVP from CTD 094 and CTD 078 for deep			
07/19/08	14:30	Reload SVP from CTD 072			
07/19/08	19:52	Reload SVP from CTD 071			
07/19/08	22:40	Reload SVP from CTD 088			
07/20/08	00:41	New SVP from CTD 094 and CTD 080 and 94 for deep			
07/20/08	06:20	New SVP from CTD 098 and CTD 080 for deep			
07/20/08	14:44	New SVP from CTD 101 and CTD 080 and ARGO float R4900799_047 for			
		deep			
07/20/08	15:47	SeaBeam very off for last 45 minutes. Lost auto track			
07/20/08	20:03	New SVP from CTD 100 and CTD 101 and Levitus			
07/21/08	03:44	New SVP from CTD 103 and Levitus			
07/21/08	17:03	MK 27 Gyro input from Northsar to Furuno GP37			
07/21/08	17:33	New SVP from CTD 106 and Levitus			
07/21/08	20:57	New SVP from CTD 109 and Levitus			
07/21/08	23:16	Knudsen to Pinger for Multicore			
07/21/08	23:18	SeaBeam to Idle for Multicore			
07/22/08	00:27	SeaBeam to Survey Multicore			

Date	Time	Event
	(UTC)	
07/22/08	00:28	Knudsen to SubBottom
07/22/08	05:20	Reload SVP from CTD 103 with CTD 109 for deep
07/22/08	06:45	New SVP from CTD 111 with CTD 109 for deep
07/22/08	13:07	New SVP from CTD 112 with CTD 109 for deep
07/22/08	17:09	Knudsen to internal trigger. SeaBeam stopped and no Knudsen data
07/22/08	17:38	SeaBeam restarted and in Survey mode. Tape #5
07/22/08	17:42	Knudsen triggering off of SeaBeam
07/22/08	17:50	Reload SVP from CTD 112
07/22/08	18:21	ADCP150 gyro headings will be off as ETs work on Gyro syncro
07/22/08	19:00	ADCP150 stopped and restarted
07/22/08	21:28	ADCP150 Gyro Heading back
07/23/08	00:05	New SVP from CTD 116
07/23/08	03:55	New SVP from CTD 117
07/23/08	07:00	shutdown and restart SeaBeam with new MO disk. New 8mm tape?
07/23/08	08:09	New SVP from CTD 118
07/23/08	14:32	New SVP from CTD 121
07/23/08	14:56	Knudsen to internal trigger
07/23/08	15:03	Knudsen to external trigger
07/23/08	21:30	New SVP from CTD 124
07/23/08	23:04	New SVP from CTD 123
07/23/08	23:45	SeaBeam lost time input form IBS for awhile
07/24/08	06:18	New SVP from CTD 125
07/24/08	11:18	New SVP from CTD 129
07/24/08	15:54	New SVP from CTD 130
07/24/08	19:32	New SVP from CTD 132
07/24/08	21:28	New SVP from CTD 133
07/25/08	00:57	New SVP from CTD 134 and argo array float R4900597_111 for the deep
07/25/08	05:36	New SVP from CTD 135 and argo array float R4900597_111 for the deep
07/25/08	08:44	New SVP from CTD 136 and argo array float R4900597_111 for the deep
07/25/08	10:46	New SVP from CTD 137 and argo array float R4900597_111 for the deep
07/25/08	14:06	New SVP from CTD 138 and argo array float R4900597_111 for the deep
07/25/08	16:50	MK27 gyro switched back to Northstar for GPS feed
07/25/08	19:45	add deep values to SVP from CTD 138
07/25/08	21:56	New SVP from CTD 141 and argo array float R4900597_111 for the deep
07/26/08	04:04	New SVP from CTD 142
07/26/08	08:35	New SVP from CTD 143
07/26/08	12:39	New SVP from CTD 144
07/26/08	14:34	New SVP from CTD 146
07/26/08	16:37	New SVP from CTD 147
07/26/08	22:19	New SVP from CTD 149
07/27/08	02:02	Stop SCS149
07/27/08	02:03	Restart SCS
07/27/08	02:37	New SVP from CTD 151
07/27/08	11:31	New SVP from CTD 155
07/27/08	14:37	New SVP from C1D 15/
07/27/08	20:04	18G Fluorometer off for cleaning. It has been noisy.
07/27/08	21:18	1SG Fluorometer off for cleaning, again

Date	Time	Event
	(UTC)	
07/27/08	21:48	New SVP from CTD 160
07/28/08	01:21	New SVP from CTD 164
07/28/08	02:34	It looks like ADCP 150 Gyro heading has been frozen for 24+ hours
07/28/08	03:30	New SVP from CTD 165
07/28/08	04:23	New SVP from CTD 166
07/28/08	05:47	New SVP from CTD 167
07/28/08	06:18	ADCP 150 Gyro syncro reset and is working
07/28/08	06:51	Knudsen Delay set from 0 to .5 seconds, 12Hz on
07/28/08	07:02	New SVP from CTD 168
07/28/08	07:23	Knudsen 12Hz off
07/28/08	08:16	New SVP from CTD 169
07/28/08	09:23	New SVP from CTD 170
07/28/08	10:41	New SVP from CTD 171
07/28/08	12:08	New SVP from CTD 172
07/28/08	12:56	New SVP from CTD 173
07/28/08	14:15	New SVP from CTD 174
07/28/08	14:27	Restart Profile Display on SeaBeam after it had stopped
07/28/08	15:01	New SVP from CTD 175
07/28/08	16:12	New SVP from CTD 176
07/28/08	18:02	New SVP from CTD 177
07/28/08	18:32	New SVP from CTD 178
07/28/08	19:34	New SVP from CTD 179
07/28/08	21:14	ADCP 150 Gyro heading stopped, running test to TACAN to Dutch
07/28/08	21:21	New SVP from CTD 180
07/29/08	01:13	New SVP from CTD 183
07/29/08	04:11	New SVP from CTD 185
07/29/08	06:53	New SVP from CTD 187
07/29/08	09:32	New SVP from CTD 189
07/29/08	13:01	New SVP from CTD 191
07/29/08	16:21	New SVP from CTD 193
07/29/08	18:55	New SVP from CTD 194
07/29/08	21:35	New SVP from CTD 196
07/30/08	00:13	Reconnected Aloft Con Web camera to network
07/30/08	06:14	TSG Salinity adjusted down .035 psu
07/30/08	06:14	New SVP from CTD2 02
07/30/08	08:53	New SVP from CTD 204
07/30/08	12:06	New SVP from CTD 206
07/30/08	12:11	SeaBeam tape #6 was ejected sometime, inserted #7
07/30/08	16:28	New SVP from CTD 209 and CTD 024 for the deep
07/30/08	18:11	New SVP from CTD 210 and CTD 024 for the deep
07/31/08	01:11	SeaBeam displays are not working right, GUIs gone, data working
07/31/08	01:38	SeaBeam rebooted
07/31/08	03:57	New SVP from recent CTD and CTD 019 for the deep
07/31/08	08:57	Adjust recent SVP removing last 20 meters of last CTD data
07/31/08	16:43	Request to secure Science Sea water, for end of HLY0803
07/31/08	16:45	Stop ADCP 150, for end of HLY0803
07/31/08	16:45	SeaBeam to Idle, for end of HLY0803

Date	Time	Event
	(UTC)	
07/31/08	16:48	Stop Sub Bottom, for end of HLY0803
07/31/08	17:27	Stop LDS, for end of HLY0803
07/31/08	17:27	Stop SCS. End of HLY0803. Tied up in Dutch Harbor.

Comments that might help when using the data

The SCS system has stopped recording every now and then. If this is the case. You should look for the corresponding data in the LDS_Data directories. The data may have been recorded there.

The Knudsen data written into SCS_Data/Knudsen has an inconsistent time in the data. The time that the SCS writes to the start of the file should be used. The Knudsen internal clock adds about 22.8 seconds to the3 internal clock each day near 00:00. But this is reset when the recording program is started up. Use only the SCS time stamp for time in this data and it should be fine.

The SeaBeam data is raw and unedited. This data needs MAJOR editing and care to use. The Knudsen sub bottom data is perhaps more accurate but it uses only the single Speed of Sound Velocity Profile of 1500 meters/second.

Information to calibrate the Optotech Oxygen Sensor from the Bio Chem lab is in the Meta_Data directory.

For much of HLY0803 the "analog" heading in from the bridge has been locked to a fixed value. This is a signal from the synchro converter on the bridge of the Gyro data. This signal is very finicky and headings in the raw data will be questionable. For good heading data you should use the POSMV heading, which is in the data but is not used in the first quick looks data.

During HLY0803 the logging rate for the winch data was changed from 1 to 4 Hz.

Cruise Weather Summary

Page 30 of 65

Underway Sensors and Calibrations

Sensors and Calibrations

HLY0803 Shipboard Sensors

Sensor	Description	Serial #	Last Calibration	Status		
Meteorology & Radiometers						
Port Anemometer	RM Young 09101	L 001	02/06/07	Collected		
Sthd Anemometer	RM Young 09101	L001	03/07/07	Collected		
Denometer	RM Toung 09101	DD01642	03/07/07	Collected		
Barometer	RM Young 612011	BP01043	02/22/08	Collected		
Air Temp/Rel. Hum.	RM Young 41382V	13352	02/22/08	Collected		
Helo shack PAR	BSI QSR-2200	20270	01/09/07	Collected		
Shortwave Radiation	Eppley labs - PSP	35032F3	08/01/07	Collected		
Longwave Radiation	Eppley labs - PIR	34955F3	08/17/07	Collected		
Barometer	Paroscientific MET3A	101757	06/27/07	Collected		
Bow Temperature	Paroscientific MET3A	101757	06/27/07	Collected		
Precipitation	Paroscientific MET3A	101757	06/27/07	Collected		
Relative Humidity	Paroscientific MET3A	101757	06/27/07	Collected		
Jack Staff Ultrasonic Anemometer	RM Young 85004	00703	09/20/07	Collected		
Yard Arm Stb Ultrasonic Anemometer	RM Young 85004	00704	09/20/07	Collected		
Underway Ocean						
TSG A	SeaBird SBE45	0215	08/01/07	Collected		
Remote Sea Temp	SeaBird SBE3S	4063	12/13/07	Collected		
Fluorometer A	Seapoint SCF	SCF2957	12/15/07	Collected		
Oxygen Sensor A	SeaBird SBE-43	1307	09/28/07	Collected		
Nitrate Sensor	MBARI ISUS v3	141	10/11/07	Collected		
Flowmeter A	Flocat C-ES45-B003	09061005	01/07/08	Collected		
AC-S Spectral Attenuation and Absorption Meter	Wetlabs	053	010/10/8	Colected		
Sonars		•	- ·			

Sensor	Description	Serial #	Last Calibration Date	Status
Knudsen- subbottom	320 B/R	K2K-00-0013	N/A	Collected
ADCP 150 kHz	Broad Band (BB150)	80	N/A	Collected
ADCP 75 kHz	Ocean Surveyor	172	N/A	Not Collected
Multibeam	Seabeam 2112	?	N/A	Collected
Speed log	Sperry	?	N/A	Collected
Navigation		1	I	
P-Code GPS (aft)	Trimble Centurion	0220035469	N/A	Collected
Attitude GPS	Ashtech ADU5	AD52003351 3	N/A	Collected
DGPS	Trimble AGGPS- AG132	0224016199	N/A	Collected
POSMV	Model- MV V4	2306	N/A	Collected
P-Code GPS (fwd)	Rockwell	?	N/A	Collected
Glonass	?	?	N/A	Collected
GYRO 1	Sperry MK39 PN 03956-1982416-2	340	?	Collected
GYRO 2	Sperry MK27A 4800880-1	025	N/A	Collected

HLY0802- CTD Sensors

Sensor	Comments	Serial #	Last service/ Calibration Date	Status
CTD fish	SBE 911plus	639	01/18/08	
Pressure Sensor #1	Digiquartz with TC	83012	01/18/08	Collected
Temperature #1	SBE3- Primary	2855	01/21/08	Collected
Temperature #2	SBE3- Secondary	2796	01/27/08	Collected
Temperature #3	SBE 35	0011	03/08	Collected
Conductivity #1	SBE4- Primary	2568	01/18/08	Collected
Conductivity #2	SBE4- Secondary	2561	01/18/08	Collected
Pump	SBE5 Primary	3115	01/08	NA
Pump	SBE5 Secondary	3112	01/08	NA
Deck Unit	SBE 11-Plus V2	0417	12/07	NA
Altimeter	PSA916	843	01/08	Collected
Oxygen	SBE43	458	12/12/07	Collected
Fluorometer	Chelsea-Aquatrack3	088234	03/07	Collected
Transmisometer	Wetlabs	CST-390DR	01/08	Collected
PAR	Bioshperical QSP2300	70115	01/07	Collected
Carousel	SBE32- 12 place	347	01/08	NA

HLY0802 Sensor Calculations

The coefficients for temperature, conductivity, fluorometer and turbidity sensors can be found in the calibrations sheets below in the Appendix.

Calculating Temperature – ITS-90

T = decimal equivalent of bytes 1-4 Temperature Frequency: f = T/19 + 2100Temperature = $1/{g + h[ln(f_0/f)] + i[ln^2(f_0/f)] + j[ln^3(f_0/f)]} - 273.15$ (°C)

Calculating Conductivity – ITS-90

C = decimal equivalent of bytes 5-8 Conductivity Frequency f = sqrt(C*2100+6250000) Conductivity = $(g + hf^2 + if^3 + jf^4)/[10(1 + \delta t + \epsilon p)]$ (siemens/meter) t = temperature (°C); p = pressure (decibars); δ = Ctcor; ϵ = CPcor

Calculating Fluorometry Voltage

f = decimal equivalent of bytes 15-17 Fluorometry Voltage = f/819

Calculating Transmittance

 $V_{dark} = 0.058 V$ $V_{ref} = 4.765 V$ t = decimal equivalent of bytes 18 - 20Transmissometer Voltage (V_{signal}) = t/819
% Transmittance = (V_{signal} - V_{dark}) / (V_{ref} - V_{dark})

Calculating PAR for surface PAR

raw data = mV calibration scale = $6.08 \text{ V}/(\mu \text{Einstiens/cm}^2 \text{sec})$ offset (V_{dark}) = 0.3 mV(*raw* mV - V_{dark})/scale x 10⁴ cm²/m² x 10⁻³ V/mV= $\mu \text{Einstiens/m}^2 \text{sec}$ or (*data* mV - 0.3 mV) x 1.65 ($\mu \text{Einstiens/m}^2 \text{sec}$)/mV = $\mu \text{Einstiens/m}^2 \text{sec}$

Page 34 of 65

Calculating Pyrgeometer Values

V = Eppley PIR Thermopile voltage S = Sensitivity (Calibration factor from Eppley Cal sheet) S = 3.32 J = Stefan-Boltzmann Constant J = 5.6697e-8 B = [absorption constant (for Eppley Black paint formula) 0.985 / dome glass IR transmission 0.5] B = 3.5 for Stock Eppley PIR Tb = Eppley Body Temperature in degrees Kelvin Td = Eppley Dome Temperature in degrees Kelvin Tb and Td calculated as follows: T = 1/ (a + ln(Vo/Irt)*(b + c*(ln(Vo/Irt)**2))); Irt = (Vref-Vin)/R1 On Healy R1 = 82500 Vref = 5.0

 $W/M2 = V/S + (J * Tb^4) + (B*J*(Tb^4 - Td^4))$

b=0.0002391

Calculating Apparent Oxygen Utilization (AOU) in the 1 minute average file

 $Ts = \ln \left[(298.15 T) / (273.15 + T) \right]$

c = 1.568e-7

Where

a = 0.0010295

Oxsol(T,S) = oxygen saturation value = volume of oxygen gas at standard temperature and pressure conditions (STP) absorbed from humidity-saturated air at a total pressure of one atmosphere, per unit volume of the liquid at the temperature of measurement (ml/l)

S = salinity (psu)

T = water temperature (oC)

A0 = 2.00907 A1 = 3.22014 A2 = 4.0501 A3 = 4.94457 A4 = 0.256847 A5 = 3.88767

B0 = -0.00624523 B1 = -0.00737614 B2 = -0.010341 B3 = -0.00817083

C0 = -0.000000488682

Calibrations

The following pages are replicas of current calibration sheets for the sensors used during this cruise.

Meteorology & Radiometers

R.M. Young Wind Bird, Starboard

Serial # L001

R. M Model	Л. You # 091 _{Аs}	ng Wind 01, S/N L per Young Met Wind System	bird Calibration 003 (Starboard teorological Instruments Calibration Manual	n Result Windbi	s rd)
Date: 07 Mar 07	Technici	an: ET1 Berring	er / ETC Rodda		
Wind speed tor	que: Pass	ed			
Maxim Wind direction	um toque = Test resu	= 2.4 gm/cm lts: CW CCW	0.7 0.7		
wind direction	torque: 1	rasseu			
Maxim	um toque =	= 30 gm/cm			
	Test resu	lts:	20 am/cm		
		CCW	22 gm/cm		
Wind speed sig	nal:				
Maxim	um % erroi	r = 1%			
	Test resu	lts: Passed			
		Actual RPM	Actual Wind Speed	Measured	% Error
		200	1.90	1.9	0.21
		500	4.76	4.8	0.84
		1200	11.42	11.4	0.21
		3600	34.27	34.3	0.08
		5000	47.60	47.6	0.00
Wind direction	Note; Wi signal:	nd speed in kno	ots = 0.00952 * shaft RP	М	
Maxim	um error =	+/- 2 degrees			
	Test re	Iter Failed -ff	by Lidearree		
Actua	Mea	ured Error	by I degree		

103	rest results. Failed – off by T				
Actual	Meaured	Error			
0	358	-2			
30	27	3			
60	58	2			
90	88	2			
120	118	2			
150	149	1			
180	178	2			
210	207	3			
240	238	2			
270	268	2			
300	297	3			
330	327	3			

R.M. Young Wind Bird Port

Serial # L001

R. M. Young Wind bird Calibration Results Model # 09101, S/N L001 (Port Windbird)

As per Young Meteorological Instruments Wind System Calibration Manual

> 10gm/cm 10gm/cm

Date: 06 Feb 07

Technician: ET3 Daem / ET2 Davis

Wind speed torque: Passed

Maximum toque =2.40 gm/cm

Test results:	
CW	.2 gm/cm
CCW	.2 gm/cm

Wind direction torque: Passed

Maximum toque = 30 gm/cm

Test results:	
CW	
CCW	

Wind speed signal: Passed

Maximum % error = 1%

Test results:

Actual RPM	Actual Wind Speed	Measured	% Error
200	1.90	1.9	0.21
500	4.76	4.8	0.84
1200	11.42	11.4	0.21
3600	34.27	34.3	0.08
5000	47.60	47.6	0.00

Note; Wind speed in knots = 0.00952 * shaft RPM

Wind direction signal: Passed

Maximum error = +/- 2 degrees

Actual	Meaured	Error
0	359	-1
30	29	1
60	59	1
90	90	0
120	120	0
150	150	0
180	180	0
210	210	0
240	240	0
270	269	1
300	298	2
330	330	0

Barometer

Serial # BP01643

Baro Pres Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: BP01643 CALIBRATION DATE: 22-Feb-08 SENSOR ID: BPR80 Mfg: RM Young Model: 612011 Previous Cal Date: 01-Jan-00 Calibration Tech: CM CALIBRATION AT 25.0 DegC

A= 5.98528E+1 B= 8.02635E+2

Calibration Standard: Mfg: Paroscientific Model: 765-16B s/n: 101778 Polynomial Order = 1 Xcalc = A*X+B

SENSOR	STANDARD	SENSOR	SPRT-INST	SPRT-INST
VOLTS	DATA	New_Coefs	Prev_Coefs	New_Coefs
4.901	1095.960	1095.953	1.920	0.007
4.151	1051.090	1051.086	2.028	0.004
3.731	1025.970	1025.963	2.092	0.007
3.475	1010.640	1010.645	2.118	-0.005
3.306	1000.490	1000.479	2.159	0.011
3.314	1000.990	1000.986	2.151	0.004
2.939	978.480	978.517	2.165	-0.037
2.445	948.980	949.001	2.254	-0.021
2.004	922.570	922.555	2.355	0.015
1.998	922.190	922.205	2.326	-0.015
1.713	905.210	905.180	2.413	0.030

Air Temperture / Relative Humidity

Serial # 13352

Air Temperature Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 13352 CALIBRATION DATE: 22-Feb-08 SENSOR ID: HRH17 Mfg: RM Young Model: 41382V Previous Cal Date: 01-Jan-2000 Calibration Tech: CM

A= 1.01413E+2 B= -5.07642E+1

Calibration Standard: Mfg: Seabird Model: SBE35 s/n: 0006 Polynomial Order = 1 Xcalc = A*X+B

SENSOR	STANDARD	SENSOR	SPRT-INST	SPRT-INST
	DATA	New_Coefs	Prev_Coefs	New_Coefs
0.480	-2.122	-2.035	-0.652	-0.087
0.504	0.337	0.338	-0.557	-0.001
0.554	5.421	5.398	-0.513	0.023
0.603	10.448	10.418	-0.485	0.030
0.651	15.345	15.235	-0.386	0.110
0.699	20.190	20.154	-0.439	0.036
0.748	25.029	25.113	-0.539	-0.084
0.796	29.914	29.920	-0.442	-0.006
0.840	34.361	34.382	-0.439	-0.021

HUMIDITY Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 13352 CALIBRATION DATE: 24-Feb-08 SENSOR ID: HRH17 Mfg: RM Young Model: 41382V Previous Cal Date: 01-Jan-2000 Calibration Tech: CM

A= 1.04836E+2 B= -6.79727E-1

Calibration Standard: Mfg: GE Sensing Model: Humilab s/n: 0240507 Polynomial Order = 1 Xcalc = A*X+B

SENSOR	STANDARD DATA	SENSOR New_Coefs	SPRT-INST Prev_Coefs	SPRT-INST New_Coefs
0.791	82.450	82.266	2.539	0.184
0.794	82.710	82.560	2.516	0.150
0.866	90.460	90.108	2.994	0.352
0.530	53.570	54.904	0.020	-1.334
0.301	31.000	30.876	0.599	0.124
0.192	19.920	19.396	0.579	0.524

PAR Serial # 20270

Biospherical Instruments Inc.

CALIBRATION CERTIFICATE

Calibration Date	1/9/2007				
Model Number	QSR-2200				
Serial Number	20270				
Operator	TPC				
Standard Lamp	F-863				
Probe Excitation Vo	Itage Range:	6	to	18	VDC(+)
Output Polarity:	Positive				

Probe Conditions at Calibration(in air):

Calibration Voltage:	6	VDC(+)
Probe Current:	4.0	mA

Probe Output Voltage:

Probe Illuminated	95.87	mV
Probe Dark	1.32	mV
Probe Net Response	94.55	mV

Corrected Lamp Output:

Output In Air (same condition as calibration):

9.43E+15	quanta/cm ² sec
0.01566	uE/cm ² sec

Calibration Factor:

(To calculate irradiance, divide the net voltage reading in Volts by this value.)

Notes:

1. Annual calibration is recommended.

- Calibration is performed using a Standard of Spectral Irradiance traceable to the National Institute of Standards and Technology (NIST).
- The collector should be cleaned frequently with alcohol.
- 4. Calibration was performed with customer cable, when available.

QSR240R 05/24/95

Shortwave Radiation Pyranometer

Serial # 35032F3

Longwave Radiation Pyrgeometer

Serial # 34955F3

THE EPPLEY LABORATORY, INC.

12 Sheffield Ave., P.O. Box 419, Newport, RI 02840 USA Telephone: 401-847-1020 Fax: 401-847-1031 Email: info@eppleylab.com Internet: www.eppleylab.com

Scientific Instruments for Precision Measurements Since 1917

STANDARDIZATION OF EPPLEY PRECISION INFRARED RADIOMETER Model PIR

Serial Number: 34955F3

Resistance:	708	Ω at	23	°C	
Temperature Compensation Range:	-20	to	40	°C	

This pyrgeometer has been compared against Eppley's Blackbody Calibration System under radiation intensities of approximately 200 watts meter² and an average ambient temperature of 25°C as measured by Standard Omega Temperature Probe, RTD#1.

As a result of a series of comparisons, it has been found to have a sensitivity of:

3.32 x 10⁶ volts/watts meter²

The calculation of this constant is based on the fact that the relationship between radiation intensity and emf is rectilinear to intensities of 700 watts meter². This radiometer is linear to within $\pm 1.0\%$ up to this intensity.

The calibration of this instrument is traceable to the International Practical Temperature Scale (IPTS) through a precision low-temperature blackbody.

Eppley recommends a minimum calibration cycle of five (5) years but encourages annual calibrations for highest measurement accuracy. Unless otherwise stated in the remarks section below or on the Sales Order, the results are "AS FOUND / AS LEFT".

Shipped to:				Date of Test: May 31, 2007
UCSD/SIO La Jolla, C	A			In Charge of Test P.T. Grenan
S.O. Number: Date:	61272 August	17,	2007	Reviewed by: Thomas , Kub

Remarks:

Jack Staff MET Station

Serial # 101757

	Paroscient Pressure Instrur	tific, Inc. nent Conf	figuration
SN: 101757 Part	Number: 1539-004 Mod	el:MET3A	Port:
Calibration Date	e: 27-Jun-07 Report N	lo: 7238	Technician: WMR
Pressure Range:	500 to 1100 bPa Ter	merature	Range: -50 to -60
Customer: Scripp	os Inst. of Oceanograp)	hy	Report Date: 27-Jun-07
Address : 8825 H	Biological Grade		Sales Order: 24387
La Jol	lla, CA 92037 USA		S/R Number :
		0.1	
Con	riguration	Call	ibration Coefficients
BL: 0	PT: N	U0 :	5,766908 µsec
BR: 9600	QD: -	Yl:	-4015.975 deg C / µsec
DD: -	QD: -	Y2 :	-17065.37 deg C / µsec?
DL: -	SL: -	¥3:	-140256.4 deg C / µsec"
DM: -	SN: 101757	C1 :	94.87589 psi
D0: -	ST: -	C2 :	3.545282 psi / µsec
DP:	SU: -	C3 :	-114.9551 psi / usec*
ID: 01	TI: -	D1:	0.0345157
IM: -	TR: 00952	D2 :	0.0000000
LL: -	TU: -	T1:	28.00064 µsec
LH: -	UF: 1.000000	T2 :	0.837535 µsec / µsec
MC: Y	UL: -	T3 :	16.78157 µsec / µsec?
MD: 0	UM: -	T4 :	-150.7085 µsec / µsec*
MN : -	UN: 3	T5 :	-129.729 µsec / µsec*
OP: -	US: -	TC:	0.6782145
PF: -	VR: M1.02	PA:	0.0000000
PI: -	ZI: -	PM :	1.0000000
PL: -	ZS: -		
PO: ···	ZL: -	1	
PR: 00238	ZV: -	1	
PS : -			

Met3/3A Coefficients				
E1: -0.551136	E2: 0.84			
F1: -264.3591	F2: 3.152			
G1: 12.56743	G2: 0.00216			
H1: RHT894	H2: 0.0036			
K1: 01842	K2: 0.00511			
M1: 1	M2: 1			
Z1: 0	Z2: 0			

Page 44 of 65

Paroscientific, Inc.

4500 148th Avenue N. E.

Facsimile: (425) 867-5407 Redmond, WA 98052-5194 Email:salessupport@paroscientific.com Telephone: (425) 883-8700 Internet:http://www.paroscientific.com

CERTIFICATE OF CALIBRATION

TRANSDUCER MODEL: MET3A

SERIAL NUMBER: 101757

The Paroscientific transducer(s) identified above has been calibrated and tested with one or more of the following primary pressure and temperature standards. All have traceability to the National Institute of Standards and Technology.

Bell and Howell Primary Pressure Standard

Pneumatic Absolute or Gauge Dead Weight Tester Part Number: 6-201-0001, S/N 4034 and S/N 1014

- Piston/Cylinder: 6-001-0002, P2-919/C2-1523,
- Weight Set 1: 6-002-0002 Range: 1.5 to 50 psi [10 to 345 kPa] Accuracy: 0.010 percent of reading
- Piston/Cylinder: 6-001-0002, P2-652/C2-1378, ~ Weight Set 2: 6-002-0002 Range: 1.5 to 50 psi [10 to 345 kPa] Accuracy: 0.010 percent of reading

Piston/Cylinder: 6-001-0001, P1-949/C1-922, Weight Set 2: 6-002-0002 Range: 0.3 to 5 psi [2 to 34 kPa] Accuracy: 0.015 percent of reading

DH Primary Pressure Standard

Pneumatic Absolute or Gauge Dead Weight Tester Part Number: PG7601 S/N 161

Piston/Cylinder: S/N 305, Mass Set: S/N 2052 Range: 0.7 to 50 psi [5 to 345 kPa] absolute mode, 0.29 to 50 psi [2 to 345 kPa] gauge mode Accuracy: 0.002 percent of reading

DH Primary Pressure Standard

Pneumatic Gauge Dead Weight Tester, Model 5203, S/N 5557

Piston/Cylinder: S/N 4845, Mass Sets: S/N 2032, S/N 3293 Range: 20 to 1,600 psi [0.14 to 11 MPa] Accuracy: 0.005 percent of reading

DH Primary Pressure Standard

Oil Operated Gauge Dead Weight Tester, Model 5306, S/N 3505

- Piston/Cylinder: S/N 3375, Mass Set: S/N 2032 Range: 40 to 20,000 psi [0.3 to 138 MPa] Accuracy: 0.01 percent of reading above 200 psi [1.4 MPa] or 0.02 psi [0.14 kPa] at lower pressure
- Piston/Cylinder: S/N 3511, Mass Set: S/N 2032 Range: 145 to 72,500 psi [1 to 500 MPa] Accuracy: 0.02 percent of reading above 725 psi [5 MPa] or 0.145 psi [1 kPa] at lower pressure

Hart Scientific Precision Thermometer (MET3A only)

Black Stack model 1560 S/N 97568, PRT Scanner model 2562 S/N A34523, Temperature Probe Model A1959: S/Ns 4424A-02, 4424A-04, 4424A-05, 4424A-06 and 5177C-02. Range: -50° to 60° C. Accuracy: .015°C.

PAR TES Tested By:_____ DATE 6-27-07

Digiguartz[®] Pressure Instrumentation Document No. 8145-001, Rev. M 4/18/07

Underway Ocean Flow through Sensors

Seabird ThermoSalinograph

Serial # 0215

Temperature

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0215 CALIBRATION DATE: 01-Aug-07 SBE 45 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

ITS-90 COEFFICIENTS

a0 = -1.277283e-006 a1 = 2.800988e-004 a2 = -2.767325e-006 a3 = 1.635307e-007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	\$57810.B	0.9939	-0.0000
4.5000	562392.3	4.5000	0.0000
15,0000	358334.1	14,9999	-0.00.00
18,5001	310251.4	18,5000	-0.0001
24,0000	248855.2	24,0001	0.0002
29.0001	204884.7	29.0000	-0.0001
32.4399	179404.2	32.5000	0.0000

Temperature [TS-90 = $1/(a0 + a1[in(n)] + a2[in^2(n)] + a3[in^3(n)]] - 273.15$ (*C)

Residual = instrument temperature - bath temperature

Date, Delta T (mdeg C)

0.02 01-Aug-07 -0.00 0.01 Residual, (Degrees C) 0.00 -0.01 -0.02-30 20 25 35 10 15 -5 0 5 Temperature, Degrees C

Page 46 of 65

Conductivity

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0215 CALIBRATION DATE: 01-Aug-07 SBE 45 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

 $\begin{array}{l} g = -9.817728e\mbox{-}001\\ h = -1.408375e\mbox{-}001\\ i = -1.671624b\mbox{-}004\\ j = -3.431539e\mbox{-}005 \end{array}$

CPcor = -9.5700e-008 CTcor = 3.2500e-005 WBOTC = 2.4202e-005

BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22,0000	0,0000	0.00000	2641.45	0.00000	0.00000
1.0000	34.8934	2.98192	5303.53	2.38193	0.00001
4,5000	34.8731	3.28955	5504.48	3.28955	-0.00000
15.0000	34.8297	4.27308	6101.73	4.27307	-0.00001
18.5001	34.8207	4.61890	5297.94	4.61889	-0.00001
24.0000	34.8111	5,17793	5502.44	5,17794	0,00001
29.0001	34.8062	5.70086	\$874.67	5.70088	0.00002
32.4999	34.8046	6.07417	7062.34	6.07415	-0.00002

f = INST FREQ * sqit(1.0 + WBOTC * t) / 1000.0

$$\begin{split} Conductivity &= \langle g + hf^2 + if^3 + jf^4 \rangle / (1 + \delta t + \epsilon p) \ \text{Siemens/meter} \\ t &= temperature[°C)]; \ p &= pressure[decibars]; \ \delta = CTcor, \ \epsilon = CPcor; \end{split}$$

Residual = instrument conductivity - bath conductivity

0.002 01-Aug-07 1.0000000 0.001 Residual, (S/m) 0.000 -0.001 -0.002 F 1 1.1 0 2 3 1 5 6 4 7 Conductivity (Siemens/m)

Date, Slope Correction

Remote Sea Temperature (Sea Chest)

Serial # 4063

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4063 CALIBRATION DATE: 13-Dec-07

SBE3 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

ITS-90 COEFFICIENTS

g =	4.29921671e-003
h =	6.36406488e-004
i =	2.06912541e-005
j =	1.52019386e-006
£0 =	1000.0

IPTS-68 COEFFICIENTS				
а	=	3.68121265e-003		
b	=	5.99688417e-004		
с	=	1.61521904e-005		
d	=	1.52164480e-006		

f0 = 2721.791

BATH TEMP (ITS-90)	INSTRUMENT FREO (Hz)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
-1.5000	2721.791	-1.5000	-0.00002
1.0000	2878.781	1.0000	0.00003
4.5000	3109.455	4.5000	0.00002
8.0000	3353.176	8.0000	-0.00001
11.5000	3610.316	11.5000	-0.00001
15.0000	3881.236	15.0000	0.00002
18.5000	4166.278	18.5000	-0.00004
22.0000	4465.803	22.0000	0.0000
25.5000	4780.134	25.5000	0.00003
29.0000	5109.596	29.0000	0.00002
32.5000	5454.501	32.5000	-0.00002

Temperature ITS-90 = $1/{g + h[ln(f_0/f)] + i[ln^2(f_0/f)] + j[ln^3(f_0/f)]} - 273.15$ (°C) Temperature IPTS-68 = $1/{a + b[ln(f_0/f)] + c[ln^2(f_0/f)] + d[ln^3(f_0/f)]} - 273.15$ (°C)

Following the recommendation of JPOTS: T68 is assumed to be 1.00024 * T60 (-2 to 35 °C) Residual = instrument temperature - bath temperature

Date, Offset(mdeg C)

24-Jan-07 -0.09
 13-Dec-07 -0.00

Oxygen Sensor A

Serial # 1307

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SEI	RIAL NUMBER: ON DATE: 28-Sej	1307 p-07p	SBE 43 OF	CYGEN CALIBRATION	DATA
COEFFICIEN	ITS		TCor =	0.0025	
Soc = 0.	3834		PCor =	1.3500-04	
Boc = 0.	0000				
Voffset -	-0.4781				
BATH OX (ml/l)	BATH TEMP ITS-90	BATH SAL PSU	INSTRUMENT OUTPUT(VOLTS)	INSTRUMENT OXYGEN(ml/l)	RESIDUAL (ml/l)
1.22	2.00	0.00	0.805	1.22	-0.01
1,24	12.00	0.01	0.898	1.25	0.01
1.24	20.00	0.01	0.966	1.25	0.01
1.24	26.00	0.01	1.016	1.25	0.00
1.25	6.00	0.00	0.848	1.25	0.00
1.25	30.00	0.01	1.057	. 1.26	0.01
4.11	20.00	0.01	2.086	4.11	0.00
4.13	26.00	0.01	2.254	4.11	-0.01
4.13	12.00	0.01	1.870	4.14	0.02
4.15	2,00	0.00	1.583	4.11	-0.03
4.15	30.00	0.01	2.382	4.15	-0.00
4.15	6.00	0.00	1.705	4,15	-0.00
6.57	30.00	0.01	3.491	6.57	-0.01
6.58	26.00	0.01	3.311	6.56	-0.02
6.60	20.00	0.01	3.061	6.61	0.01
6.62	12.00	0.01	2.712	6.65	0.03
6.64	5.00	0.00	2.447	6.67	0.02
6.71	2.00	0.00	2.273	6.68	-0.03

oxygen (ml/l) = (Soc * (V + Voffset)) * cxp(Tcor * T) * Oxsat(T,S) * exp(Pcor * P) V = voltage output from SBE43, T = temperature [deg C], S = salinity [PSU] Oxsat(T,S) = oxygen saturation [ml/l], P = pressure [dbar] Residual = instrument oxygen - bath oxygen

Date, Delta Ox (ml/l)

28-Sep-07p 0.01

CTD Sensors

Pressure Sensor

Serial # 83012

Pressure Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 639 CALIBRATION DATE: 18-JAN-2008 Mfg: Seabird Model: SBE9P CTD Prs s/n: 83012

C1= -3.841449E+4 C2= 4.630485E-1 C3= 1.014581E-2 D1= 3.051116E-2 D2= 0.000000E+0 T1= 3.019016E+1 T2= -1.746821E-4 T3= 4.517296E-6 T4= -9.087207E-9 T5= 0.000000E+0 AD590M= 1.27551E-2 AD590B= -9.09133E+0 Slope = 1.0 Offset = 0.0

Calibration Standard: Mfg: Ruska Model: 2400 s/n: 34336 t0=t1+t2*td+t3*td*td+t4*td*td*td w = 1-t0*t0*f*f Pressure = (0.6894759*((c1+c2*td+c3*td*td)*w*(1-(d1+d2*td)*w)-14.7)

Temperature #1

Serial # 2855

Temperature Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 2855 CALIBRATION DATE: 21-JAN-2008 Mfg: Seabird Model: SBE3Plus Previous Cal Date: 24-Jan-07 Calibration Tech: CM

g= 4.35951439E-3 h= 6.45648951E-4 i= 2.38075037E-5 j= 2.35385504E-6 f0 = 1000.0 Slope = 1.0 Offset = 0.0

Calibration Standard: Mfg: ASL Model: F18 s/n: 245-5149 Temperature ITS-90 = 1/{g+h[in(f0/f)]+i[in2(f0/f)]+j[in3(f0/f)]} - 273.15 (°C)

SBE3		SBE3	SPRT-SBE3	SPRT-SBE3
Freq	SPRT	New_Coefs	Prev_Coefs	New_Coefs
5479.6760	28.1875	28.1875	0.00140	0.00002
5798.0010	31.2142	31.2142	0.00189	-0.00002
5174.8630	25.1737	25.1737	0.00101	0.00002
4839.0220	21.7073	21.7073	0.00066	-0.00000
4563.9390	18.7410	18.7410	0.00045	-0.00003
4313.5900	15.9306	15.9306	0.00036	-0.00000
4062.6960	12.9964	12.9964	0.00029	0.00002
3819.2680	10.0242	10.0242	0.00019	-0.00001
3580.6660	6.9771	6.9771	0.00011	-0.00001
3359.2520	4.0167	4.0167	0.00007	0.00004
3216.0510	2.0264	2.0264	-0.00010	-0.00004
3143.3570	0.9916	0.9916	-0.00010	0.00002
3042.0950	-0.4792	-0.4792	-0.00018	0.00003
3003.6410	-1.0471	-1.0471	-0.00029	-0.00003
2934.0140	-2.0888	-2.0888	-0.00036	-0.00001

Temperature #2

Serial # 2796

Temperature Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 2796 CALIBRATION DATE: 21-JAN-2008 Mfg: Seabird Model: SBE3Plus Previous Cal Date: 27-Jan-07 Calibration Tech: CM

g= 4.30545772E-3 h= 6.41541965E-4 i= 2.26535491E-5 j= 2.15838215E-6 f0 = 1000.0 Slope = 1.0 Offset = 0.0

Calibration Standard: Mfg: ASL Model: F18 s/n: 245-5149 Temperature ITS-90 = 1/{g+h[in(f0/f)]+i[in2(f0/f)]+j[in3(f0/f)]} - 273.15 (°C)

SBE3		SBE3	SPRT-SBE3	SPRT-SBE3
Freq	SPRT	New_Coefs	Prev_Coefs	New_Coefs
5034.9080	28.1869	28.1869	0.00129	-0.00001
5327.3120	31.2134	31.2134	0.00145	0.00001
4754.9570	25.1736	25.1736	0.00117	-0.00003
4446.4900	21.7075	21.7075	0.00113	0.00003
4193.8400	18.7414	18.7414	0.00105	0.00000
3963.9100	15.9311	15.9311	0.00097	-0.00004
3733.4680	12.9969	12.9969	0.00098	0.00001
3509.8970	10.0249	10.0248	0.00098	0.00005
3290.7460	6.9777	6.9777	0.00087	-0.00002
3087.3980	4.0175	4.0175	0.00082	-0.00001
2955.8690	2.0273	2.0273	0.00077	-0.00001
2889.1220	0.9928	0.9928	0.00074	-0.00001
2796.0920	-0.4783	-0.4783	0.00068	-0.00002
2760.7580	-1.0463	-1.0463	0.00070	0.00001
2696.7970	-2.0881	-2.0881	0.00067	0.00003

Temperature #3

Serial # 0011

SBE35 V 2.0a SERIAL NO. 0011 25 Jun 2008 number of measurement cycles to average = 8 number of data points stored in memory = 0 bottle confirm interface = SBE 911plus

SBE35 V 2.0a SERIAL NO. 0011 29-mar-08 A0 = 5.030840630e-03 A1 = -1.387153030e-03 A2 = 2.040326840e-04 A3 = -1.129031550e-05 A4 = 2.392311380e-07 SLOPE = 1.000000 OFFSET = 0.000000

Conductivity #1

Serial # 2568 See the attached PDF file SBE4-2568-18Jan08.pdf in the Meta Data directory.

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9865 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 2568 Calibration date: 18-36:-08			SBE4 CONDUCTIVITY CALIBRATION DAT PSS 1978: C(35,15,0) – 4 2914 Seimens/Detur			
OTLICOD FICT	ENCS		ABCD?	M COBIFICIEN T	8	
q = −1.03630	9721e-001		a -	3.84933≮72e→	004	
h = 1.4846	36029-000		ь -	1.48492005e (000	
$1 = 3.4840^{\circ}$	57/04-007			03867351e J	001	
4 _ 4 1527	76925-007			9 19272676A 3	eet.	
	50022-000 5200- 000 -			0.200730-38 - 9 c		
\cup rec $T = -\varepsilon$,	2×005-008 (romana)/	3. e	3.0		
Circon - 3.1	25002-006 ((ton(thal))	Offer	9.5700e-0	(lonzanol) 800	
BATH TEMP (11S-90)	BATH SAC (PSU)	BATH COND (Siemens/m)	INST FREO (MEz)	INST COND (Siemeas/10)	RESIDUAL (Sizmens/m)	
0.000	0.0000	0.00000	2.64369	0.00000	0.001000	
-1,0000	34.9397	2,81315	5.08747	2,91012	-0.100003	
1.0000	34.9340	2.98306	5.19962	2,96506	0.00002	
15.0000	34.5342	4.28454	5.97907	4.26458	0.00004	
18,3066	34.9339	4,63208	6.17084	4.633007	-C.OCUC.	
20,0000	34.9293	3.71876	6.73469	5,71967	$= C \cup C(C(C)) \subset T$	
32.50CC	34.9138	8.09199	± 191.777	6.09204	0100005	

$$\begin{split} & \text{Conductivity} = (\underline{c} + bf^2 + if^3) + jf^4) \wedge 0(1 - St - cp) \text{ Siemens/indice} \\ & \text{Conductivity} = (af^3 + bf^2 + c + dt) \wedge [10 (1 - cp) \text{ Semens/index} \\ & t - temperature[C]; p + pressure[declbars]; S + CTcor; s - CPcor; \end{split}$$

Residuel = (instrument conductivity - bath conductivity) using g, h, i, j coefficients

Conductivity #2

Serial # 2561 See the attached PDF file SBE4-2561-18Jan08.pdf in the Meta Data directory.

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9666 Fax (425) 643 - 9654 Email: acabird@scabird.com

SENSOR STREAT NOV BUR: 2561 Callbration date: 18 Jan DS			SBELCONDUCTIV TY CALIBRATION DATA P\$\$ 1978. C(35, 5.5) * 4.2914 Seiners/incto			
seconda	IENTS		ABCD	и совинство	4	
n1.0010	1213ex001			1.369739336-	005	
	NG 294 1000			1.621016406-	a 1	
11. 17310	coetwillion			1 0-225310-5	· · · ·	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	204 18 1998 204 18 1998				5 .	
			- u			
10 m	11104-0008	10 0 min 0 é i	a			
filman – Ca	01))a ()06	initioal:	CECOL		Juda (readinal)	
BATH TBMP (178-90)	BATH SAL (PSU)	BATH COND (Signens/m)	INST FREO (kHz)	INST COND (Slonets/tt)	RESIDUA (Signers/n.)	
0.0071	0., 00.20	0.00000	2.01.72	3.00000	1.00000	
-1 0000	341,343,344	2.515.5	6.5680	11.2 \times	0.00403	
1 :0000	.2.7427	(1.985')	$\xi = 2.7 \times 7.3$	$A:S(S) \to C$	0.00.003	
3.1.00000	.e., 93400	4.28484	3.715.0	4.20458	(2,2) (10.7)	
18 3800	1679300	4.63223	5.30234	4.60228	0.00000	
26.0000	54.9295	5.71674	5.14024	J. 11067	0.00007	
32.5000	54.9195	6.09.69	61,81405	5.00204	(1, (1, 0, 0, 0))	

Conductivity -- $(g - 1)^2 - (f^2 - (f^3 - (f^3))^2) 0(1 - 8f + sp)$ Siemenschneter Conductivity = $(sf^2 + cf^2) + (f^2 + c + 3f) + (0, (1 - sp))$ Siemenschneter (1 - ten percha effect); p = cressure[decibars]; $\delta = CTech = CPeen$ Residuel = (instrument confrictivity - both conductivity) using g, h. i., j coefficients

Page 55 of 65

Oxygen

Serial # 0458

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0458 CALIBRATION DATE: 12-Dec-07p SBE 43 OXYGEN CALIBRATION DATA

TCor = 0.0006

PCor = 1.350e-04

COEFFICIENTS

Soc = 0.4060 Boc = 0.0000 Voffset = -0.4927

BATH OX (ml/l)	BATH TEMP ITS-90	BATH SAL PSU	INSTRUMENT OUTPUT(VOLTS)	INSTRUMENT OXYGEN(ml/l)	RESIDUAL (ml/l)
1.27	20.00	0.01	0.979	1.27	-0.01
1.28	26.00	0.01	1.037	1.27	-0.01
1.28	12.00	0.01	0.909	1.28	0.00
1.28	2.00	0.00	0.820	1.28	0.00
1.29	6.00	0.00	0.858	1.29	0.01
1.29	30.00	0.01	1.085	1.29	0.00
4.15	26.00	0.01	2.265	4.13	-0.01
4.16	20.00	0.01	2.083	4.15	-0.02
4.17	12.00	0.01	1.847	4.17	0.00
4.18	30.00	0.01	2.419	4.19	0.02
4.19	2.00	0.00	1.556	4.18	-0.01
4.19	6.00	0.00	1.677	4.20	0.01
6.59	30.00	0.01	3.535	6.62	0.03
6.78	20.00	0.01	3.082	6.75	-0.03
6.79	26.00	0.01	3.397	6.77	-0.02
6.80	12.00	0.01	2.706	6.81	0.01
6.82	6.00	0.00	2.420	6.83	0.01
6.84	2.00	0.00	2.234	6.84	-0.00

oxygen (ml/l) = (Soc * (V + Voffset)) * exp(Tcor * T) * Oxsat(T,S) * exp(Pcor * P) V = voltage output from SBE43, T = temperature [deg C], S = salinity [PSU]

Oxsat(T,S) = oxygen saturation [ml/l], P = pressure [dbar], Residual = instrument oxygen - bath oxygen

Date, Delta Ox (ml/l)

Fluorometer

Serial # 088234

CERTIFICATE OF CALIBRATION

All test equipment and standards used are of known accuracy and are traceable to national standards. Details of test equipment and standards relevant to this certificate are available upon request.

Date of issue	06 March 2007	Group
Description	Mk III Aquatracka (Chlorophyll-a)	55 Central Avenue West Molesey Surrey KT8 20/2
Serial Number	088234	Tei: +44 (0)20 8481 9000 Fax: +44 (0)20 8481 9010
Part No	3598C	saies@chelsea.co.uk www.chelsea.co.uk

REPORT

The fluorimeter was exposed to various concentrations of Chlorophyll-a dissolved in acetone in addition to pure water and pure acetone. The following formula was derived from the readings to relate instrument output to chlorophyll-a concentration.

Conc. = $(0.00779 \times 10^{\text{Output}}) - 0.0211$

Where -

Conc. = fluorophor concentration in µg/l Output = Aquatracka output in volts

The above formula can be used in the range 0 - 100 microgrammes per litre to an uncertainty of 0.02 microgrammes per litre plus 5% of value.

Notes

The above formula has been derived using Chlorophyll-a dissolved in acetone. No guarantee is given as to the performance of the instrument to biologically active chlorophyll in sea-water.

The zero offset has been determined in the laboratory using purified water from a reverse osmosis/ion exchange column. It is possible that purer water may be found in clean deep ocean conditions. Under these conditions, the offset shown in the above formula should be replaced by the antilogarithm of the Aquatracka output in the purest water found, multiplied by the scale factor.

Serial number 88234 Page 1 of 2

Chelsea

Group Companies

Chelsea Technologies Ltd Chelsea Instruments Ltd. Chelsea Environmental Ltd Marine Acoustics Ltd

Transmisometer

Serial # CST-390DR

PO Box 518 620 Applegate St. Philomath, OR 97370

(541) 929-565 Fax (541) 929-527 www.wetlabs.com

C-Star Calibration

Date	February 27, 2007 0012004	Customer US Coast Guard	Work order 004
Stationers Stationers		S/N# CST-390DR	Pathlength 25 cm
V _d V _{air} V _{ref}		Analog meter 0.058 V 4.788 V 4.707 V	
Tempera Ambient	ature of calibration wate temperature during ca	er libration	18.8 °C
		and the second se	23.4 °C

Relationship of transmittance (Tr) to beam attenuation coefficient (c), and pathlength (x): $Tr = e^{-cx}$

To determine beam transmittance: $Tr = (V_{sig} - V_{dark}) I (V_{ret} - V_{dark})$

To determine beam attenuation coefficient: c = -1/x * In (Tr)

Meter output with the beam blocked. This is the offset. Vd

Meter output in air with a clear beam path. Vak

V_{ref} Meter output with clean water in the path.

Temperature of calibration water: temperature of clean water used to obtain V_{ret} .

Ambient temperature: meter temperature in air during the calibration. Measured signal output of meter. Vsig

uEinsteins/cm²-sec per volt µEinsteins/cm²·sec per volt 9.43E+15 3.27E+15 2.54E+15 9,66E+14 .30E+14 1.02E+13 Fest Irrad. cm2·sec) (quanta/ 19511 Note: The QSP-2300 output is a voltage that is proportional to the log of the incident irradiance. µEinsteins/cm²sec Job No.: Irradiance = Calibration factor * (10^ALight Signal Voltage - 10^ADark Voltage) Transmission Error (%) 17.71--27.4 0.0 2.7 -9.3 5.34E-06 9.00E-06 Measured 100.00% 0.01566 34.66% 26.87% 10.22% 1.35% 0.07% Trans. Voltage % VDC (+) Error -1% 0% 2% 6% quanta/cm2·sec per volt quanta/cm²·sec quanta/cm2-sec per volt Expected Voltage 2.908 3.467 3.024 2.434 1.512 0.194 10 Volts AE 9.43E+15 Voltage Sensor 0.594 3.007 2.897 2,478 1.608 0.500 3.467 3.5 2 9 To calculate irradiance, use this formula: Volts Volts Volts Volts Lamp Integrated PAR Irradiance: Sensor Supply Current (Dark): Supply Voltage: SC3 Immersion Coefficient: Standard Lamp: F-863(9/30/06) 3.22E+12 5.42E+12 Calibrated 100.00% 36.10% 70/60/10 27.60% 70115 Trans. 9.27% 1.11% 0.00274 2) This section is for internal use and for more advanced analysis 0.05% 0.003 3.467 TPC Model Number: OSP2300 G Sensor Test Data and Results²⁾ Calibration Date: Dry Calibration Factor: Serial Number: Operator: Wet Calibration Factor: **Operating Voltage Range:** Dark Before: Light - No Fitter Hldr.: Dark After - NFH: Average Dark Transmission Expected 0.10% 100% 50% 32% 10% 1% 1. Annual calibration is recommended. Filter OD No Filter Nominal 0.3 0.5 NO Votes:

Serial # 70115

PAR

Page 59 of 65

Instrument Locations on the Healy

Layout plot of instrument locations

Page 60 of 65

Table of Survey measurements

Conso	lidated Surv	vey Data	1	1	I I	
	Elements of	of:				
		Avondale Survey				
	Westlake Survey					
		Lamont Survey				
	All Measurements in <u>Meters</u> relative to MRP unless otherwise stated					
	X = fore & aft with + foreward					
	Y = port & starboard with + to starboard					
	Z= vertical with + upwards					
				X	Y	Z
<u>Item</u>	<u>Survey</u>	Description		<u>North</u>	<u>East</u>	<u>Elevation</u>
<u>Item</u> 1	<u>Survey</u> Avondale	<u>Description</u> MRP	See discussion Westlake Final Report	<u>North</u> 34.30	<u>East</u> 0.00	<u>Elevation</u> 9.15
<u>Item</u> 1 2	Survey Avondale Westlake	Description MRP MRP	See discussion Westlake Final Report by Definition	North 34.30 0.00	<u>East</u> 0.00 0.00	<u>Elevation</u> 9.15 0.00
Item 1 2 3	SurveyAvondaleWestlakeWestlake	Description MRP MRP Seabeam 2112	See discussion Westlake Final Report by Definition	North 34.30 0.00	<u>East</u> 0.00 0.00	<u>Elevation</u> 9.15 0.00
Item 1 2 3	Survey Avondale Westlake Westlake	DescriptionMRPMRPSeabeam 2112Transverse Array	See discussion Westlake Final Report by Definition Centerline	North 34.30 0.00 -7.679	<u>East</u> 0.00 0.00 0.030	Elevation 9.15 0.00 9.242
Item 1 2 3	Survey Avondale Westlake Westlake	Description MRP MRP Seabeam 2112 Transverse Array Longitudinal Array	See discussion Westlake Final Report by Definition Centerline Centerline	North 34.30 0.00 -7.679 -4.386	<u>East</u> 0.00 0.00 0.030 0.711	Elevation 9.15 0.00 9.242 9.238
Item 1 2 3 4	Survey Avondale Westlake Westlake Westlake Westlake	DescriptionMRPMRPSeabeam 2112Transverse ArrayLongitudinal ArrayTransducers	See discussion Westlake Final Report by Definition Centerline Centerline	North 34.30 0.00 -7.679 -4.386	<u>East</u> 0.00 0.00 0.030 0.711	Elevation 9.15 0.00 9.242 9.238
Item 1 2 3 4	Survey Avondale Westlake Westlake Westlake	DescriptionMRPMRPSeabeam 2112Transverse ArrayLongitudinal ArrayTransducersStarboard - Forward	See discussion Westlake Final Report by Definition Centerline Centerline to Aft	North 34.30 0.00 -7.679 -4.386	East 0.00 0.00 0.00 0.030 0.711	Elevation 9.15 0.00 9.242 9.238
Item 1 2 3 4	Survey Avondale Westlake Westlake Westlake	DescriptionMRPSeabeam 2112Transverse ArrayLongitudinal ArrayTransducersStarboard - ForwardTransducer -	See discussion Westlake Final Report by Definition Centerline Centerline to Aft Bathy 2000 3.5 kHz	North 34.30 0.00 -7.679 -4.386 -10.252	East 0.00 0.00 0.00 0.030 0.711 1.362	Elevation 9.15 0.00 9.242 9.238 9.243
Item 1 2 3 4	Survey Avondale Westlake Westlake Westlake	DescriptionMRPSeabeam 2112Transverse ArrayLongitudinal ArrayTransducersStarboard - ForwardTransducer -Transducer -	See discussion Westlake Final Report by Definition Centerline Centerline to Aft Bathy 2000 3.5 kHz Bathy 1500 34 kHz *	North 34.30 0.00 -7.679 -4.386 -10.252 -11.866	<i>East</i> 0.00 0.00 0.030 0.711 1.362 1.559	Elevation 9.15 0.00 9.242 9.238 9.243 9.245
Item 1 2 3 4 4	Survey Avondale Westlake Westlake Westlake Image: state s	DescriptionMRPSeabeam 2112Transverse ArrayLongitudinal ArrayTransducersStarboard - ForwardTransducer -Transducer -Transducer -	See discussion Westlake Final Report by Definition Centerline Centerline to Aft Bathy 2000 3.5 kHz Bathy 1500 34 kHz * Doppler Speed Log	North 34.30 0.00 -7.679 -4.386 -10.252 -11.866 -12.168	East 0.00 0.00 0.00 0.030 0.711 1.362 1.559 0.414	Elevation 9.15 0.00 9.242 9.238 9.243 9.245 9.245
Item 1 2 3 4 4 1	Survey Avondale Westlake Westlake Westlake	DescriptionMRPSeabeam 2112Transverse ArrayLongitudinal ArrayTransducersStarboard - ForwardTransducer -Transducer -	See discussion Westlake Final Report by Definition Centerline Centerline to Aft Bathy 2000 3.5 kHz Bathy 1500 34 kHz * Doppler Speed Log Spare Transducer Well	North 34.30 0.00 -7.679 -4.386 -10.252 -11.866 -12.168 -13.081	East 0.00 0.00 0.00 0.030 0.711 1.362 1.559 0.414 1.449	Elevation 9.15 0.00 9.242 9.238 9.243 9.245 9.245 9.237

		Transducer -	VM 150	-9.726	-1.395	9.230
		Transducer -	Ocean Surveyor 75 kHz	-10.819	-1.290	9.230
		Transducer -	Bathy 2000 12 kHz	-11.859	-1.492	9.234
		Transducer -	Spare Transducer Well	-13.078	-1.394	9.235
6	Westlake	Gyros				
		Starboard Gyro	Centerline	4.741	0.207	-19.604
		Port Gyro	Centerline	4.746	-0.207	-19.609
7	Westlake	Antennas				
		REF DWG TBD	Antenna 9-4 * - GPS Antenna (4.1.5)	4.587	-6.622	-24.000
			Antenna 4-6 * - Northstar GPS (4.1.1)	9.374	-4.970	-23.406
			Antenna 4-2 * - Northstar (4.1.2)	9.362	-3.617	-23.451
			P CODE GPS Antenna *	9.368	-2.645	-23.609
			Antenna 4-3 * - Northstar (4.1.4)	9.355	3.638	-23.363
			GLONAS GPS Antenna *	9.379	5.066	-23.515
			Antenna base (4A)	-53.872	-0.011	-22.025
			Antenna base (4B)	-49.758	0.038	-22.010
			Antenna base (4C)	-49.785	1.629	-22.020
			Antenna base (4D)	-49.771	-1.546	-22.008
			Trimble Conturion**	52 726		21.112
				-52.720		-21.115
	XX7 41 1		Time Server **	-52.6/1	1.838	-21.115
8	westlake	vertical Kel				
			Measured at Top of mounting bracket			

			Center (mid-point) - calculated	-2.100	0.291	-0.775
			TSS 333B - Marine Motion Sensor -			
			scribe atop mounting plate			
			Center of TSS 333B	1.210	0.329	-0.013
9	LDEO	POS/MV				
		From	ТО	X	Y	Z
		IMU	Port Antenna (Master)	-2.9719	-3.9140	-5.5310
		MRP	IMU	-49.5710	1.7110	-16.7990
		MRP	Transmit array	-4.3860	0.7110	9.2380
		MRP	Port Antenna (Master)	-52.5429	-2.2030	-22.3300
10	Westlake Raw	Fan Tail				
			Aft/Port	-86.737	-4.906	-3.617
			Forward/Port	-77.600	-4.881	-3.589
			Forward/Starboard	-72.590	6.676	-3.653

SBE 21 SEACAT Thermosalinograph Data Output Formats

This is extracted from page 33 of the SBE 21 SEACAT Thermosalinograph User's Manual (SeaBird Manual Version #022, 03/30/07).

The SBE 21 outputs data in raw, hexadecimal form as described below.

The inclusion of some output parameters is dependent on the system configuration - if the specified sensor is not enabled (see *Command Descriptions* above), the corresponding data is not included in the output data stream, shortening the data string.

• SBE 21 Format (F1) - ttttccccrrrrruuuvvvwwwxxx (use this format if you will be using SEASAVE to acquire real-time data and/or SBE Data Processing to process the data)

• SBE 16 Format (F2) - #ttttccccrrrrruuuvvvwwwxxxnnnn (custom format)

where

tttt = primary temperature

cccc = conductivity

rrrrrr = remote temperature (from SBE 38 or SBE 3 remote sensor)

uuu, vvv, www, xxx = voltage outputs 0, 1, 2, and 3 respectively

= attention character

nnnn = lineal sample count (0, 1, 2, etc.)

Data is output in the order listed, with no spaces or commas between parameters. Shown with each parameter is the number of digits.

Calculation of the parameter from the data is described below (use the decimal equivalent of the hex data in the equations).

1. Temperature

temperature frequency (Hz) = (tttt / 19) + 2100

2. Conductivity

conductivity frequency (Hz) = square root [($\csc * 2100$) + 6250000]

3. SBE 3 secondary temperature (if **SBE3=Y**)

SBE 3 temperature frequency (Hz) = rrrrrr / 256

4. SBE 38 secondary temperature (if SBE38=Y)

SBE 38 temperature *psuedo* frequency (Hz) = rrrrrr / 256

5. External voltage 0 (if 1 or more external voltages defined with SVx)

external voltage 0 (volts) = uuu / 819

- 6. External voltage 1 (if 2 or more external voltages defined with SVx) external voltage 1 (volts) = vvv / 819
- External voltage 2 (if 3 or more external voltages defined with SVx) external voltage 2 (volts) = www / 819
- 8. External voltage 3 (if 4 external voltages defined with SVx)

external voltage 3 (volts) = xxx / 819

Example: SBE 21 with SBE 38 and two external voltages sampled,

example scan = ttttccccrrrrruuuvvv = A80603DA1B58001F5A21

- Temperature = tttt = A806 (43014 decimal);
 - temperature frequency = (43014 / 19) + 2100 = 4363.89 Hz
- Conductivity = cccc = 03DA (986 decimal);

conductivity frequency =

square root [986 *2100) + 6250000] = 2884.545 Hz

• SBE 38 = rrrrr = 1B5800 (1,792,000 decimal)

temperature *pseudo* frequency (Hz) = (1,792,000 / 256) = 7000 Hz

• First external voltage = uuu = 1F5 (501 decimal);

voltage = 501 / 819 = 0.612 volts

• Second external voltage = vvv = A21 (2593 decimal);

voltage = 2593 / 819 = 3.166 volts

Note:

SBE 21 always outputs an even number of voltage characters. If you enable 1 or 3 voltages, it adds a 0 to the data stream before the last voltage, as shown below:

• Remote temperature and 1 voltage enabled -

ttttccccrrrrr0uuu or

#ttttccccrrrrr0uuunnnn

• Remote temperature and 3 voltages enabled -

ttttccccrrrrruuuvvv0www

#ttttccccrrrrrruuuvvv0wwwnnnn

Notes:

• Sea-Bird's software (SEASAVE and SBE Data Processing) uses the equations shown to perform these calculations; it then uses the calibration coefficients in the configuration (.con) file to convert the raw frequencies and voltages to engineering units. Alternatively, you can use the equations to develop your own processing software.

• See *Notes on SBE 38 Remote Temperature Data Output Format* below for details on how Sea-Bird handles SBE 38 data.