

Data Synopsis for HLY0901

March 10 – March 31 2008 Kodiak to Dutch Harbor

Chief Scientist- Lee Cooper Healy Captain- Captain Frederick Sommer

ST LAWRENCE ISLAND POLYNYA PROJECT

Version 3/31/09

Prepared by: Tom Bolmer, David Forcucci, David Hassilev, Steve Roberts, & Dale Chayes

Table of Contents

Project Summary	4
Cruise Track	6
Personnel HLY0901 Science Party Personnel Ship's Crew	7 7 10
Science Components and their major sampling activities Core Projects: Other Participating Projects: Table of Projects and Team Members	11 11 11 11
Distribution Contents Introduction to Data SCS Data Overview LDS Data Overview: Directories: 1_Minute_Averaged_Data: data SCS_Data: Extra files in the directory SCS_Data: LDS_Data: Raw: Images: Meta_Data: Plots: Ice_observations: Contents by directory:	14 14 15 15 15 16 16 16 16 16 18 18 18 19 19 20 20 20 20 21
Merged Data LDEO Averaged One Minute Data File	23 23
File Formats of Data Collected Underway	25
APPENDIX: Acquisition Problems and Events Comments that might help when using the data Science Seawater sensor coefficient correction, March 15, 2009	26 26 28 30
Cruise Weather Summary	31
Underway Sensors and Calibrations Sensors and Calibrations HLY0901 Shipboard Sensors HLY0901- CTD Sensors Sensor Serial Numbers used for HLY0901 CTD Casts Software Versions of some Recording programs HLY0901 Sensor Calculations Calculating PAR for surface PAR Calculating Pyrgeometer Values	32 32 34 35 35 35 36 36
Calibrations Meteorology & Radiometers	37
Yard Arm R.M. Young Wind Bird, Starboard Yard Arm R.M. Young Wind Bird Port Bridge Air Temperture / Relative Humidity PAR	37 37 38 40 42

Shortwave Radiation Pyranometer	43
Longwave Radiation Pyrgeometer	44
Helo shack MET3A Station	45
Underway Ocean Flow through Sensors	47
Seabird ThermoSalinograph	47
Temperature	47
Conductivity	48
Remote Sea Temperature (Sea Chest)	49
Oxygen Sensor	50
CTD Sensors	51
CTD Sensor – Presure Sensor	51
Temperature #1	52
Temperature #2	53
Conductivity #1	54
Conductivity # 1 - replacement	55
Conductivity # 2	56
Oxygen	57
Oxygen replacement	58
Fluorometer	59
Transmisometer	60
PAR	61
Gravity Meters	62
Serial # 221	62
Serial # 222	67
Climate Control Chambers Sensors	72
Serial # CPABUDG	72
Serial # CPABUDI	73
Serial # EM3I9H0T155	74
Serial # EM4I9H0T155	75
Serial # RT1I6I1T101	76
Serial # RT3I5I1T101	77
Serial # RT6I4I1T101	78
Serial # RT6I5I1T101	79
Instrument Locations on the Healy	80
Layout plot of instrument locations	80
Table of Survey measurements	81
-	

Benthic Ecosystem Response to Changing Ice Cover in the Bering Sea (Funded by the National Science Foundation) Patch Dynamics (Funded by the North Pacific Research Board) USCGC Healy (HLY0901) March 10-March 31, 2009

Lead scientists:

- Lee Cooper, cooper@cbl.umces.edu, phone: (410) 326-7359
- Jackie Grebmeier, jgrebmei@cbl.umces.edu (University of Maryland) phone: (410) 326-7334
- Chad Jay, cjay@usgs.gov, phone: (907) 786-7414 (Biological Resources Division, US Geological Survey)

The first research cruise of the USCG Healy in 2009 (HLY09-01) was in waters near Saint Lawrence Island (north Bering Sea) in March. During this early season research cruise, we continued work on benthic (sediment-based) food webs, as well as documenting the distributions of walruses, other marine mammals and seabirds. Past scientific work in this area has shown that the number and weight of organisms present in the sediments is in decline and the species present have also changed. One of the main scientific questions is whether this change is due to the recent shifts in sea ice cover and associated apparent climate warming, and how these changes in food supply will affect animals that dive to the bottom to feed, including walrus, bearded seals, and eiders. Of concern also are whether fish are becoming more critical competitors in the food web as water temperatures warm and fish become present in greater numbers. Most of the work undertaken on this cruise related to these general questions using chemical and biological sampling approaches. Sampling of the sediments included shipboard oxygen respiration incubations and collection of benthic organisms for later laboratory identification. In addition, a research team studied the distributions of walrus in relation to the food resources on the sea floor. Tagging of walrus for tracking by GPS was accomplished by a helicopter based on the ship. Shipboard surveys were made of marine mammals and birds to better understand the distributions of the animals using the rich waters near Saint Lawrence Island. Additional efforts were made to incorporate educational and public outreach in the shipboard program. These efforts included the participation of a K-12 teacher at sea through the National Science Foundation's PolarTREC program, two ship-based International Polar Year office sponsored presentations to school audiences in three languages (for International Polar Oceans Day) and two web-based blogs. Public presentations on the planned research were provided to the Whaling Captain's Association of Savoonga during a visit by the cruise Chief Scientist, and to the IRA (tribal government) Council in Gambell on St. Lawrence Island (by email/mail and phone). Finally three media teams, from ABC News, National Public Radio, and the American Chemical Society journal Environmental Science and Technology were accommodated on the ship for a five day period to provide opportunities for science reporting from the ship.

Walrus tracks following tagging, 2008

Walrus use of habitat relative to benthic (seafloor) biomass (right), April 2006

Personnel

HLY0901 Science Party Personnel

Name	Institution	Position	Phone	Fmail	D	ate off	Nation ality
Lee W. Cooper	U Md CES	Chief Scientist	410-326-7359	cooper@cbl.umces.edu	3/9	3/31	USA
1							
Elizabeth Arnold	NPR	News Media Representative	907-242-2633 907-339-1951	earnoldnpr@gmail.com	3/18	3/31	USA
Linton Beaven	U Md CES	Scientist (benthos)	410-326-7274	beaven@cbl.umces.edu	3/9	3/31	USA
Tom Bolmer	WHOI	Data Specialist - Underway Instrumentation	508-289-2628	tbolmer@whoi.edu	3/4	4/2	USA
Marjorie Brooks	S Ill Univ. Carbondale	Lead Scientist (UV and dissolved organic carbon)	618-435-4121	mlbrooks@zoology.siu.edu	3/9	3/31	USA
Maria Ceballos	U Md CES	Scientist (benthos)	410-326-7231	ceballos@cbl.umces.edu	3/9	3/31	USA
Dorothy Childers	NPRB	Board member, NPRB	907-277-5357	dorothy@akmarine.org	3/21	3/31	USA
Chris Conner	U Md CES	Science communication and outreach	443-496-0095	cconner@umces.edu	3/18	3/21	USA
Matt Durham	SIO	CTD Technican	858-534-1632	mjdurham@ucsd.edu	3/18	3/31	USA
Anthony Fischbach	USGS, ASC	Scientist (walrus)	907-786-7145	afischbach@usgs.gov	3/9	3/31	USA
Dave Forcucci	USCG	Science Liaison		david.forcucci@uscg.mil	3/9	3/16	USA
Hongli fu	Ocean Univ., China	Scientist (optics and physical oceanography)	86-532- 66781519	fuhongli@ouc.edu.cn	3/9	3/31	China
Laura Gemery	USGS	Scientist (benthos)	703-648-6021	lgemery@usgs.gov	3/9	3/31	USA
Rolf Gradinger	UAF	Lead Scientist (sea ice)	907-474 7407	rgradinger@ims.uaf.edu	3/9	3/31	Germa ny
Jackie Grebmeier	U Md CES	Lead Scientist (benthos) and Co-Chief Scientist	410-326-7334	jgrebmei@cbl.umces.edu	3/9	3/20	USA
Marisa Guarinello	U Md CES	Scientist (benthos)	410-326-7204	guarinel@cbl.umces.edu	3/9	3/31	USA

					D	ate	Nation
Name	Institution	Position	Phone	Email	on	off	ality
David Hassilev	ESU	Network Tech	206-217-6592	<u>david.hassilev@uscg.mil</u>	3/4	5/12	USA
Scott Hiller	SIO	CTD Technican	858-534-7383	shiller@ucsd.edu	3/9	3/31	USA
Krista Hoff	U Md CES	Scientist (benthos)	415-246-9085	krista.hoff@gmail.com	3/9	3/31	USA
Chad Jay	USGS, ASC	Lead Scientist (walrus)	907-786-7414	cjay@usgs.gov	3/9	3/31	USA
David Kreutzer	National Park Service	Helo Flight Coordinator	907-733-9112	Dave_Kreutzer@nps.gov	3/9	3/31	USA
Ivan Kuletz	Volunteer	Scientist (seabirds)		ivankuletz@gmail.com	3/9	3/31	USA
Kathy Kuletz	USFWS	Lead Scientist (seabirds)	907-786-3453	Kathy_Kuletz@fws.gov	3/9	3/31	USA
An-my Lë	Fine Arts Photo.	Fine Arts Photographer	718-855-3820	anmyle@mac.com	3/9	3/31	USA
Thomas Litwin	Smith Coll.	Science communication and outreach	413-585-3801	tlitwin@email.smith.edu	3/9	3/21	USA
Jim Lovvorn	Univ. Wyo	Lead Scientist (spectacled eiders)	307-399-7441	lovvorn@uwyo.edu	3/9	3/31	USA
Brenna McConnell	UAF	Scientist (sea ice)	907-474-7839	b.mcconnell@sfos.uaf.edu	3/9	3/31	USA
Nathalie Morata	Univ. Tromsø	Senior Scientist (benthos)	47 77 64 57 32	Nathalie.morata@gmail.co m	3/9	3/31	Canad a, France
John Nelson	IOS & U. Victoria	Lead Scientist (Zooplankton)	250-363-6584	john.nelson@dfo- mpo.gc.ca	3/9	3/31	Canad a
Steve Roberts	CAR	Software Engineer - Underway Instrumentation	303-497-2637	sroberts@ucar.edu	3/4	5/23	USA
Jiuxin Shi	Ocean Univ., China	Lead Scientist (optics and physical oceanography)	86-532- 66781801	shijiuxin@ouc.edu.cn	3/9	3/31	China
Regan Simpson	U Md CES	Scientist (benthos)	410-326-7274	regansimpson@msn.com	3/9	3/31	USA
Charles Sims	Maritime Helocopter	Helo Mechanic	928-214-8416	<u>csims@hotmail.com</u>	3/9	3/31	USA

					D	ate	Nation
Name	Institution	Position	Phone	Email	on	off	ality
Bill Springer	Maritime Helocopter	Helo Pilot	928-214-8416	wspringer@hotmail.com	3/9	3/31	USA
Andrew Trites	Univ. B C	Senior Scientist (marine mammals)	604-822-8182	a.trites@fisheries.ubc.ca	3/9	3/31	Canad a
Tom van Pelt	NPRB	Senior Scientist and agency representative	907-644-6715	<u>tvanpelt@nprb.org</u>	3/9	3/31	USA
Tom Walker	Tom Walker Photo.	Science communication and outreach	907-683-1313	twalker@mtaonline.net	3/9	3/21	USA
Jared Weems	UAF	Scientist (sea ice)	907-474-7074	j.weems@sfos.uaf.edu	3/9	3/31	USA
Deanna Wheeler	J.C. Parks Elem. Sch.	PolarTREC teacher	301-375-7444	protect@nanjemoy.net	3/9	3/31	USA
Francis Wiese	NPRB	Senior Scientist and agency representative	907-644-6713	francis.wiese@nprb.org	3/18	3/21	USA
Cynthia Yeung	NOAA AFSC	Senior Scientist (benthos)	206-526-6530	Cynthia.yeung@noaa.gov	3/9	3/31	USA

Ship's Crew

Sommer, Frederick CAPT Bateman, Dale CDR Stewart, Jeffrey CDR Petrusa, Douglas LCDR Alley, Tysin FS3 Angelo, James YNC Appleberry, Jason LT Ayers, Silas LT Baldwin, Robin FS3 Bartlett, Charles MST1 Beasley, Corey HSCS Beebe, Brandon FN Bender, Zachary LTJG Berringer, Mike ETC Braddock, Amelia R. SN Brogan, John MKC Brown, Betty MK3 Buford, Aimee BM2 Chaidez, Marshal MST3 Coates, Brittney FN Cooler, Jesse SA Coombe, Jeffrey MK2 Dabe, Jeffrey IT1 Davis, Jonathon ET2 Dolton, Peter ENS Dowd, Robert SN Dull, Steven FS2 Dunning, Lara BM2 Fernandez, Chelsey SN Ford, Angela SN Galvez, Oscar R. LT Glenzer, William BM1 Gray, Deidre SN

Griffin, Bobby SK2 Hamilton, H. Mark FS3 Harbinsky, Mark ET2 Harris, Daniel SK1 Howard, Daniel DC3 Huneycutt, Gaines BM1 Hurtado, Daniell EM1 Imgarten, Christopher DC1 Irwin, Paul EM2 Jacobs, Bryson LTJG Jones, Greg MKCS Kidd, Wayne BMC Kimmel, Patrick BM3 Kruger, Thomas MST3 Ladd, Donald EM2 Laisure, Jeremy SK2 Lambert, Douglas MKC Layman, Rich MST1 Liebrecht, Brian ET1 Lyons, Sean R CWO3 Manangan, Sorjen OSC Marsden, George DCC McNally, Terence SK1 Merten, James BM3 Miller, Valerie CWO2 Miozzi, Michael FN Murphy, Nicholas MK1 Murray, Justin SN Myatt, Lisa ENS Olson, James EM3 O'Sullivan, Brandon MK2 Passalacqua, Joseph ETCM Podhora, Curtis EMCM

Powell, Gregory ET3 Ouichocho, Robert MK1 Redd, Davion DC2 Rieg, Mark MSTC Rodermund, Michael, SA Rose, John CWO Roy, Evan BM3 Rudibaugh, Kenneth MK1 Schendorf, Tara ENS Shaffer, Hans EM1 Starling, Wendy MK2 Stein, Kelsey FN Swanson, Shawn ET1 Thomas, Tasha LTJG Von Kauffmann, Daniel IT1 Whiting, Allan, MK1 Williams, Tony FSCS Wilson, Thomas BMCM Yeckley, Andy BM2 Zitting, Arrene FS1

Science Components and their major sampling activities

Core Projects:

BEST Benthic Ecosystem Response to Changing Ice Cover in the Bering Sea (National Science Foundation ARC-0802290), Jackie Grebmeier and Lee Cooper, PIs

BSIERP: Patch Dynamics (North Pacific Research Board project O4.62), Andrew Trites and Chad Jay, lead shipboard PIs

Other Participating Projects:

BEST: Sea Ice Algae, a Major Food Source for Herbivorous Plankton and Benthos in the Eastern Bering Sea (NSF ARC-0732767) PIs: Rolf Gradinger

Measuring and Modeling Habitat Use by Spectacled Eiders Wintering in the Bering Sea PI: Jim Lovvorn, (NPRB Project 820)

North Pacific Pelagic Seabird Observer Program (NPRB BSIERP) PIs: Kathy Kuletz

Optics under sea ice and heat absorption impacted by bioprocess (Chinese International Polar Year Program) PI: Jinping Zhao, Ocean University of China

Thin Ice: An Exploration of the Bering Sea at the Dawn of Global Warming A public education project for the International Polar Year- 2007-2008 PI: Thomas Litwin

Intersection Between Science, Military and the Sea PI: An-my Lê, Fine-Arts Photographer

<u>Group</u>	Position	Name
Chief Scientist	Chief Scientist	Lee W. Cooper
Benthos	Lead Scientist	Jackie Grebmeier

Table of Projects and Team Members

<u>Group</u>	Position	Name
		Marisa Guarinello, Linton Beaven, Regan Simpson, Krista Hoff, Maria Ceballos, Cynthia Yeung, Laura Gemery, & Nathalie Morata
Walrus	Lead Scientist	Chad Jay
		Anthony Fischbach
Marine Mammals	Senior Scientist	Andrew Trites
Spectacled Eiders	Lead Scientist	Jim Lovvorn
UV and dissolved organic carbon	Lead Scientist	Marjorie Brooks
Sea Ice	Lead Scientist	Rolf Gradinger
		Brenna McConnell & Jared Weems
Zooplankton	Lead Scientist	John Nelson
Optics and Physical Oceanography	Lead Scientist	Jiuxin Shi
Saabirda	Land Saintist	Kothy Kulotz
Seabilities		
DelerTREC teacher	DelerTDEC teacher	
L DEO Saiana		
Support	Data Support	Steve Roberts & Tom Bolmer
SIO CTD Support	Lead	Scott Hiller
		Matt Durham
Media and Outreach	Senior Scientist and NPRB representative	Tom van Pelt
	Senior Scientist and NPRB representative	Francis Wiese
	Board member, NPRB	Dorothy Childers
	Fine Arts Photographer	An-my Lë
	Science communication and outreach	Chris Conner
	News media representative	Elizabeth Arnold
	Science journalist	Erika Engelhaupt
	CBS News	Bill Blakemore & Clayton Sandell
Thin Ice	Lead	Thomas Litwin
		Tom Walker

<u>Group</u>	Position	Name
USCG Rep	USCG Science Liaison	Dave Forcucci

Distribution Contents

Introduction to Data

The Healy data acquisition systems continuously log data from the instruments used during the cruise. This document describes:

- The structure and organization of the data on the distribution media.
- The format and contents of the data strings.
- Formulas for calculating scaled, calibrated values from logged data.
- Information about the specific instruments in use during the cruise.
- A log of instrumentation issues, adjustments, acquisition problems, and events during the cruise that may affect the data.
- Calibration data for the instruments in use during the cruise.

The data is distributed on a small USB disk drive.

IMPORTANT: Read the section, "Acquisition Problems and Events," for important information that may affect the processing of this data.

There are two logging system on the Healy. The US Coast Guard Seattle Electronic Support Unit (ESU) runs the NOAA/SCS logging system and the LDEO support group runs the Lamont Data System (LDS) logging system. Although this provides some redundancy in logging, LDS is is required to provide precision time-stamping, real-time reformatting, and logging of data that SCS was not designed to support including the sonar systems, web cameras, and gravity meters.

The NOAA-developed Scientific Computer System (SCS) (version 4.2) is a data acquisition, and display system designed for Oceanographic, Atmospheric, and Fisheries research applications and was originally intended to log data from supporting sensors (not the mapping sonar's) on survey launches. It acquires sensor data from shipboard oceanographic, atmospheric, and fisheries sensors and provides this information to scientists in real time via text and graphic displays, while simultaneously logging the data to disk for later analysis. SCS also performs quality checks by monitoring I/O, providing delta/range checks and plotting data after acquisition.

The LDEO Data System (LDS) is derived the logging code originally developed on the R/V Conrad in 1986 and has evolved through use on the Conrad, Ewing, Nathaniel B. Plamer, R/V Gould, six SCICEX submarine cruises and a number of smaller, short field programs since 1987. LDS is the result of significant restructuring of the code base in 2004 and has been data acquisition system on the R/V Langseth since she went into service.

SCS Data Overview

SCS receives all of its data through asynchronous serial (RS-232) connections. In SCS a time tag is added at the beginning of each line of data in the form,

mm/dd/yyyy,hh:mm:ss.sss,[data stream from instrument] where:

Format	Value used
mm	2 digit month of the year
dd	2 digit ay of the year
уууу	4 digit year
hh	2 digit hour of the day
mm	2 digit minute
SS.SSS	seconds

An example string from the Seabeam Centerbeam file is:

04/13/2007,06:49:20.920,\$SBCTR,2007,4,13,06:49:09.437,57.158792,-165.664322,69.15,60*00

All times are reported in UTC. Each file type has it's own NEMA string name (\$SBCTR as an example).

The delimiters that separate fields in the raw data files are commas. Care should be taken when reprocessing the data that the field's separations are clearly understood.

By design, SCS separates different data records from a single serial data stream into different directories. For instance, a GPS receiver may transmit \$GPGGA, \$GPHDT, and \$GPGLL records. In the SCS data architecture, each of these messages will be logged in a different directory.

LDS Data Overview:

LDS receives most of its data through serial ports like SCS and like SCS, prepends a time stamp. Unlike SCS, LDS uses remote nodes to acquire and timestamp data and provide it to the central LDS logger. Data from the two ship's gyrocompasses is handled by a remote node installed on the bridge and data form the two gravity meters is handled by a node in IC/Gyro. Remote nodes are substantively different than terminal servers in that they timestamp the data locally which eliminates the network latency associated with acquiring data through a terminal server and then providing the timestamp later.

An example LDS data record is shown below. The first field is the instrument identifier, the second is a precioisn time stamp and the remainder is the raw data from the device, in this case, an LDEO iLab BGM-3 gravity meter interface:

bgm222 2008:264:00:00:26.9340 04:025508 00

Directories:

1_Minute_Averaged_Data:	This directory contains one minute averages of many of the the under way
	data types.
data:	This directory contains the data directories below.
SCS_Data:	This directory contains serial data collected by the SCS version 4.2 data
	collection system in different directories. Directory names are labeled by the

	instrument name and string type of the data collected. A description of the
	data contained in this directory is below.
LDS_Data:	This directory contains data collected by the Lamont LDS data collection
	system in different directories. Directory names are labeled by the name of
	the instrument. A description of the data contained in this directory is below.
Raw:	This directory contains raw data as recorded by individual instruments and
	put into different directories. Directory names are labeled by the instrument
	name. A description of the data contained in this directory is below.
Meta_data:	This directory contains documents useful in the post analysis of the data on
	this DVD media set. The data types are separated into different directories.
	A description of these directories is below.
Plots:	This directory contain daily and hourly plots of underway data that were
	generated in LDS.
Ice_observations:	Directories of the Ice Observations taken for the cruise.

1_Minute_Averaged_Data:

HLY0901_distance.csv.gz	Distance along track from port.
HLY0901_Averaged.csv.gz	All the Under way data averaged for 1 minute.
Shapefile	All of the 1 minute under way data averaged at 1 minute spacing in shp,
	shx and dbf GIS files.

data

SCS_Data:

/aft_a_frame	Wire tension, wire out, and wire speed for the Aft A frame winches.			
/air_temp_f	Temperature data from the ship temperature snsor on the bridge in Fahrenheit. Data is derived from data from files in the rmyoung_air directory.			
/air_temp3a_f	Temperature data from the MET3A sensor on top of the HCO shack in Fahrenheit. Data is derived from data from files in the met3a_sen directory.			
/air_temp_bow	Temperature data from the temperature sensor on the Jackstaff in Fahrenheit.			
/ashtech_attitude	Attitude in NMEA format from the Ashtech ADU5 GPS receiver.			
/ashtech_gga	Position data in NMEA GGA format from the Ashtech ADU5 GPS receiver.			
/ashtech_gll	Position data in NMEA GLL format from the Ashtech ADU5 GPS receiver.			
/ashtech_hdt	Heading data in NMEA HDT format from the Ashtech ADU5 GPS receiver.			
/flomet	Flow meter data just upstream of the TSG and Fluorometer.			
/flomet_b	Flow meter data just upstream of the B TSG and Fluorometer. (if this second sensor is installed)			
/fluro	Flurometer for the TSG sensor.			
/fluro_b	Flurometer for B TSG sensor. (if this second sensor is installed)			
/glonass_gga	Position data in NMEA GGA format from the GLONASS GPS receiver.			

/glonass_gll	Position data in NMEA GLL format from the GLONASS GPS receiver.			
/gyro_mk27	Heading data in NMEA HDT format from the Sperry MK27 gyro compass.			
/gyro_mk39	Heading data in NMEA HDT format from the Sperry MK39 gyro compass.			
/ibs_waypoints	Waypoints from the Healy's Integrated Bridge Syste.m			
/isus	ISUS Nitrate Sensor small file.			
/isus3v	ISUS Nitrate Sensor 3V full file.			
/knudsen	Depth data in a proprietary PKEL format received from Knudsen 320 B/R serial output.			
/met3a_sen	Interology data from the top of the Jackstaff.			
/oxygen	Dxygen values from the TSG.			
/oxygen_b	Oxygen values from B TSG. (if this second sensor is installed)			
/pcode_aft_gga	Position data in NMEA GGA format from the Trimble Centurion receiver located in the Computer lab.<			
/pcode_aft_gll	Position data in NMEA GLL format from the Trimble Centurion receiver located in the Computer lab.			
/pcode_aft_vtg	Course and speed over ground in NMEA VTG format from the Trimble Centurion receive located in the Computer lab.			
/pcode_aft_zda	Time and date data in the NMEA ZDA format. Data retrieved from the Trimble Centurion receiver located in the Computer lab.			
/pcode_bridge_gga	Position data in NMEA GGA format from the Trimble GPS receiver located on the bridge.			
/pcode_bridge_gll	Position data in NMEA GLL format from the Trimble GPS receiver located on the bridge.			
/pcode_bridge_vtg	Course and speed over ground data in NMEA VTG format from the Trimble GPS receiver located on the bridge.			
/posmv_gga	Position data in NMEA GGA format from the POS/MV			
/posmv_gst	Pseudorange error statistics in NMEA GST format from the POS/MV			
/posmv_hdt	Heading data in NMEA HDT format from the POS/MV			
/posmv_pashr	Roll, pitch and heave from POS MV inertial navigation system.			
/posmv_vtg	Course and speed over ground in NMEA VTG format from the POS/MV			
/posmv_zda	Time and date data in NMEA ZDA format from the POS/MV			
/pressure_sen	Pressure sensor in the Uncontaminated Seawater System before the Bio Chem Lab which measures header pressure in PSI.			
/rmyoung_air	Temperature, humidity, air pressure data in NMEA XDR format from the ship RM Young meteorological system near the bridge.			
/rmyportwind	Wind speed and direction data in NMEA WMV format from the ship RM Young weather vane on the port side of the Healy Mast Yard.<			
/rmystbdwind	Wind speed and direction data in NMEA WMV format from the ship RM Young weather vane on the starboard side of the Healy Mast Yard.			
/samos_data	Meterology data for SAMOS.			
/seabeam_center	Center depth data from the Seabeam 2112			
/solar_radiometers	Solar Radiometer data for SW and IW.			
/sperry_speedlog	Ground/water speed data from the Sperry Speed Log.			
/stbd_a_frame	Wire tension, wire out, and wire speed for the starboard A frame winches.			

/surface_par	Photosynthetic Active Radiation volts and Microeinstens/m2 se from the surface par sensor.			
/sv2000	Sound Velocity data from the SV2000 sound velocimeter located in the ADCP BB150 sonar well.			
/temp_incubat	Temperatures from the Incubators.			
/true_wind_port	True wind speed data derived from gyro data and rmyportwind.			
/true_wind_stbd	True wind speed data derived from gyro data and rmystbdwind.			
/tsg	Thermosalinograph and fluorometer data from the TSG instruments in the Bio/Chem Lab.			
/tsg_b	Thermosalinograph and fluorometer data from the B TSG instruments in the Bio/Chem Lab. (if this second sensor is installed)			
/wind_aft	Wind data from the UltraSonic wind sensor on top of the HCO Shack.			
/wind_bow	Wind data from the UltraSonic wind sensor on top of the Jack Staff.			
/wind_mid	Wind data from the UltraSonic wind sensor on the Yard.			

Extra files in the directory SCS_Data:

ACQLOG.LOG	Contains the data as to what occurred with SCS data. It shows when data collection was started and stopped.
	Includes startup and shutdown events.
Incidents_YYYYMMDD-TTTTTT.DTM	Contains any incident data, which were triggered in SCS.
	Refer to the SCS documentation for the definition of
	"incidents."
sensor_YYYYMMDD-TTTTTT.scf	Contains the configuration file for data collection as
	configured by SCS.

LDS_Data:

/AloftConCam	Contains picture files separated by folders named by Year and Day of the Year (YYYYJJJ). The picture files are in 5 minute JPEG format.			
/FantailCam	Contains picture files separated by folders named by Year andDay of the Year (YYYYJJJ). The picture files are in 5 minute JPEG format.			
/adcp_nav	Contains the navigation data sent to the ADCPs.			
/adu5	Contains the data from the ADU5 GPS.			
/aggps	Contains the data from the AG GPS.			
/ais	Contains Automatic Identification System (AIS) messages as encapsulated VDM sentences.			
/bgm221	Contains the data from the BGM221 Gravimeter.			
/bgm222	Contains the data from the BGM222 Gravimeter.			
/events	Contains the logs of event for different systems.			
/hdgextract	Contains the extracted Heading data from the POSMV.			
/mk27	Contains the data from the MK27 Gyro.			
/mk30	Contains the data from the MK30 Gyro.			

Page 18 of 83

/posatt	Contains the attitude data from the POSMV GPS.		
/posnav	Contains the navigation data from the POSMV GPS.		
/posreform2sb	Contains the navigation data from the POSMV GPS reformatted for the SeaBeam.		
/sbctr	Contains the center beam data from the SeaBeam.		
/sbsv	Contains the surface sound velocity data for the SeaBeam.		
/seabeam	Contains the data from the SeaBeam.		
/tsg_met	Contains the all data from SIO TSG and Met sensors.		
/SwapPingHLY	Contains ping results for Healy/Louis wireless network(swap) connection. Not currently active.		
/SwapRoute	Contains routing table stats for Healy/Louis wireless network(swap) connection. Not currently active.		
/SwapStatsHLY	Contains Healy wireless stats for Healy/Louis wireless network(swap) connection. Not currently active.		
/SwapStatsLSL	Contains Louis wireless stats for Healy/Louis wireless network(swap) connection. Not currently active.		
/winch_aft	Wire tension, wire out, and wire speed for the Aft A frame winches.		
/winch_stbd	Wire tension, wire out, and wire speed for the Starboard A frame winches.		

Raw:

/adcp150	150 Khz ADCP data.
/adcp75	75 KHz ADCP data.
/ctd	CTD data in directories by Cast number.
environmental_sensors	Temperature and Humidity Sensor data for the Climate control chambers
/knudsenraw	Knudsen 320B/R data.
/tsg_met	All the TSG and MET data.
/xbt	Expendable Bathythermograph data.

Images:

Contains satellite imagery in jpeg format

Satellite_Images	
/dmsp	Data from the Defense Meteorology Satellite Program passes logged by the
	Healy's Terascan. Directories are identified by Year, Month, Day
/hrpt	Data from the NOAA weather satellite passes logged by the Healy's Terascan.
	Directories are identified by Year, Month, Day

Meta_Data:

/elog	Contains the technical support staff narrative of important events, which occurred both to the network and to individual sensors.
/Bridge_Logs	
DDMMMYY.doc	The "smooth log" containing events recorded by the bridge watch.
DDMMMYYWX.xls	Weather log recorded by the watch.
DDMMMYYNAV.xls	Navigation logs recorded by the watch.
/Sensor_Formats	Contains html and PDF files documenting the formats of all the files
	collected under way during the cruise.
./Systems_Calibrations	All of the calibrations sheets for the underway instruments are here.
./WHOisWHO	The directory has information about contacts for the Science personnel on
	this cruise.

Plots:

./knudsen_hourly_plots:	Directories of the SIOSEIS plots of the Knudsen 3.5 kHz data are in
	directories named by year, month, and day. These images are in the png
	format. There are two plots for each window in time. One is a large sized
	plot and one is a smaller plot. The files start 10 minutes before the file name
	and 10 minutes after the hour the file is named for.
./surface_daily_plots	Directories containing daily plots of under way data.

Ice_observations:

Directories of the Ice Observations taken for the cruise.

Contents by directory:

SCS Data: CallSign NOAA Data aft a frame air temp3a f air temp f airtemp bow ashtech attitude ashtech gga ashtech gll ashtech hdt flomet flomet b fluro glonass gga glonass gll gyro mk27 gyro_mk39 ibs waypoints knudsen met3a sen oxygen pcode aft gga pcode_aft gll pcode aft vtg pcode_aft_zda pcode bridge gga pcode_bridge_gll pcode_bridge_vtg posmv gga posmv gst posmv hdt posmv pashr posmv vtg

posmv zda pressure sen rmyoung air rmyportwind rmystbdwind samos data seabeam center sensor 2009*.scf sensor 2009*.xml solar radiometers sperry_speedlog stbd a frame surface par surface temp sv2000 temp incubat true wind port true wind stbd tsg wind aft wind bow wind mid Raw: adcp150 adcp75 ctd environmental sensors knudsenraw tsg xbt **Images:** Satellite Images: dmsp hrpt Page 21 of 83

LDS Data: AloftConnCam FantailCam adcp nav adu5 aggps ais bgm221 bgm222 events hdgextract ibs waypoints mk27 mk39 posatt posnav posnavreform posreform2sb sbctr sbsv seabeam tsg met winch aft winch stbd SwapPingHLY SwapRoute **SwapStatsHLY** SwapStatsLSL Meta Data: Bridge Logs Systems_Calibration_Data Elog **WHOisWHO** Sensor Formats

Plots:

Knudsen_hourly_plots Surface_daily_plots <u>1 Minute Averaged Data:</u> <u>Ice observations:</u>

Merged Data

LDEO Averaged One Minute Data File

The data are summarized into an averaged one (1) minute data file by the LDEO technician. This file takes the average value centered on the minute, (30 seconds either side of the whole minute). The averages are calculated from the raw values as they are logged. There has been no quality control done on these files prior to the averaging. Those wishing more accurate and quality controlled values should process the data in the directories described below in the document.

HLY0901_track.csv

10950,2009/03/18 02:28,63.2094507,-172.5289363,227.2,6.7,234.6,,-1.759,-1.279,26.1927,32.594,0.324,0.032,1.91,288.98,360.48,260.47,260.81,1421.95,-14 .74,70.68,1035.20,104.69,7.43,0.35,9.29,101.71,6.28,1.04,8.09,7.519,-1.281,2,-80,-4,0,2,-80,-4,0,16.88,2.2,8.43,0.91 10951,2009/03/18 02:29,63.2081712,-172.5319592,227.1,6.7,234.2,,-1.758,-1.284,26.2043,32.615,0.352,0.035,1.91,286.02,361.14,260.52,260.80,1413.57,-14 .80,70.25,1035.20,105.68,7.20,0.47,9.12,107.06,6.54,3.03,8.56,7.656,-1.286,2,-80,-4,0,2,-80,-

4,0,17.28,3.2,8.43,0.77

10952,2009/03/18 02:30,63.2070295,-172.5346542,225.9,5.2,235.4,,-1.758,-

1.287,26.2101,32.626,0.415,0.042,1.91,265.21,361.58,260.52,260.70,1391.30,-14 .84,70.25,1035.23,107.69,7.36,0.30,9.13,107.76,6.24,2.74,8.08,7.661,-1.288,2,-80,-4,0,2,-80,-4,0,15.40,1.6,8.43,0.77

Units Field Data Example 01 ID 10950 sample count 02 date 2009/03/18 02:28 date & time UTC (year/month/day hour:minute) \$INGGA, POSMV Latitude (decimal degrees) 03 63.2094507 lat \$INGGA, POSMV Longitude (decimal degrees) 04 -172.5289363 lon \$INVTG, POSMV Course Over Ground (angular 05 227.2 cog distance from 0 (North) clockwise through 360, 1 minute average) \$INVTG, POSMV Speed Over Ground (Knots, 1 minute 06 6.7 sog average \$PASHR, POSMV ship heading(angular distance from 0 07 heading 234.6 (North) clockwise through 360, 1 minute average) 08 depth \$SBCTR, Seabeam centerbeam depth(meters, 1 minute average) \$PSSTA. SBE3s RemoteTemperature, Sea Chest intake 09 SST -1.759 (Celsius, 1 minute average) 10 TSG InTemp -1.279 \$PSTSA, SBE45 Water Temperature (Celsius, 1 minute average) 11 TSG Cond 26.1927 **\$PSTSA, SBE45 Water Conductivity** (millisiemens/centimeter, 1 minute average) \$PSTSA, SBE45 Water Salinity (PSU, 1 minute 12 TSG Sal 32.594

HLY0806 Data Synopsis

Field	Data	Example	Units
			average)
13	SCF-FL	0.324	\$PSFLA, Seapoint Fluorometer (Ug/l, 1 minute average)
14	SCF-FL-V	0.032	\$PSFLA, Seapoint Fluorometer (Volts, 1 minute average)
15	tsg_flow_A	1.91	\$PSFMA, Flowmeter in-line with PSTSGA, PSOXA, PSFLA (LitersPerMinute, minimum value in 1 minute interval)
16	SWR	288.98	\$PSSRA, Short Wave Radiation (W/M^2, 1 minute average)
17	LWR	360.48	\$PSSRA, Long Wave Radiation (W/M^2, 1 minute average)
18	LWR_Dome_T	260.47	\$PSSRA, LWD Dome Temperature (Deg K, 1 minute average)
19	LWR_Body_T	260.81	\$PSSRA, LWD Body Temperature (Deg K, 1 minute average)
20	PAR	1421.95	\$PSSPA, Surface PAR (uE/Sec/M^2, 1 minute average)
21	JS_Air_Temp	-14.74	\$PSATC, Bow Jackstaff Air Temperature (Deg C, 1 minute average)
22	Bridge_RH	70.68	\$PSMEB, Bridge RM Young Relative Humidity (%, 1 minute average)
23	Bridge_Baro	1035.20	\$PSMEB, Bridge RM Young Barometric Pressure (millibars, 1 minute average)
24	JS_WndDirR	104.69	\$PSWDC, Jackstaff Relative wind direction (deg, 1 minute average)
25	JS_WndSpdR	7.43	\$PSWDC, Jackstaff Relative wind speed (m/s, 1 minute average)
26	JS_WndDirT	0.35	\$PSWDC, Jackstaff True wind direction (deg, 1 minute average)
27	JS_WndSpdT	9.29	\$PSWDC, Jackstaff True wind speed (m/s, 1 minute average)
28	MM_WndDirR	101.71	\$PSWDB, Main Mast Relative wind direction (deg, 1 minute average)
29	MM_WndSpdR	6.28	\$PSWDB, Main Mast Relative wind speed (m/s, 1 minute average)
30	MM_WndDirT	1.04	\$PSWDB, Main Mast True wind direction (deg, 1 minute average)
31	MM_WndSpdT	8.09	\$PSWDB, Main Mast True wind speed (m/s, 1 minute average)
32	SBE_Oxy	7.519	\$PSOXA, SBE-43 Oxygen(ml/l, 1 minute average)

HLY0806 Data Synopsis

Field	Data	Example	Units
33	SBE_Oxy_T	-1.281	<pre>\$PSOXA, SBE-43 Oxygen Temperature(Deg C, 1 minute average)</pre>
34	WinchAft	2	Aft A-Frame Winch number
35	TensionAft	-80	Aft A-Frame Winch Wire tension(Pounds, 1 minute average)
36	WireOutAft	-4	Aft A-Frame Winch Wire out (Meters, 1 minute average)
37	SpeedAft	0	Aft A-Frame Winch Wire speed(Meters/minute, 1 minute average)
38	WinchSbd	2	Starboard A-Frame Winch number
39	TensionSbd	-80	Starboard A-Frame Winch Wire tension(Pounds, 1 minute average)
40	WireOutSbd	-4	Starboard A-Frame Winch Wire out (Meters, 1 minute average)
41	SpeedSbd	0	Starboard A-Frame Winch Wire speed(Meters/minute, 1 minute average)
42	StbdWndSpdT	16.88	RMYoung True Wind Speed, starboard(Knots, 1 minute average)
43	StbdWndDirT	2.2	RMYoung True Wind Direction, starboard(angular distance from 0 (North) clockwise through 360, 1 minute average)
44	OxySat	8.43	Dissolved oxygen (DO) saturation as a funciton of T and S (Weiss)(ml/L, 1 minute average)
45	AOU	0.91	Apparent Oxygen Utilization (AOU)(ml/L,1 minute average)

File Formats of Data Collected Underway

The formats of the Under way data files that were collected on this cruise are in a separate document named HLY0901_Sensors. This is now a separate document due to its large size. The file HLY0901_Sensors.htm is found in the Meta_Data directory. A PDF version of this file should also be here. To use this html file you will need to have the directory HLY0901_Sensors_files in the same directory as the html file.

Also in the Meta_Data directory there may be some PDF files for data that was collected but not part of the normal science routine.

APPENDIX:

Acquisition Problems and Events

A electronic logbook (elog) is utilized on the ship for logging of science related problems and events as they happen. A dump of the logbook is done at the end of the cruise and saved in the Meta_Data directory under the "elog" subdirectory. Two logbooks are kept: one by the technical support personnel and one of entries by the science party watchstanders. Several dump formats are made available such as html, csv, xml and raw. These logs should be consulted to help identify instrument and system anomalies affecting data quality. Times are reported in GMT (UTC, Z).

Below here is a summary of technical logbook. For exact details you should check the files in elog. The science watchstanders log is not summarized here.

Date	Time(UTC)	Comment		
03/09/09	21:48	Start LDS logging for HLY0901		
03/10/09	23:12	Start SCS for HLY0901		
03/10/09	23:46	HCO Met3A Sensor replaced with #1393		
03/10/09	23:57	Seabeam to Survey mode		
03/10/09	23:59	Knudsen started		
03/11/09	00:28	Science Seawater started for HLY0901		
03/11/09	01:00	Science Seawater amounts adjusted		
03/11/09	07:43	Seabeam stopped about 10 minutes ago		
03/11/09	07:56	Seabeam rebooted, Tape drive turned off		
03/11/09	16:16	Seabeam stopped		
03/11/09	16:28	Seabeam rebooted		
03/11/09	18:20	Seabeam quality off due to IBS time not good		
03/11/09	18:58	Seabeam IBS time good again 30 minutes ago		
03/12/09	00:46	Seabeam IBS time good wondering alot		
03/12/09	23:48	HCO MET3A sensor not working any more		
03/13/09	03:20	New SVP for Seabeam for XBT and ARGO R4900844_051		
03/13/09	05:18	Timeserver Antenna broken, no Timeservers		
03/13/09	16:43	SCS shows no MK27 Gyro data		
03/13/09	17:45	ADCP 75 shutdown for UPS work		
03/13/09	18:53	SCS shows MK27 Gyro data again		
03/13/09	17:49	ADCP 75 recording again		
03/13/09	19:00	Map-2 was shutdown for UPS work and is back up again.		
03/13/09	19:01	Map-3 was shutdown for UPS work and is back up again.		
03/13/09	19:02	Map-4 was shutdown for UPS work and is back up again.		
03/13/09	19:03	Map-5 was shutdown for UPS work and is back up again.		
03/13/09	23:59	New Timeserver antenna, Timeservers running again		
03/14/09	00:20	Science Seawater had ice blockage a bit ago		
03/14/09	04:08	New SVP from CTD 1		
03/15/09	04:08	Climate Control chamber plots started on MRTG		
03/16/09	00:02	Up to now the Oxygen TSG sensor had wrong cal, right one now		
03/16/09	06:04	ADU5 stop at 05:04Z		
03/16/09	06:29	ADU5 reset and started at 06:18Z		
03/16/09	19:12	QC plot for Climate Control chambers started and done for previous		

HLY0806 Data Synopsis

Date	Time(UTC)	Comment		
		times		
03/20/09	04:38	LDS winch data adjusted. The whole cruise should be right now		
03/22/09	20:33	ISUS added to seawater system, not logged yet		
03/22/09	20:59	IBS will be down for several hours		
03/23/09	00:28	IBS back up		
03/25/09	02:45	Seabeam now getting ZDA from POSMV instead of IBS.		
03/25/09	23:23	Start ADCP75 Vice versa syncing to SCS since it never was started		
03/25/09	23:37	Note no POSMV data. Powered off by ETs at 22:55Z, restarted it.		
03/26/09	18:14	Science Seawater down for ECC Maintenance at 16:38Z		
03/27/09	16:08	ADCP 75 stopped and restarted. Stopped at about 07:50Z		
03/29/09	07:13	Note Gravimeter 221 went bad 3/24/9 at 20:30		
03/29/09	18:04	Stop SCS		
03/29/09	18:05	Restart SCS, added ISUS logging		
03/29/09	18:05	Note no heading data from MK27		
03/29/09	20:45	Both Climate Control Chambers off for cleaning and work		
03/30/09	06:34	ADU5 lost heading data about 0700Z 3/29		
03/30/09	06:41	ADU5 heading reset and back		
03/30/09	18:50	Precipitation Gauge stopped working at 1658Z, fix in port		
03/30/09	21:28	Adjust seabeam surface and 100 depth sound velocity		
03/30/09	21:56	Change seabeam SVP to ARGO float R4900855_018		
03/31/09	14:10	Seabeam and Sub Bottom have lost bottom for a while		
03/31/09	14:53	Seabeam shutdown		
03/31/09	15:30	Lost some Sub Bottom due to shallow a bottom limit		
03/31/09	15:52	Seabeam is back up but has been fairly flaky		
03/31/09	15:52	Note that SCS data stopped copying in data. 03/27/2009 18:10:32.		
		Data resumes 03/28/2009 00:00		
03/31/09	19:38	Science Seawater secured for arrival in Dutch Harbor		
03/31/09	19:41	ADCP 75 stopped for end of HLY0901		
03/31/09	19:44	Seabeam to Idle for end of HLY0901		
03/31/09	19:56	DS stopped, end of HLY0901		

Comments that might help when using the data

The SCS system has to be stopped when fixing some kinds of issues. If this is the case, you should consult the elog entries for possible explanations. You can also look for the corresponding data in the LDS_Data directories. The data may have been recorded there.

The Knudsen data written into SCS_Data/Knudsen has an inconsistent time in the data. The time that the SCS writes to the start of the KEA file should be used. The Knudsen internal clock adds about 22.8 seconds to the internal clock each day near 00:00. But this is reset when the recording program is started up and when watchstanders manually synchronize the time. Use only the SCS time stamp for time in this data and it should be fine. The accuracy of the time in the SEG-Y files and KEB files should be inspected and compared to the time-stamped KEA records.

The SeaBeam data is raw and unedited. This data may need significant editing and care depending on the intended use. The SeaBeam 2112 has significant issues with the near-nadir beams: the bathymetry tends to be less repeatable in the near-nadir region compared to the middle of the swath. The outer beams are noisier in the icebreaker 2112 installations than those installed on non-icebreakers.. The acoustic noise plus bubble-sweep down and masking by ice under the hull all contribute to degrading the data quality while operating in ice.

The Knudsen subbottom data is not an accurate source of water depth for a number of reasons, including the fact that it is always recorded using a sound speed of 1500 meters/second., because the beam pattern Is large (3-to 60 degrees), because of it's bottom detection algorithm and because it penetrates the seafloor.

During the cruise at various times the re were people changing the water flow in the Science Sea Water system to test the system's response to various flow rates in the ice. This changes the amount of water going through the TSG and has discernable impact on the dissolved oxygen measurement among other things. You should closely follow the elog entries for the TSG to see when water flow rates were adjusted. These events were not always accurately entered into elog.

The ADCP file naming uses a series number after a base name. In starting up the ADCP 75 for this cruise the base name of the ADCP was misnamed to HLY09T01 instead of HLY0901. Details of events that affect the ADCP data recording were logged in both the Technicans' and the Watch Standers' electronic logs for the cruise.

The POSMV navigation system reports it's location as the master reference point and not at the antenna locations above the Helicopter Control Shack (HCO). The Location of the Master Reference Point (MRP) can be seen in the diagram at the end of this document showing instrument locations on the ship.

Earlier in the cruise it was noted that the TSG Oxygen sensor was using the incorrect Calibration values. This was corrected on 03/15/09 at 23:58:00 UTC. Prior to that time the data should be considered suspect.

The ADCP 75 has missing data for an unknown reason. There is a day and a half gap from about 07:50 UTC 3/26/9 to about 16:00 UTC 3/27/9. A listing of one file type in the adcp75 directory is:

10486665	Mar 25 11:17	data/Raw/adcp75/HLY09T01005_000028.ENS
10486665	Mar 25 21:00	data/Raw/adcp75/HLY09T01005_000029.ENS
10486665	Mar 26 06:42	data/Raw/adcp75/HLY09T01005_000030.ENS
1234440	Mar 26 07:50	data/Raw/adcp75/HLY09T01005_000031.ENS
1490805	Mar 27 17:29	data/Raw/adcp75/HLY09T01006_000000.ENS

Three Ultrasonic wind sensors were operated in addition to the ship's 2 existing sensors. These sensors operated satisfactorily for the leg. Care should be taken when using the HCO shack and Bow Jackstaff data since these data seem to be affected by the ship's deck house and the wind direction.

The Gravity Meter BGM-3 #221 started showing a platform DNV on Mar 24, 20:30:01 UTC 2009. Inspection of the system showed that the "system malf" and the "data not valid" lights are on. However plots of the data show no unusual offset. After this date the Gravity data for BGM-3 #221 should be considered suspect.

It was noted that SCS did not record data for the copy on Seaventure for all the loggers starting at 03/27/2009,18:10:32. Data resumes 03/28/2009,00:00. This should be fixed in the final distribution disk. But the user should be aware and check that the data is there.

Science Seawater sensor coefficient correction, March 15, 2009

Earlier in the cruise it was noted that the TSG Oxygen sensor was using the incorrect Calibration values. This was corrected on 03/15/09 at 23:58:00 UTC. Prior to that time the data should be considered suspect. (see the Note Below)

USCGC Healy Science Seawater sensor coefficient correction March 15, 2009

SBE-43 Oxygen sensor serial number and calibration coefficients used in the Science Seawater System on USCGC Healy (Mar 04 0000Z – 15 2358Z, 2009) were incorrect.

Oxygen sensor #1333 was in the system recording data during this time period, but sensor #1307's coefficients were being used. The oxygen data during this time period should be for qualitative use only, unless corrected with corresponding coefficients.

SAMOS parameter "OX"

		Soc	Voffset	Tau20	Α	В	С	Ε
SBE-43	#1307	0.3828	-0.4782	1.83	-8.3074e-4	2.0208e-4	-3.7052e-6	0.036
SBE-43	#1333	0.4660	-0.4960	1.04	-1.3843e-3	1.2053e-4	-1.9443e-6	0.036

Oxygen (ml/l) = Soc * (V + Voffset) * (1.0 + A * T + B * T2 + C * T3) * OxSol(T,S) * exp(E * P / K)

V = voltage output from SBE43 T = temperature [deg C] S = salinity [PSU] K = temperature [deg K] OxSol(T,S) = oxygen saturation [ml/l] P = pressure [dbar] Residual = instrument oxygen - bath oxygen

The temperature used in the above calculation comes from: "The SBE43 does not output a temperature value. However one is needed to calculate oxygen. The source of the oxygen temperature can be any device in the seawater line where the SBE43 is installed; such as a thermistor. In the case of the Healy the source of this temperature value is the SBE45 TSG. This device outputs temperature that is already calculated."

Underway Sensors and Calibrations

Sensors and Calibrations

HLY0901 Shipboard Sensors

Sensor	Description	Serial #	Last Calibration Date	Status		
Meteorology & Radiometers						
Port Yard Arm Anemometer	RM Young 09101	L001	12/01/08	Collected		
Stbd Yard Arm Anemometer	RM Young 09101	L003	03/07/07	Collected		
Barometer	RM Young 612011	BP01643	02/22/08	Collected		
Air Temp/Rel. Hum.	RM Young 41382V	13352	02/22/08	Collected		
Helo shack PAR	BSI QSR-2200	20270	01/09/07	Collected		
Shortwave Radiation	Eppley labs - PSP	35032F3	11/11/08	Collected		
Longwave Radiation	Eppley labs - PIR	34955F3	11/13/08	Collected		
Helo shack MET3A Barometer, Relative Humidity, Temperature	Paroscientific MET3A	103943	06/27/07	Collected		
HCO Precipitation	RM Young 50202	1567	1/19/09	Collected		
Jack Staff Temperature	41342LC	15166	12/17/08	Collected		
Jack Staff Ultrasonic Anemometer	RM Young 85004	00894	09/20/07	Collected		
Yard Arm Stbd Ultrasonic Anemometer	RM Young 85004	00704	09/20/07	Collected		
Helo shack Ultrasonic Anemometer	RM Young 85004	00703	09/20/07	Collected		
Underway Ocean						
TSG	SeaBird SBE45	0215	01/09/09	Collected		
Remote Sea Temp	SeaBird SBE3S	4063	12/13/08	Collected		
Fluorometer	Seapoint SCF	SCF2957	12/15/07	Collected		
Oxygen Sensor	SeaBird SBE-43	1333	01/20/09	Collected		
Wet lab Flowmeter	Flocat C-ES45-B003	09061005	01/07/08	Collected		
Wet lab Pressure	Hiller1	001P	12/15/07	Collected		
Bow Flowmeter	Signet P51530-PO	60012089621	01/07/08	NOT Collected		

HLY0806 Data Synopsis

Sensor	Description	Serial #	Last Calibration Date	Status
Ultraviolet Spectrophotometer	Satlantic MBARI-ISUS V3	0141	01/15/09	Collected
Sonars				
Knudsen- subbottom	320 B/R	K2K-00-0013	N/A	Collected
ADCP 150 kHz	Broad Band (BB150)	80	N/A	Collected
ADCP 75 kHz	Ocean Surveyor	172	N/A	Collected
Multibeam	Seabeam 2112	?	N/A	Collected
Speed log	Sperry SRD500	?	N/A	Collected
Navigation	l	L	I	
P-Code GPS (aft)	Trimble Centurion	0220035469	N/A	Collected
Attitude GPS	Ashtech ADU5	AD52003351 3	N/A	Collected
DGPS	Trimble AGGPS- AG132	0224016199	N/A	Collected
POSMV	Model- MV V4	2306	N/A	Collected
P-Code GPS (fwd)	Rockwell Collins	?	N/A	Collected
Glonass GPS	?	?	N/A	Collected
GYRO 1	Sperry MK39 Mod 3A	340	?	Collected
	PN 03956-1982416-2			
GYRO 2	Sperry MK27A 4800880-1	025	N/A	Collected

Sensor	Comments	Serial #	Last service/ Calibration Date	Status
CTD sensor	SBE 911plus	639	01/14/09	
Pressure Sensor #1	Digiquartz with TC	83012	01/14/09	Collected
Temperature #1	SBE3- Primary	2841	12/18/08	Collected
Temperature #2	SBE3- Secondary	2824	12/18/08	Collected
Conductivity #1 *	SBE4- Primary	2545	12/18/08	Collected
Conductivity #1 *	SBE4- Primary	2575	01/08/09	Collected
Conductivity #2	SBE4- Secondary	2619	12/18/08	Collected
Pump	SBE5 Primary	3115	01/08	NA
Pump	SBE5 Secondary	3112	01/08	NA
Deck Unit	SBE 11-Plus V2	0417	12/07	NA
Altimeter	PSA916	843	01/08	Collected
Oxygen *	SBE43	456	12/17/08	Collected
Oxygen *	SBE43	458	12/17/08	Collected
Fluorometer	Chelsea-Aquatrack3	088234	03/06/07	Collected
Transmisometer	Wetlabs	CST-390DR	02/27/07	Collected
PAR	Bioshperical QSP2300	70115	12/01/08	Collected
Carousel	SBE32- 12 place	347	01/08	NA

* indicates used for part of HLY0901.

CTD Cast Numbers	1-4	5-18	19-end
Temperature #1	2841	2841	2841
Temperature #2	2824	2824	2824
Conductivity #1	2545	2575	2575
Conductivity #2	2619	2619	2619
Oxygen	456	456	458

Sensor Serial Numbers used for HLY0901 CTD Casts

Software Versions of some Recording programs

System	Program	Version number
CTD	Seabird SeaSave	7.18c
XBT	Turo XBT software	3.03.01
XBT	Sippican (Old system)	2.1.2

HLY0901 Sensor Calculations

The coefficients for temperature, conductivity, fluorometer and turbidity sensors can be found in the calibrations sheets below in the Appendix.

Calculating PAR for surface PAR

```
raw data = mV
calibration scale = 6.08 \text{ V}/(\mu\text{Einstiens/cm}^2\text{sec})
offset (V_{\text{dark}}) = 0.3 \text{ mV}
(raw \text{ mV} - V_{\text{dark}})/\text{scale x } 10^4 \text{ cm}^2/\text{m}^2 \text{ x } 10^{-3} \text{ V/mV} = \mu\text{Einstiens/m}^2\text{sec}
or
(data \text{ mV} - 0.3 \text{ mV}) \text{ x } 1.65 (\mu\text{Einstiens/m}^2\text{sec})/\text{mV} = \mu\text{Einstiens/m}^2\text{sec}
```

Calculating Pyrgeometer Values

```
V = Eppley PIR Thermopile voltage
S = Sensitivity (Calibration factor from Eppley Cal sheet)
S = 3.32
J = Stefan-Boltzmann Constant
J = 5.6697e - 8
B = [absorption constant (for Eppley Black paint formula) 0.985 / dome
glass IR transmission 0.5]
B= 3.5 for Stock Eppley PIR
Tb = Eppley Body Temperature in degrees Kelvin
Td = Eppley Dome Temperature in degrees Kelvin
Tb and Td calculated as follows:
T = 1/(a + \ln(Vo/Irt)*(b + c*(\ln(Vo/Irt)*2)));
Irt = (Vref-Vin)/R1
On Healy R1 = 82500
                                    Vref = 5.0
a= 0.0010295 b= 0.0002391 c = 1.568e-7
```

 $W/M2 = V/S + (J * Tb^4) + (B*J*(Tb^4 - Td^4))$
Calibrations

The following pages are replicas of current calibration sheets for the sensors used during this cruise.

Meteorology & Radiometers

Yard Arm R.M. Young Wind Bird, Starboard

Date:

Serial # L001

R. M. Model #	Young Wind 09101, S/N L As per Young Met Wind System	bird Calibration 003 (Starboard teorological Instruments Calibration Manual	n Result: Windbi	s rd)
07 Mar 07 Teo	chnician: ET1 Berring	ger / ETC Rodda		
Wind speed torque:	Passed			
Maximum te Tes	oque = 2.4 gm/cm st results: CW CCW	0.7 0.7		
Wind direction torq	ue: Passed			
Maximum to	oque = 30 gm/cm			
Te:	st results: CW CCW	20 gm/cm 22 gm/cm		
wind speed signal:				
Maximum 9 Te:	6 error = 1% st results: Passed			
	Actual RPM	Actual Wind Speed	Measured	% Error
	200	1.90	1.9	0.2
	500	4.76	4.8	0.84
	1200	11.42	11.4	0.2
	3600	34.27	34.3	0.08
	5000	47.60	47.6	0.00
No Wind direction sign	te; Wind speed in kno al:	ots = 0.00952 * shaft RP	М	

0.21 0.84 0.21 0.08 0.00

Maximum error = +/- 2 degrees

Test results: Failed – off by 1 degree			
Actual	Meaured	Error	
0	358	-2	
30	27	3	
60	58	2	
90	88	2	
120	118	2	
150	149	1	
180	178	2	
210	207	3	
240	238	2	
270	268	2	
300	297	3	
330	327	3	

Yard Arm R.M. Young Wind Bird Port

Serial # L001

R. M. Young Wind bird Calibration Results Model # 09101, S/N L001

As per Young Meteorological Instruments Wind System Calibration Manual

Date: 01 DEC 08

Technician: ET3 Adams

Wind speed torque: Passed Maximum toque =2.40 gm/cm

> Test results: CW: .2 gm/cm CCW: .2gm/cm

Wind direction torque: Passed

Maximum toque = 30 gm/cm

Test results: CW CCW

15gm/cm 15gm/cm

Wind speed signal: Passed Maximum % error = 1%

Test results:

Actual RPM	Actual Wind Speed	Measured	% Error
200	1.90	1.9	0.00
500	4.80	4.8	0.00
1200	11.40	11.4	0.00
3600	34.30	34.2	0.29
5000	47.60	47.6	0.00

Note; Wind speed in knots = 0.00952 * shaft RPM

Wind direction signal: Passed

Maximum error = +/- 2 degrees Test results:

Actual	Meaured	Error
0	0	-1
30	31	-1
60	62	-2
90	92	-2
120	121	-1
150	150	0
180	179	1
210	210	0
240	240	0
270	268	2
300	300	0
330	331	-1

Bridge Barometer

Serial # BP01643

Baro Pres Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: BP01643 CALIBRATION DATE: 22-Feb-08 SENSOR ID: BPR80 Mfg: RM Young Model: 612011 Previous Cal Date: 01-Jan-00 Calibration Tech: CM CALIBRATION AT 25.0 DegC

A= 5.98528E+1 B= 8.02635E+2

Calibration Standard: Mfg: Paroscientific Model: 765-16B s/n: 101778 Polynomial Order = 1 Xcalc = A*X+B

anniaan	00000000000	000000	0000 7000	0000 2000
SENSOR	STANDARD	SENSOR	SPRT-INST	SPRT-INST
VOLTS	DATA	New_Coefs	Prev_Coefs	New_Coefs
4.901	1095.960	1095.953	1.920	0.007
4.151	1051.090	1051.086	2.028	0.004
3.731	1025.970	1025.963	2.092	0.007
3.475	1010.640	1010.645	2.118	-0.005
3.306	1000.490	1000.479	2.159	0.011
3.314	1000.990	1000.986	2.151	0.004
2.939	978.480	978.517	2.165	-0.037
2.445	948.980	949.001	2.254	-0.021
2.004	922.570	922.555	2.355	0.015
1.998	922.190	922.205	2.326	-0.015
1.713	905.210	905.180	2.413	0.030

Bridge Air Temperture / Relative Humidity

Serial # 13352

Air Temperature Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 13352 CALIBRATION DATE: 22-Feb-08 SENSOR ID: HRH17 Mfg: RM Young Model: 41382V Previous Cal Date: 01-Jan-2000 Calibration Tech: CM

A= 1.01413E+2 B= -5.07642E+1

Calibration Standard: Mfg: Seabird Model: SBE35 s/n: 0006 Polynomial Order = 1 Xcalc = A*X+B

SENSOR	STANDARD	SENSOR	SPRT-INST	SPRT-INST
	DATA	New_COEIS	Frev_Coers	New_COEIS
0.480	-2.122	-2.035	-0.652	-0.087
0.504	0.337	0.338	-0.557	-0.001
0.554	5.421	5.398	-0.513	0.023
0.603	10.448	10.418	-0.485	0.030
0.651	15.345	15.235	-0.386	0.110
0.699	20.190	20.154	-0.439	0.036
0.748	25.029	25.113	-0.539	-0.084
0.796	29.914	29.920	-0.442	-0.006
0.840	34.361	34.382	-0.439	-0.021

HUMIDITY Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 13352 CALIBRATION DATE: 24-Feb-08 SENSOR ID: HRH17 Mfg: RM Young Model: 41382V Previous Cal Date: 01-Jan-2000 Calibration Tech: CM

A= 1.04836E+2 B= -6.79727E-1

Calibration Standard: Mfg: GE Sensing Model: Humilab s/n: 0240507 Polynomial Order = 1 Xcalc = A*X+B

SENSOR	STANDARD DATA	SENSOR New Coefs	SPRT-INST Prev Coefs	SPRT-INST New Coefs
0.791	82,450	82.266	2,539	0,184
0.794	82.710	82.560	2.516	0.150
0.866	90.460	90,108	2.994	0.352
0.530	53.570	54,904	0.020	-1.334
0.301	31.000	30.876	0.599	0.124
0.192	19.920	19.396	0.579	0.524

Biospherical Instruments Inc.

CALIBRATION CERTIFICATE

Calibration Date	12/1/2008				
Model Number	QSR-2200				
Serial Number	20270				
Operator	TPC				
Standard Lamp	91537(10/25/2006)				
Probe Excitation Ve	oltage Range:	6	to	18	_VDC(+)
Output Polarity:	Positive				

Probe Conditions at Calibration(in air):

Calibration Voltage:	6	VDC(+)
Probe Current:	4.0	mA

Probe Output Voltage:

Probe Illuminated	88.3	mV
Probe Dark	1.3	mV
Probe Net Response	86.9	mV
RG780	1.8	mV

Corrected Lamp Output:

Output In Air (same condition as calibration):

8.83E+	15 quanta/cm ² sec
0.014	67 uE/cm ² sec

Calibration Scale Factor:

(To calculate irradiance, divide the net voltage reading in Volts by this value.)

Dry:	9.8382E-18	V/(quanta/cm²sec)
	5.9246E+00	V/(uE/cm ² sec)

Notes:

1. Annual calibration is recommended.

Calibration is performed using a Standard of Spectral Irradiance traceable to the National Institute of Standards and Technology (NIST).

3. The collector should be cleaned frequently with alcohol.

4. Calibration was performed with customer cable, when available.

QSR240R 05/24/95

Shortwave Radiation Pyranometer

Serial # 35032F3

THE EPPLEY LABORATORY, INC.

12 Sheffield Ave., P.O. Box 419, Newport, RI 02840 USA Telephone: 401-847-1020 Fax: 401-847-1031 Email: info@eppleylab.com Internet: www.eppleylab.com

Scientific Instruments for Precision Measurements Since 1917

STANDARDIZATION OF EPPLEY PRECISION SPECTRAL PYRANOMETER Model PSP

Serial Number: 35032F3

Resistance: 724 Ω at 23 °C Temperature Compensation Range: 20° to 440 °C

This radiometer has been compared with Standard Precision Spectral Pyranometer, Serial Number 21231F3 in Eppley's Integrating Hemisphere under radiation intensities of approximately 700 watts meter² (roughly one half a solar constant).

As a result of a series of comparisons, it has been found to have a sensitivity of:

8.20 x 10⁻⁶ volts/watts meter⁻²

The calculation of this constant is based on the fact that the relationship between radiation intensity and emf is rectilinear to intensities of 1400 watts meter². This radiometer is linear to within $\pm 0.5\%$ up to this intensity.

The calibration of this instrument is traceable to standard self-calibrating cavity pyrheliometers in terms of the Systems Internationale des Unites (SI units), which participated in the Tenth International Pyrheliometric Comparisons (IPC X) at Davos, Switzerland in September-October 2005.

Eppley recommends a minimum calibration cycle of five (5) years but encourages annual calibrations for highest measurement accuracy. Unless otherwise stated in the remarks section below or on the Sales Order, the results are "AS FOUND / AS LEFT".

Useful conversion facts: 1 cal cm⁻² min⁻¹ = 697.3 watts meter⁻² 1 BTU/ft²-hr⁻¹ = 3.153 watts meter⁻²

Shipped to:

University of California La Jolla, CA S.O. Number: 61853 Date: Nov. 14, 2008

Date of Test: Nov. 11, 2008 In Charge of Test: RT. Symmetry Reviewed by: Thomas Heh

Remarks:

Longwave Radiation Pyrgeometer

Serial # 34955F3

THE EPPLEY LABORATORY, INC.

12 Sheffield Ave., P.O. Box 419, Newport, RI 02840 USA Telephone: 401-847-1020 Fax: 401-847-1031 Email: info@eppleylab.com Internet: www.eppleylab.com

Scientific Instruments for Precision Measurements Since 1917

STANDARDIZATION OF EPPLEY PRECISION INFRARED RADIOMETER Model PIR

Serial Number: 34955F3

Resistance:	686	Ω at 23	°C
Femperature Compensation Range:	-20°	to +40	°C

This pyrgeometer has been compared against Eppley's Blackbody Calibration System under radiation intensities of approximately 200 watts meter² and an average ambient temperature of 25 °C as measured by Standard Omega Temperature Probe, RTD#1.

As a result of a series of comparisons, it has been found to have a sensitivity of:

3.28 x 10⁻⁶ volts/watts meter⁻²

The calculation of this constant is based on the fact that the relationship between radiation intensity and emf is rectilinear to intensities of 700 watts meter². This radiometer is linear to within $\pm 1.0\%$ up to this intensity.

The calibration of this instrument is traceable to the International Practical Temperature Scale (IPTS) through a precision low-temperature blackbody.

Eppley recommends a minimum calibration cycle of five (5) years but encourages annual calibrations for highest measurement accuracy. Unless otherwise stated in the remarks section below or on the Sales Order, the results are "AS FOUND / AS LEFT".

Shipped to: University of California La Jolla, CA. S.O. Number: 61853 Date: Nov. 14, 2008

Date of Test: Nov. 13, 2008 In Charge of Test: R.T. 55m-Reviewed by: Thomas Kuk

Remarks:

Helo shack MET3A Station

Serial # 101757

Paroscientific, Inc. Pressure Instrument Configuration					
SN: 101757 Part 1	Number: 1539-004 Mod	el:MET3A	Port:		
Calibration Date	: 27-Jun-07 Report N	lo: 7238	Technician: WMR		
December December	500 to 1100 bbs		Departs in the local		
Fleasure Range:	SUC LO ITUD APA TE	rperature	Range: -50 CO -60		
Customer: Scripp	s Inst. of Oceanograph	hy	Report Date: 27-Jun-07		
Address : 8825 B	iclogical Grade		Sales Order: 24387		
La Jol	la, CA 92037 USA		S/R Number :		
Cont	figuration	Cal	ibration Coefficients		
BL: 0	PT: N	U0 ;	5,766908 µsec		
BR: 9600	QD: -	Y1:	-4015.975 deg C / µsec		
DD: -	QD: -	Y2:	-17065.37 deg C / µsec?		
DL: -	SL: -	¥3 :	-140256.4 deg C / µsec"		
DM: -	SN: 101757	C1 :	94.87589 psi		
D0: -	ST: -	C2 :	3.545282 psi / µsec		
DP: ·	SU: -	C3 :	-114.9551 psi / µsec*		
ID: 01	TI: -	D1:	0.0345157		
IM: -	TR: 00952	D2 :	0.0000000		
LL: -	TU: -	T1:	28.00064 µsec		
LH: -	UF: 1.000000	T2 :	0.837535 µsec / µsec		
MC: Y	UL: ·	T3 :	16.78157 µsec / µsec?		
MD: 0	UM: -	T4 :	-150.7085 µsec / µsec'		
MN : -	UN: 3	T5 :	-129.729 µsec / µsec*		
OP: -	US: -	TC:	0.6782145		
PF: -	VR: M1.02	PA:	0.0000000		
PI: -	ZI: -	PM:	1.0000000		
PL: -	ZS: -				
PO: ·	ZL: -				
PR: 00238	ZV: -	1			
PS: -					

	Met3/3A	Coefficient	B B B B B B B B B B B B B B B B B B B
E1:	-0.551136	E2 :	0.84
F1:	-264.3591	F2 :	3.152
G1 :	12.56743	G2 :	0.00216
H1:	RHT894	H2:	0.0036
K1:	01842	K2 :	0.00511
M1:	1	M2 :	1
Z1;	D	Z2 :	0

P-P	aro	scientific,Inc.	4500 148th Ave Redmond, WA 9 Telephone: (425)	nue N.E. 8052-5194) 883-8700	Facsimile: (425) 867-5407 Email:salessupport@paroscientific.com Internet:http://www.paroscientific.com
		CERTI	FICATE OF C	ALIBRATI	ION
	TRANS	SDUCER MODEL: MET3A L NUMBER: 101757			
	The Parce temperat	oscientific transducer(s) identified above has b ture standards. All have traceability to the Nat	een calibrated and test tional Institute of Standa	ed with one or ards and Techr	more of the following primary pressure and nology.
	Bell and	Howell Primary Pressure Standard			
	Pneumat	tic Absolute or Gauge Dead Weight Tester Pa	rt Number: 6-201-0001	, S/N 4034 and	d S/N 1014
		Piston/Cylinder: 6-001-0002, P2-919/C2-152	23,		
		Weight Set 1: 6-002-0002			
		Range: 1.5 to 50 psi [10 to 345 kPa]			
		Accuracy: 0.010 percent of reading			
	V	Piston/Cylinder: 6-001-0002, P2-652/C2-137	78,	Piston/Cylir	nder: 6-001-0001, P1-949/C1-922 ,
		Weight Set 2: 6-002-0002		Weight Set	2: 6-002-0002
		Range: 1.5 to 50 psi [10 to 345 kPa]		Range: 0.3	3 to 5 psi [2 to 34 kPa]
		Accuracy: 0.010 percent of reading		Accuracy:	0.015 percent of reading
	DH Prim	ary Pressure Standard			
	Pneumat	tic Absolute or Gauge Dead Weight Tester Pa	rt Number: PG7601 S/N	161	
		Piston/Cylinder: S/N 305, Mass Set: S/N 20)52		
		Range: 0.7 to 50 psi [5 to 345 kPa] absolute	e mode, 0.29 to 50 psi [2 to 345 kPa]	gauge mode
		Accuracy: 0.002 percent of reading			
	DH Prima	ary Pressure Standard			
	Pneumat	ic Gauge Dead Weight Tester, Model 5203, S	/N 5557		
	, nound	Piston/Cylinder: S/N 4845 Mass Sets: S/N	2032 S/N 3293		
		Range: 20 to 1 600 psi [0 14 to 11 MPa]	2002, 0/14 0200		
		Accuracy: 0.005 percent of reading			
	DH Prim	any Pressure Standard			
	Oil Oper	ated Gauge Dead Weight Tester, Model 5306	S/N 3505		
	on open	Piston/Cylinder: S/N 3375 Mass Set: S/N 2	2032		
		Range: 40 to 20 000 psi [0.3 to 138 MPa]	.052		
		Accuracy: 0.01 percent of reading above 20	0 psi [1.4 MPa]		
		or 0.02 psi [0.14 kPa] at lower	pressure		
		Piston/Cylinder: S/N 3511, Mass Set: S/N 2	2032		
		Range: 145 to 72,500 psi [1 to 500 MPa]			
		Accuracy: 0.02 percent of reading above 72	5 psi [5 MPa]		
		or 0.145 psi [1 kPa] at lower	pressure		
	Hart Scie	ntific Precision Thermometer (MET3A only)			
	1			A04500 -	
	¥	Black Stack model 1560 S/N 97568, PRT Sc	canner model 2562 S/N	A34523, Tem	perature Probe Model A1959:
		D/INS 4424A-UZ, 4424A-U4, 4424A-U3, 4424A	-00 and 51770-02.		
		Accuracy: 015°C			0
				P	ARO
			RIL		17
		Tested By	y: TUNK	D	ATE 6-27-07
	A				
	AM	Dia	iquartz [®] Proceuro I	netrumontal	lion
4		Dig	Document No. 8145-00)1, Rev. M 4/1	8/07

Underway Ocean Flow through Sensors

Seabird ThermoSalinograph

Serial # 0215

Temperature

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NU?	MBER: 0215	SBE 45 TEMPERATUR	E CALIBRATION DATA
CALIBRATION DATE	2: 31-Dec-08	ITS-90 TEMPERATUR	SCALE
ITS-90 COEFFICIENT a0 = -8.503332e- a1 = 2.817172e- a2 = -2.887758e- a3 = 1.665030e-	S 006 004 006 007		
BATH TEMP	INSTRUMENT	INST TEMP	RESIDUAL
(ITS-90)	OUTPUT	(ITS-90)	(ITS-90)
1.0000	657839.3	1.0000	-0.0000
4.5000	562413.4	4.5001	0.0001
15.0000	358344.4	15.0000	-0.0000
18.5000	310261.9	18.4999	-0.0001
23.9999	248863.7	24.0000	0.0001
29.0000	204891.6	29.0000	-0.0000
32.5000	179410.7	32.5000	-0.0000

Temperature ITS-90 = $1/{a0 + a1[ln(n)] + a2[ln^{2}(n)] + a3[ln^{3}(n)]} - 273.15$ (°C)

Residual = instrument temperature - bath temperature

Date, Delta T (mdeg C)

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0215 CALIBRATION DATE: 31-Dec-08			SBE 45 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter			ATA
COEFFICIENTS g = -9.82255 h = 1.40780 i = -1.1973 j = 3.16915	39e-001 06e-001 70e-004 31e-005		CPcor CTcor WBOTC	= -9.5700e- = 3.2500e- = 2.4202e-	008 006 005	
BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)	
22.0000 1.0000 4.5000 15.0000 18.5000 23.9999 29.0000 32.5000	0.0000 34.8102 34.7900 34.7467 34.7376 34.7273 34.7206 34.7171	0.00000 2.97549 3.28249 4.26398 4.60905 5.16684 5.68841 6.06065	2641.63 5297.30 5497.85 6093.86 6289.66 6593.51 6865.05 7052.22	0.00000 2.97549 3.28250 4.26397 4.60904 5.16686 5.68841 6.06064	0.00000 -0.00000 0.00001 -0.00002 0.00002 0.00002 -0.00000	

f = INST FREQ * sqrt(1.0 + WBOTC * t) / 1000.0

Conductivity = $(g + hf^{2} + if^{3} + jf^{4}) / (1 + \delta t + \epsilon p)$ Siemens/meter

 $t = temperature[^{\circ}C)]; p = pressure[decibars]; \delta = CTcor; \epsilon = CPcor;$

Residual = instrument conductivity - bath conductivity

Date, Slope Correction

Remote Sea Temperature (Sea Chest)

Serial # 4063

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUM CALIBRATION DATE:	IBER: 4063 17-Dec-08	SBE3 TEMPERATURE ITS-90 TEMPERATUR	CALIBRATION DATA E SCALE
ITS-90 COEFFICIENTS g = 4.29954091e- h = 6.37146260e- i = 2.12509560e- j = 1.65873526e- f0 = 1000.0	-003 -004 -005 -006	IPTS-68 COEFFICIENT a = 3.68121775e- b = 5.99724022e- c = 1.62957593e- d = 1.66021597e- f0 = 2721.793	S -003 -004 -005 -006
BATH TEMP (ITS-90) -1.5004 0.9997 4.4997 7.9996 11.4996 14.9996 18.4997 21.9997 25.4997	INSTRUMENT FREO (Hz) 2721.793 2878.779 3109.448 3353.169 3610.308 3881.237 4166.295 4465.819 4780.158 5109.619	INST TEMP (ITS-90) -1.5004 0.9997 4.4997 7.9996 11.4996 14.9996 18.4997 21.9996 25.4997 28.9998	RESIDUAL (ITS-90) -0.00000 -0.00002 0.00004 -0.00003 0.00004 -0.00003 -0.00003 0.00003 0.00003
32.4997	5454.503	32.4997	-0.00004

Temperature ITS-90 = 1/{g + h[$ln(f_0/f)$] + i[$ln^2(f_0/f)$] + j[$ln^3(f_0/f)$]} - 273.15 (°C) Temperature IPTS-68 = 1/{a + b[$ln(f_0/f)$] + c[$ln^2(f_0/f)$] + d[$ln^3(f_0/f)$]} - 273.15 (°C) Following the recommendation of JPOTS: T₆₈ is assumed to be 1.00024 * T₉₀ (-2 to 35 °C) Residual = instrument temperature - bath temperature

Oxygen Sensor

Serial # 1307

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SEI CALIBRATI	RIAL NUMBER ON DATE: 05-Ja	: 1333 an-09p	SE	3E 43 OXY	GEN CALIBRA	TION I	DATA
COEFFICIEN Soc = 0. Voffset = Tau20 = 1	NTS 4660 -0.4960 .04	A = -1.384 B = 1.205 C = -1.944 E nominal	2e-003 3e-004 3e-006 = 0.036	NOMIN D1 = D2 = -	AL DYNAMIC (1.92634e-4 -4.64803e-2	COEFF H1 = H2 = H3 =	ICIENTS -3.30000e-2 5.00000e+3 1.45000e+3
BATH OX	BATH TEMP	BATH SAL	. INSTRU	MENT	INSTRUMEN	JT	RESIDUAL
(ml/l)	ITS-90	PSU	OUTPUT(V	VOLTS)	OXYGEN(m	1/1)	(ml/l)
1.27	12.00	0.01	0.858	3	1.27		-0.00
1.27	6.00	0.01	0.813	L	1.27		-0.00
1.27	2.00	0.00	0.779	9	1.27		0.00
1.28	20.00	0.01	0.920	5	1.28		-0.00
1.30	26.00	0.01	0.980)	1.29		-0.00
1.31	30.00	0.02	1.021	L	1.31		-0.00
4.24	20.00	0.01	1.919	9	4.24		0.00
4.25	12.00	0.01	1.709	9	4.25		0.00
4.25	30.00	0.02	2.198	3	4.25		0.00
4.27	6.00	0.01	1.553	3	4.27		0.00
4.27	26.00	0.01	2.092	2	4.27		0.00
4.28	2.00	0.00	1.448	3	4.28		0.00
6.46	30.00	0.02	3.083	L	6.46		-0.00
6.68	26.00	0.01	2.990)	6.67		-0.01
6.74	20.00	0.01	2.759	Э	6.74		0.01
6.75	12.00	0.01	2.420)	6.74		-0.01
6.79	6.00	0.01	2.176	5	6.79		-0.00
6.81	2.00	0.00	2.010)	6.81		-0.00

Oxygen (ml/l) = Soc * (V + Voffset) * (1.0 + A * T + B * T² + C * T³) * OxSol(T,S) * exp(E * P / K)

V = voltage output from SBE43, T = temperature [deg C], S = salinity [PSU] K = temperature [deg K] $O_{\rm s} S_{\rm s} (T, S)$ = superstanting [m](l) P = superstanting [m](l

OxSol(T,S) = oxygen saturation [ml/l], P = pressure [dbar], Residual = instrument oxygen - bath ox

Date, Delta Ox (ml/l)

CTD Sensor – Presure Sensor

C2 =

C3 =

D1 =

D2 = т1 =

T2 =

тз =

3.019013e+001

-1.599643e-004 3.601120e-006

Serial # 639 and 83012

SEA-BIRD ELECTRONICS, INC. 1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com SBE9plus PRESSURE CALIBRATION DATA SENSOR SERIAL NUMBER: 0639 CALIBRATION DATE: 14-Jan-09 10000 psia S/N 83012 DIGIQUARTZ COEFFICIENTS: AD590M, AD590B, SLOPE AND OFFSET: C1 = -3.840384e+004 AD590M = 1.27551e-002 -2.736111e-001 AD590B = -9.09133e+000 1.081720e-002 Slope = 0.99960 3.215400e-002 Offset = -0.1134 (dbars) 0.000000e+000

т4 = 4.	889920e-009				
т5 = 0.	000000e+000				
PRESSURE	INST	INST	INST	CORRECTED INST	RESIDUAL
(PSIA)	OUTPUT(Hz)	TEMP(C)	OUTPUT (PSIA)	OUTPUT (PSIA)	(PSIA)
14.827	33132.00	19.6	15.571	15.406	0.579
2015.272	33982.14	19.7	2015.928	2014.963	-0.309
4015.525	34809.10	19.7	4017.027	4015.262	-0.263
6015.448	35614.18	19.7	6017.987	6015.421	-0.027
8015.592	36398.96	19.7	8019.117	8015.751	0.158
10015.843	37164.71	19.8	10020.259	10016.092	0.249
8015.528	36398.90	19.8	8018.953	8015.587	0.059
6015.415	35614.11	19.8	6017.827	6015.261	-0.154
4015.370	34809.06	19.8	4016.926	4015.161	-0.209
2015.280	33982.14	19.8	2015.922	2014.957	-0.322
14.825	33131.86	19.9	15.227	15.062	0.237

Residual = corrected instrument pressure - reference pressure

Date, Avg Offset(psia)

Page 51 of 83

Temperature #1

Serial # 2841

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL N CALIBRATION DA	IUMBER: 2841 TE: 18-Dec-08	SBE3 TEMPERATUR ITS-90 TEMPERATU	RE CALIBRATION DA
ITS-90 COEFFICIE	NTS	IPTS-68 COEFFICIE	NTS
g = 4.3618381	8e-003	a = 3.68121696	e-003
h = 6.4375455	6e-004	b = 6.01398414	e-004
i = 2.2930291	5e-005	c = 1.58890815	e-005
j = 2.1505389	4e-006	d = 2.15206038	e-006
f0 = 1000.0		f0 = 2991.099	
BATH TEMP (ITS-90)	INSTRUMENT FREO (Hz)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
-1.5004	2991.099	-1.5003	0.00006
0.9996	3163.101	0.9996	-0.00004
4.4996	3415.772	4.4995	-0.00006
7.9996	3682.634	7.9995	-0.00005
11.4996	3964.074	11.4997	0.00005
14.9996	4260.456	14.9998	0.00018
18.4997	4572.116	18.4997	-0.00003
21.9997	4899.419	21.9996	-0.00013
25.4996	5242.714	25.4996	0.00001
28.9997	5602.312	28.9997	-0.00002

32.4996

0.00004

Temperature ITS-90 = $1/{g + h[ln(f_0/f)] + i[ln^2(f_0/f)] + j[ln^3(f_0/f)]} - 273.15$ (°C)

5978.504

Temperature IPTS-68 = $1/\{a + b[ln(f_0/f)] + c[ln^2(f_0/f)] + d[ln^3(f_0/f)]\} - 273.15$ (°C)

Following the recommendation of JPOTS: T_{68}^{-1} is assumed to be 1.00024 * T_{90}^{-1} (-2 to 35 °C)

Residual = instrument temperature - bath temperature

32.4996

Page 52 of 83

Temperature #2

Serial # 2824

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL N CALIBRATION DA	ENSOR SERIAL NUMBER: 2824 CALIBRATION DATE: 18-Dec-08		SBE3 TEMPERATURE CALIBRATION DAT ITS-90 TEMPERATURE SCALE		
ITS-90 COEFFICIE	NTS	IPTS-68 COEFFICIEN	JTS		
q = 4.3223035	2e-003	a = 3.68121746	e-003		
h = 6.3726754	8e-004	b = 5.98239841	e-004		
i = 2.2126109	0e-005	c = 1.55737429	e-005		
i = 2.1091772	1e-006	d = 2.11066204	e-006		
f0 = 1000.0		f0 = 2828.705			
BATH TEMP (ITS-90)	INSTRUMENT FREO (Hz)	INST TEMP (ITS-90)	RESIDUAL (ITS-90)		
-1.5004	2828.705	-1.5004	0.00002		
0.9996	2992.255	0.9996	0.0000		
4.4996	3232.577	4.4996	-0.00003		
7.9996	3486.485	7.9995	-0.00007		
11.4996	3754.360	11.4996	0.0003		
14.9996	4036.550	14.9997	0.00013		
18.4997	4333.395	18.4997	0.0003		
21.9997	4645.226	21.9996	-0.00013		
25.4996	4972.399	25.4996	0.00001		
28.9997	5315.213	28.9997	-0.00001		
32.4996	5673.950	32.4996	0.00003		

Temperature ITS-90 = $1/\{g + h[ln(f_0/f)] + i[ln^2(f_0/f)] + j[ln^3(f_0/f)]\} - 273.15$ (°C) Temperature IPTS-68 = $1/\{a + b[ln(f_0/f)] + c[ln^2(f_0/f)] + d[ln^3(f_0/f)]\} - 273.15$ (°C)

Following the recommendation of JPOTS: T_{68} is assumed to be 1.00024 * T_{90} (-2 to 35 °C)

Residual = instrument temperature - bath temperature

Conductivity #1

Serial # 2545

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIA CALIBRATION	AL NUMBER: 2 I DATE: 18-Dec	2545 c-08	SBE4 C PSS 19	CONDUCTIVITY 78: C(35,15,0) = 4	CALIBRATION DA 2914 Seimens/meter
GHIJ COEFFIC	IENTS		ABCD	M COEFFICIENT	ſS
g = -1.0673	8325e+001		a =	4.26643454e-	005
h = 1.6405	3986e+000		b =	1.63913611e+	000
i = -6.8243	5086e-004		C = -	1.06716709e+	001
j = 1.6501	2708e-004		d = -	8.42014066e-	005
CPcor = -9.	5700e-008	(nominal)	m =	4.4	
CTcor = 3.	2500e-006	(nominal)	CPcor	= -9.5700e-	008 (nominal)
BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (kHz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
0.0000	0.0000	0.0000	2.55126	0.0000	0.0000
-1.0000	34.6427	2.79189	4.84935	2.79189	-0.00000
0.9999	34.6431	2.96256	4.95528	2.96256	0.00000
15.0000	34.6425	4.25254	5.69213	4.25256	0.00001
18.4999	34.6416	4.59768	5.87348	4.59765	-0.00003
29.0000	34.6376	5.67633	6.40704	5.67637	0.00004
32.5000	34.6312	6.04735	6.58042	6.04733	-0.00002

Conductivity = $(g + hf^{2} + if^{3} + jf^{4})/10(1 + \delta t + \varepsilon p)$ Siemens/meter

Conductivity = $(af^{m} + bf^{2} + c + dt) / [10 (1 + \varepsilon p)]$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ε = CPcor;

Residual = (instrument conductivity - bath conductivity) using g, h, i, j coefficients

Date, Slope Correction

Conductivity # 1 - replacement

Serial # 2575

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIA CALIBRATION	AL NUMBER: 2 DATE: 08-Jan	2575 -09	SBE4 C PSS 19	CONDUCTIVITY 78: C(35,15,0) = 4	CALIBRATION DA 4.2914 Seimens/meter
GHIJ COEFFIC	IENTS		ABCD	M COEFFICIENT	TS
g = -1.0309	4334e+001		a =	1.71280982e-	004
h = 1.5298	8341e+000		b =	1.52983504e+	000
i = 1.3252	4434e-004		c = -	1.03090766e+	001
i = 7.7739	8933e-005		d = -	8.29105473e-	005
CPcor = -9.	5700e-008	(nominal)	m =	3.7	
CTcor = 3.	2500e-006	(nominal)	CPcor	$= -9.5700e^{-1}$	008 (nominal)
BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (kHz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
0.0000	0.0000	0.00000	2.59517	0.0000	0.00000
-1.0000	34.8546	2.80737	5.00460	2.80736	-0.00001
1.0453	34.8551	2.98289	5.11761	2.98291	0.00002
14.9999	34.8565	4.27601	5.88315	4.27600	-0.00001
18.5000	34.8563	4.62310	6.07213	4.62311	0.00001
29.0000	34.8545	5.70787	6.62783	5.70787	0.0000
32.5000	34.8485	6.08097	6.80840	6.08097	-0.00000

Conductivity = $(g + hf^2 + if^3 + jf^4)/10(1 + \delta t + \epsilon p)$ Siemens/meter

Conductivity = $(af^{m} + bf^{2} + c + dt) / [10 (1 + \varepsilon p)]$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ε = CPcor;

Residual = (instrument conductivity - bath conductivity) using g, h, i, j coefficients

Date, Slope Correction

Conductivity # 2

Serial # 2619

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

ENSOR SERIA CALIBRATION	L NUMBER: 2 DATE: 18-Dec	2619 2-08	SBE4 C PSS 19	CONDUCTIVITY 78: C(35,15,0) = 4	CALIBRATION DA' 4.2914 Seimens/meter
HIJ COEFFICI	ENTS		ABCD	M COEFFICIENT	S
= -1.0081	4744e+001		a =	3.17140662e-	005
= 1.38129	9883e+000		b =	1.38027318e+	000
= -5.00015	5206e-004		c = -	1.00799542e+	001
= 1.21450	5280e-004		d = -	8.60839141e-	005
2Pcor = -9.5	5700e-008	(nominal)	m =	4.4	
Tcor = 3.2	2500e-006	(nominal)	CPcor	= -9.5700e-	008 (nominal)
BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (kHz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
0.0000	0.0000	0.00000	2.70204	0.00000	0.0000
-1.0000	34.6427	2.79189	5.24369	2.79190	0.00001
0.9999	34.6431	2.96256	5.35998	2.96255	-0.00000
15.0000	34.6425	4.25254	6.16801	4.25255	0.00001
18.4999	34.6416	4.59768	6.36667	4.59765	-0.00003
29.0000	34.6376	5.67633	6.95077	5.67638	0.00004
		C 04805		C 04720	0 0000

Conductivity =
$$(g + hf^{2} + if^{3} + jf^{4}) / 10(1 + \delta t + \varepsilon p)$$
 Siemens/meter

Conductivity = $(af^{m} + bf^{2} + c + dt) / [10 (1 + \varepsilon p) Siemens/meter$

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ε = CPcor;

Residual = (instrument conductivity - bath conductivity) using g, h, i, j coefficients

Oxygen

Serial # 0456

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

.....

CALIBRATION	ON DATE: 17-D	: 0456 0cc-08p	SBE 43 OX	YGEN CALIBRAT	ION I	DATA
COEFFICIEN	TS	A = -2.2029	e-004 NOMI	NAL DYNAMIC CO	DEFFI	CIENTS
Soc = 0.	3799	B = 1.0644	P=004 D1 =	1.92634e-4	H1 =	-3.30000e-2
Voffset =	-0.5143	g = 2.1444	-006 D2 =	-4.64803e-2	H2 =	5,00000e+3
		C = -2.1444	8-000			1 45000-10
Tau20 = 1	• //	E nominal =	0.036	1	H3 =	1.45000e+3
BATH OX	BATH TEMP	BATH SAL	INSTRUMENT	INSTRUMENT	r	RESIDUAL
(ml/l)	ITS-90	PSU	OUTPUT(VOLTS)	OXYGEN(ml/	D	(ml/l)
1.27	12.00	0.01	0,954	1.27		0.00
1.27	6.00	0.01	0.899	1.27		0.00
1.27	2.00	0.00	0.861	1.27		0.00
1.27	20.00	0.01	1.031	1.27		-0.00
1.28	26.00	0.01	1.091	1.28		0.00
1.29	30.00	0.02	1.136	1.29		0.00
4.25	20.00	0.01	2.234	4.24		-0.00
4.25	26.00	0.01	2.429	4.25		-0.00
4.26	12.00	0.01	1,986	4.26		-0.00
4.28	30.00	0.02	2.580	4.28		0.00
4.28	6.00	0.01	1.805	4.28		-0.00
4.29	2.00	0.00	1.681	4.29		-0.00
6.63	30.00	0.02	3.715	6.63		-0.00
6.72	26.00	0.01	3.544	6.72		0.00
6.75	20.00	0.01	3.249	6.75		0.00
6.76	12.00	0.01	2.855	6.77		0.00
6.82	6.00	0.01	2.570	6.82		0.00
6.85	2.00	0.00	2.378	6.85		0.00

Oxygen (ml/l) = Soc * (V + Voffset) * (1.0 + A * T + B * T² + C * T³) * OxSol(T,S) * exp(E * P / K) V = voltage output from SBE43, T = temperature [deg C], S = salinity [PSU] K = temperature [deg K] OxSol(T,S) = oxygen saturation [ml/l], P = pressure [dbar], Residual = instrument oxygen - bath oxygen

Date, Delta Ox (ml/l)

Oxygen replacement

Serial # 0458

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SEI CALIBRATI	RIAL NUMBER ON DATE: 17-D	: 0458 Dec-08p	SBE 43 OXY	GEN CALIBRATION	DATA
COEFFICIEN	NTS	A = -1 4735	NOMIN	AL DYNAMIC COEFI	FICIENTS
Soc = 0	4307	n 1 0170	D1 =	1 92634e-4 H1	= -3 30000e-2
	1007	B = 1.21/2	e-004 D1		5.000000 2
Voffset =	-0.4913	C = -2.5852	e - 006 $D2 = -$	-4.64803e-2 H2 :	= 5.00000e+3
Tau20 = 1	.07	E nominal =	0.036	НЗ :	= 1.45000e+3
BATH OX	BATH TEMP ITS-90	BATH SAL PSU	INSTRUMENT OUTPUT(VOLTS)	INSTRUMENT OXYGEN(ml/l)	RESIDUAL (ml/l)
1.27	12.00	0.01	0.883	1.27	-0.00
1.27	6.00	0.01	0.832	1.27	0.00
1.27	2.00	0.00	0.797	1.27	-0.00
1.27	20.00	0.01	0.957	1.27	-0.00
1.28	26.00	0.01	1.014	1.28	-0.00
1.29	30.00	0.02	1.058	1.28	-0.00
4.25	20.00	0.01	2.043	4.24	-0.00
4.25	26.00	0.01	2.233	4.25	0.00
4.26	12.00	0.01	1.809	4.26	0.00
4.28	30.00	0.02	2.380	4.28	0.00
4.28	6.00	0.01	1.638	4.28	0.00
4.29	2.00	0.00	1.525	4.30	0.01
6.63	30.00	0.02	3.416	6.63	-0.00
6.72	26.00	0.01	3.242	6.72	-0.00
6.75	20.00	0.01	2.958	6.75	0.00
6.76	12.00	0.01	2.583	6.76	0.00
6.82	6.00	0.01	2.317	6.81	-0.00
6.85	2.00	0.00	2.138	6.85	-0.00

Oxygen (ml/l) = Soc * (V + Voffset) * (1.0 + A * T + B * T² + C * T³) * OxSol(T,S) * exp(E * P / K) V = voltage output from SBE43, T = temperature [deg C], S = salinity [PSU] K = temperature [deg K]

OxSol(T,S) = oxygen saturation [ml/l], P = pressure [dbar], Residual = instrument oxygen - bath oxygen

Date, Delta Ox (ml/l)

Fluorometer

Serial # 088234

CERTIFICATE OF CALIBRATION

All test equipment and standards used are of known accuracy and are traceable to national standards. Details of test equipment and standards relevant to this certificate are available upon request.

Date of issue	06 March 2007
Description	Mk III Aquatracka (Chlorophyll-a)
Serial Number	088234
Part No	3598C

Chelsea Technologies Group

55 Central Avenue West Molesey Sumey KT8 2027 Unites Kingdom Tel: ~44 (0)20 8481 9000 Fax: ~44 (0)20 8441 9319 sales@chelsea.co.uk www.chelsea.co.uk

REPORT

The fluorimeter was exposed to various concentrations of Chlorophyll-a dissolved in acetone in addition to pure water and pure acetone. The following formula was derived from the readings to relate instrument output to chlorophyll-a concentration.

Cone. = $(0.00779 \times 10^{\text{Output}}) - 0.0211$

Where -

Conc. = fluorophor concentration in µg/l Output = Aquatracka output in volts

The above formula can be used in the range 0 - 100 microgrammes per litre to an uncertainty of 0.02 microgrammes per litre plus 5% of value.

Notes

The above formula has been derived using Chlorophyll-a dissolved in acetone. No guarantee is given as to the performance of the instrument to biologically active chlorophyll in sea-water.

The zero offset has been determined in the laboratory using purified water from a reverse osmosis/ion exchange column. It is possible that purer water may be found in clean deep occan conditions. Under these conditions, the offset shown in the above formula should be replaced by the antilogarithm of the Aquatracka output in the purest water found, multiplied by the scale factor.

Serial number 88234 Page 1 of 2

Group Companies

Chelsea Technologies Ltd Chelsea Instruments Ltd Chelsea Environmental Ltd Marine Acoustics Ltd

Transmisometer

Serial # CST-390DR

PO Box 518 620 Applegate St. Philomath, OR 97370

(541) 929-565 Fax (541) 929-527 www.wetlabs.com

C-Star Calibration

Date February 27, 2007	Customer US Coast Guard	Work and a star
Job# 0012004	S/N# CST-390DR	Detter 004
V _d V _{air} V _{ref}	Analog meter 0.058 V 4.788 V 4.707 V	raviength 25 cm
Temperature of calibration wate Ambient temperature during ca	er libration	18.8 °C 23.4 °C

Relationship of transmittance (Tr) to beam attenuation coefficient (c), and pathlength (x): $Tr = e^{-cx}$

To determine beam transmittance: Tr = (V_{sig} - V_{dark}) / (V_{ref} - V_{dark})

To determine beam attenuation coefficient: c = -1/x * In (Tr)

Vd Meter output with the beam blocked. This is the offset.

- $V_{\rm air}$ Meter output in air with a clear beam path.
- Vref Meter output with clean water in the path.

Temperature of calibration water: temperature of clean water used to obtain $V_{\mbox{\scriptsize ref}}$

Ambient temperature: meter temperature in air during the calibration. Measured signal output of meter.

cstarwkbkf1.xls

Revision F

PAR

Serial # 70115

	Ca N Si	libration Date: Model Number: Serial Number: Operator: tandard Lamp:	12/01/08 QSP2300 70115 TPC 91537(10/25/20	06)				Job No.:	R10081
	Operating v	foltage Range:	0	to	15	VDC (+)			
	Note: The	QSP2300 ou	tput is a vol	tage that is	proportio	nal to the	log of the	incident irrad	iance.
	To calcula	ate irradiance	e, use this fo	rmula:					
		Irradiance	= Calibration	n factor * (1	10^Light S	Signal Volt	tage - 10^D	ark Voltage)	
	Dry Calibra	tion Eactor	3 47E+12	auanta/cm	2-sec ner	volt	5 76E-06	uFinetoine/c	m2-sec per volt
	Wet Calibra	tion Factor:	5.84E+12	quanta/cm	² ·sec per	volt	9.69E-06	µEinsteins/c	m ² ·sec per volt
			21						
	Sensor Tes	t Data and Resu	ults ⁴⁾	2.7	~^^				
		Sensor Supply	Current (Dark):	3.1	MA				
			Supply voltage:	6	Volts		0.01407		
	L	amp Integrated F	PAR Irradiance:	8.83E+15	quanta/cm	Sec	0.01467	µEinsteins/cm*	sec
		Immers	sion Coefficient:	0.594					Test Irrad.
	Nominal	Expected	Calibrated	Sensor	Expected	Voltage %	Measured	Transmission	(guanta/
	Filter OD	Transmission	Trans.	Voltage	Voltage	Error	Trans.	Error (%)	cm ² ·sec)
	No Filter	100%	100.00%	3.407	3.407	0%	100.00%	0.0	8.83E+15
	0.3	50%	36.10%	2.967	2.964	0%	36.32%	-0.6	3.21E+15
	0.5	32%	27.60%	2.853	2.847	0%	27.92%	-1.1	2.47E+15
	1	10%	9.27%	2 387	2 374	1%	9.52%	-2.6	8.41E+14
	2	1%	1.11%	1.478	1.452	2%	1.14%	-2.6	1.01E+14
	3	0.10%	0.05%	0.332	0.134	60%	0.04%	19.2	3.98E+12
	RG780	0.00%	0.00%	0.538	0.003	100%	0.10%	-100.0	8.50E+12
		Ded Deferre	0.000	17-14-					
	1.1-1-4	Dark Before:	0.003	Volts					
	Light -	No Filter Hidr.:	3.407	Volts					
	Da	ark After - NFH:	0.003	volts					
		Average Dark	0.0026	Volts					
Notes:									
 Annual ca 	alibration is recom	mended.							
2) This secti	on is for internal u	ise and for more adva	anced analysis.						

Gravity Meters

Serial # 221

BGM-3 PLATFORM TH	STS	
Sensor Subsys. S/N C.P.S. S/N	221	side Arrentinger
Platform S/N	324	
ZERO DAMP period (SP // FE308 21572	EC: 533 SEC +/- 5) ROLL (R49) <u>537</u> sec. sec. sec.	PITCH (R65) <u>530</u> sec. 2204 2- sec. sec.
TILT TEST (SPEC: +/- 0	.7 MRAD)	
	ROLL (R41)	PITCH (R56)
2343 Z NOMINAL 979	318.03	12 F9805
POS	314.95 mgal.	mgal. 0001
NEG	<u>317.00</u> mgal.	3/4.62 mgal.
.36 (POS - NEG)05	-0.018 mrad . 54	0./94 mrad
Adjustments	NONE	NONE
12 PEBOF ONG NOMINAL 4743	517.99	mool
POS	mgal.	mgal.
36 (POS - NEG)	mgai.	mgai.
Adjustments	mrau	mrad
NOMINAL		
POS	mgal	mgal
NEG	mgal.	mgal
.36 (POS - NEG)	mrad	mrad
Adjustments		
NOMINAL		
POS	mgal.	mgal.
NEG	mgal.	mgal.
.36 (POS - NEG)	mrad	mrad
Adjustments		
NOMINAL		
POS	mgal.	mgal.
NEG	mgal.	mgal.
.36 (POS - NEG)	mrad	mrad
Adjustments		
NOMINAL		

PRE-SH	IPMENT SYSTE	M CHECKOUT	
SENSOR S/N 22/ CPS S/N 324 PLATFORM S/N 324 SCALE FACTOR 5.01	DATE TIME (Z)	2 F8B 08 0020	
B.AS 855265.0	-541		
SENSOR TEST POINTS	CPS	MONITOR	
30.08	1	14.80	
2 27.98	2	10.02	
3 /F. 50	3	1.004	
4 17.42	4	0.00	
5 15.09	5	0.00	
-15.00	6	-0.02	
7	7	0.727	
8 5.02		-0.045	
9 13.67	9	0.025	
10 17.45			
4.50		#12 11 1 3000 #1000 \$1000 #1000	
- 0.07			
3 5.0 - 0			
-/7.95			
5 - 4.92			
0.00			
1000 AUG 100			
ACCELOVEN D			
PREOVEN 30	·····		
SPICOVEN 65		r - Secret - Sequerement	
BAT VOLTAGE 28.0			
LLAVOLINGE 27.4		1	
ELECCORRENT .16A			
CHOR CORRENT .03A			
		1	

SENSOR S/N 221 DATE 26 FB30 CPS S/N 324 TIME (2) 1200 PLATFORM S/N 324 SCALE FACTOR 5.017387349 BIAS 655265:84 SENSOR TEST POINTS CPS MONITOR 1 29.95 1 14'82 2 22.67 2 10.04 3 16.41 3 1.005 4 17.55 4 0.00 5 15.03 5 0.00 6 -14.93 6 1.22 7 - 7 076 8 5.00 8 053 9 13.600 9 .024 10 17.600 1 4.47 12 .005 1 1 13 0/C- 1 1 14 -17.67 1 1 15 -6.90 1 1 14 -17.67 1 1 ACCEL OVEN 75 1 1 PRC OVEN 644 1 1 B		POST INSTAL	LATION SY	TEM CHECK
SENSOR S/N 22/ DATE 28/908 CPS S/N 324 TIME (2) 1200 PLATFORM S/N 324 TIME (2) 1200 PLATFORM S/N 324 SENSOR TEST POINTS CPS MONITOR 1 29.95 1 14'82 2 27.67 2 10.04 3 18.45 1.005 4 17.55 4 0.005 4 17.55 4 0.005 5 15.03 5 0.006 6 -14.93 6 1.22 7 - 7 076 8 5.000 8 053 9 13.600 9 .024 10 17.600 9 .024 11 4.447 12 0.05 13 0/L 14 053 13 0/L 14 053 14 -17.87 15 053 15 -6.90 16 .0000 16 ACCEL OVEN 75		10011101712		
CPS S/N 324 TIME (2) / 200 PLATFORM S/N 324 TIME (2) / 200 SCALE FACTOR 5.017387399 BIAS 655265.599 BIAS 655265.599 SENSOR TEST POINTS CPS MONITOR 1 29.95 1 $14'.82$ 2 27.87 2 10.09 3 16.41 3 1.005 4 7.55^{-} 4 0.005 4 7.55^{-} 4 0.005 6 -14.93 6 7.22 7 -7 7.076 8 5.000 8 7.053 9 13.620 9 0.24 10 17.600 8 7.053 11 4.477 11 4.947 12 0.055 13 $0/C$ 13 $0/C$ 14 -17.67 15 -4.900 16 0.0000 ACCEL OVEN 75 $9000000000000000000000000000000000000$	SENSOR S/N	221	DATE 2	FFFBOR
PLATFORM S/N 32.4 SCALE FACTOR 5.017387349 BIAS & SS265.84 BIAS & SS265.84 SENSOR TEST POINTS CPS MONITOR 1 29.87 2 2 22.87 2 3 /d.41 3 4 /2.57 4 5 /5.03 5 6 -14.93 6 7 -7 -076 8 5.00 8 9 /3.600 9 9 /3.600 9 10 /7.600 9 11 4.472 12 12 .005 13 13 0/L 14 14 -17.87 15 15 -6.90 16 16 0.000 000 ACCEL OVEN 75 9 PRC OVEN 644 9 BAT VOLTAGE 28.5 5 ELEC CURRENT .16 .16 CHGR CURRENT .02 2 <td>CPS S/N</td> <td>324</td> <td>TIME (Z)</td> <td>1700</td>	CPS S/N	324	TIME (Z)	1700
SCALE FACTOR 5.017387349 BIAS #SS 255:84 SENSOR TEST POINTS CPS MONITOR 1 29.95 1 14.82 2 22.87 2 10.04 3 18.41 3 1.005 4 17.55 4 0.00 5 15.03 5 0.00 6 -14.93 6 1.22 7 - 7 076 8 5.00 8 053 9 13.600 9 .024 10 17.600 9 .024 11 4.497 12 .005 12 .005 13 .076 13 0/6 .024 14 -17.87 .024 15 -6.90 .0000 .024 ACCEL OVEN 75 .0000 .0000 ACCEL OVEN 75 .0000 .0000 ACCEL OVEN 75 .0000 .0000 ACCEL OVEN .024 .00000 .0000	PLATFORM S/N	324	(,	
BIAS $f \leq S \leq 2f \leq S \leq 4^{\circ}$ SENSOR TEST POINTS CPS MONITOR 1 27.95 1 $14'.82$ 2 27.87 2 $10.04'$ 3 $16.4'/$ 3 1.005 4 17.53^{-} 4 0.00^{-} 5 15.03 5 0.00^{-} 6 -14.93^{-} 6 1.22^{-} 7 -7 7.076 8 -0.02^{-} 8 5.000^{-} 8 -0.53^{-} 9 13.60^{-} 9 0.24^{-} 10 17.60^{-} 1 $4.4'^{-}$ 11 $4.4'^{-}$ 0.24^{-} 1 12 0.05^{-} 0.24^{-} 1 13 $0/C^{-}$ 0.24^{-} 1 14 -17.8^{-} 0.24^{-} 0.24^{-} 15 -4.90^{-} 0.24^{-} 0.24^{-} 14 -17.8^{-} 0.24^{-} 0.24^{-} PRC OVEN 75^{-} 0.24^{-} 0.24^{-} BAT VOLTAGE	SCALE FACTOR	5.01738	7349	
SENSOR TEST POINTS CPS MONITOR 1 29.95 1 14.82 2 27.87 2 10.04 3 18.41 3 1.005 4 17.55 4 0.00 5 15.03 5 0.00 6 -14.93 6 1.22 7 - 7 076 8 5.000 8 053 9 13.600 9 .024 10 17.600 9 .024 11 4.477 12 .005 13 0/C 13 .024 14 -17.87	BIAS	855285	84	
SENSOR TEST POINTS CPS MONITOR 1 29.95 1 14'82 2 27.87 2 10.04 3 18.41 3 1.005 4 17.55 4 0.00 5 15.03 5 0.00 6 -14.93 6 1.22 7 - 7 076 8 5.000 8 053 9 13.600 8 053 9 13.600 9 .024 10 17.600 11 4.97 12 .005 13 0/C 13 0/C 14 12 14 -17.87 15 -6.90 15 -6.90 16 0.000 ACCEL OVEN 75 9 9 PRC OVEN 444 14 14 BAT VOLTAGE 28.5 14 14 CHGR CURRENT .02.5 14 16 CHGR CURRENT .02.5 14 16				
1 29.95 1 $14'.82$ 2 27.87 2 $10.04'$ 3 $18.41'$ 3 $1.005'$ 4 $17.55'$ 4 0.00 5 15.03 5 $0.00'$ 6 $-14.93'$ 6 $1.22'$ 7 $-7'$ $7.076'$ 8 $5.000'$ 8 $053'$ 9 $13.600'$ 9 $.024'$ 10 $17.600'$ 9 $.024'$ 11 $4.47'$ 11 $4.49'$ 12 $.005'$ 13 $01''$ 13 $01''$ $00''$ $00'''$ 14 $-17.67''$ $00'''''$ $00'''''''''''''''''''''''''''''''''''$	SENSOR TEST PO	INTS	CPS N	MONITOR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	29.95	1	14.82
$\begin{array}{c cccc} 3 & 18.41 & 3 & 1.005 \\ \hline 4 & 17.55 & 4 & 0.00 \\ \hline 5 & 15.03 & 5 & 0.00 \\ \hline 6 & -14.93 & 6 & 1.22 \\ \hline 7 & - & 7 &076 \\ \hline 8 & 5.00 & 8 &053 \\ \hline 9 & 13.60 & 9 & .024 \\ \hline 10 & 17.60 & 9 & .024 \\ \hline 10 & 17.60 & 9 & .024 \\ \hline 10 & 17.60 & 9 & .024 \\ \hline 11 & 6.47 & 12 & .005 \\ \hline 13 & 0/C & 13 & 0/C \\ \hline 14 & -17.87 & 15 & -6.90 \\ \hline 15 & -6.90 & 16 & .000 \\ \hline 16 & 0.000 & 0 & .000 \\ \hline ACCEL OVEN & 75 & .000 \\ \hline ACCEL OVEN & 75 & .000 \\ \hline PRC OVEN & 444 & .000 \\ \hline BAT VOLTAGE & 28.5 & .000 \\ \hline ELEX VOLTAGE & 29.5 & .000 \\ \hline ELEC CURRENT & 102. & .000 \\ \hline \end{array}$	2	27.87	2	10.04
$\begin{array}{c cccc} 4 & 1/2.55 & 4 & 0.00 \\ \hline 5 & 15.03 & 5 & 0.00 \\ \hline 6 & -14.93 & 6 & 1.22 \\ \hline 7 & - & 7 &076 \\ \hline 8 & 5.00 & 8 &053 \\ \hline 9 & 13.60 & 9 & .024 \\ \hline 10 & 17.60 & 9 & .024 \\ \hline 10 & 17.60 & 11 \\ \hline 12 & .005 & 11 \\ \hline 12 & .005 & 11 \\ \hline 12 & .005 & 11 \\ \hline 13 & 0/C & 12 \\ \hline 13 & 0/C & 12 \\ \hline 14 & -17.87 & 15 \\ \hline 15 & -6.90 & 16 \\ \hline 16 & 0,000 & 16 \\ \hline 0,000$	3	18.41	3	1.005
$ \begin{array}{c cccc} 5 & 15.03 & 5 & 0.00 \\ \hline 6 & -14.93 & 6 & 1.22 \\ \hline 7 & - & 7 &076 \\ \hline 8 & 5.00 & 8 &053 \\ \hline 9 & 13.60 & 9 & .024 \\ \hline 10 & 17.60 & 9 & .024 \\ \hline 10 & 17.60 & 9 & .024 \\ \hline 11 & 4.47 & 12 & 12 \\ \hline 12 & .005 & 13 & 0/L & 14 \\ \hline 13 & 0/L & 14 & -17.87 \\ \hline 14 & -17.87 & 15 & -4.90 & 11 \\ \hline 15 & -4.90 & 16 & 0.000 & 16 \\ \hline ACCEL OVEN & 75 & 16 & 16 \\ \hline ACCEL OVEN & 75 & 16 & 16 \\ \hline ACCEL OVEN & 75 & 16 & 16 \\ \hline ACCEL OVEN & 75 & 16 & 16 \\ \hline BAT VOLTAGE & 28.5 & 16 \\ \hline ELEX VOLTAGE & 29.5 & 16 \\ \hline ELEC CURRENT & 16 & 16 \\ \hline CHGR CURRENT & 02. & 16 \\ \hline \end{array} $	4	17.55	4	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	15.03	5	0.00
7 $$ 7 076 8 5.00 8 053 9 $/3.60$ 9 $.024$ 10 $/7.600$ 9 $.024$ 10 $/7.600$ 9 $.024$ 11 6.477 11 $.024$ 12 $.005$ 13 $0/c$ 13 $0/c$ 14 -17.87 15 -6.90 16 0.000 16 0.0000 16 0.0000 ACCEL OVEN 75 $$	6	-14.93	6	1.22
8 5.00 8 053 9 /3.60 9 .024 10 /7.60 10 124 11 4.477 12 12 12 .005 13 14 14 -/7.87 15 16 16 0,000 16 0 ACCEL OVEN 75 15 PRC OVEN 444 16 BAT VOLTAGE 28.5 15 ELEX VOLTAGE 29.5 16 CHGR CURRENT .02. 16	7		7	076
9 13.60 9 .024 10 17.60 11 4.47 11 4.47 12 12 12 .005 13 14 13 0/L 14 17.87 15 -6.90 16 16 16 0,000 16 16 PRC OVEN 44 14 14 BAT VOLTAGE 28.5 15 16 LEX VOLTAGE 29.5 16 16 CHGR CURRENT .02. 16 10	8	5.00	8	053
10 17.600 11 4.47 12 005 13 $0/c$ 14 -17.87 15 -4.90 16 $0,000$ ACCEL OVEN 75 PRC OVEN 44 BPTC OVEN 64 BAT VOLTAGE 28.5 ELEX VOLTAGE 29.5 ELEC CURRENT $.16$ CHGR CURRENT $.02.$	9	13.60	9	.024
11 4.47 12 .005 13 0/c 14 -/7.87 15 -6.90 16 0,000 ACCEL OVEN 75 PRC OVEN 44 BPTC OVEN .64 BAT VOLTAGE 28.5 ELEX VOLTAGE 29.5 ELEC CURRENT .16 CHGR CURRENT .02.	10	17.60		
12 .005 13 0/L 14 -/7.87 15 -6.90 16 0,000 ACCEL OVEN 75 PRC OVEN 44 BPTC OVEN 64 BAT VOLTAGE 28.5 ELEX VOLTAGE 29.5 ELEC CURRENT .16 CHGR CURRENT .02.	11	4.47		
13 0/C 14 -17.87 15 -6.90 16 0,000 ACCEL OVEN 75 PRC OVEN 444 BPTC OVEN 644 BAT VOLTAGE 28.5 ELEX VOLTAGE 29.5 ELEC CURRENT .16 CHGR CURRENT .02.	12	.005		
14 -17.87 15 -6.90 16 0,000 ACCEL OVEN 75 PRC OVEN 444 BPTC OVEN 644 BAT VOLTAGE 28.5 ELEX VOLTAGE 29.5 ELEC CURRENT .16 CHGR CURRENT .02.	13	OR		
15 -6.90 16 0,000 ACCEL OVEN 75 PRC OVEN 44 BPTC OVEN 64 BAT VOLTAGE 28.5 ELEX VOLTAGE 29.5 ELEC CURRENT .16 CHGR CURRENT .02.	14	-17.87		
16 0,000 ACCEL OVEN 75 PRC OVEN 44 BPTC OVEN 64 BAT VOLTAGE 28.5 ELEX VOLTAGE 29.5 ELEC CURRENT .16 CHGR CURRENT .02.	15	-6.90		
ACCEL OVEN 75 PRC OVEN 44 BPTC OVEN 64 BAT VOLTAGE 28.5 ELEX VOLTAGE 29.5 ELEC CURRENT .16 CHGR CURRENT .02.	16	0,000		
PRC OVEN 44 BPTC OVEN 64 BAT VOLTAGE 28.5 ELEX VOLTAGE 29.5 ELEC CURRENT .16 CHGR CURRENT .02.	ACCEL OVEN	75		
BPTC OVEN .64 BAT VOLTAGE 28.5 ELEX VOLTAGE 29.5 ELEC CURRENT .16 CHGR CURRENT .02.	PRC OVEN	44		
BAT VOLTAGE 28.5 ELEX VOLTAGE 29.5 ELEC CURRENT .16 CHGR CURRENT .02.	BPTC OVEN	.64		
ELEX VOLTAGE 29.5 ELEC CURRENT .16 CHGR CURRENT .02.	BAT VOLTAGE	28,5		
ELEC CURRENT .16 CHGR CURRENT .02	ELEX VOLTAGE	29.5		
CHGR CURRENT , 02	ELEC CURRENT	.16		
	CHGR CURRENT	102.		

AARV SYSTEM

BGM-3 PLATFORM TESTS

28 F83 08	Sensor Subsys. C.P.S. Platform	S/N_Z2/ S/N_324 S/N_224	
ol an	Tationin	511 324	
WILTON	ZERO DAMP peri	od (SPEC: 533 SEC +/- 5)	
10-21-		ROLL (R49)	PITCH (R65)
	172	02 530 sec.04	(526) sec. 1732 2
		sec.	sec. R654ccw
		sec.	<u>534</u> sec. /833 2 04
	TILT TEST (SPEC	C: +/- 0.7 MRAD)	
		ROLL (R41)	PITCH (R56)
	NOMINAL	179 730.50	(100)
1800	₽ POS	29.85 mgal.	29.55 mgal. 1815 2
	NEG	29.21 mgal.O	K 29-59 mgal. OK
	.36 (POS - NEG).	4 0,230 mrad-	94014 mrad
	Adjustments	NONE	NONE
18	462 NOMINAL	979730.50	
	POS	mgal.	mgal.
	NEG	mgal.	mgal.
	.30 (POS - NEG)	mrad	mrad
	NOMINAL		
	POS	maal	
	NEG	mgal.	mgal.
	36 (POS - NEG)	mgal.	mgal.
	Adjustments	mrau	mrad
	NOMINAL		
	POS	mgal	mgal
	NEG	mgal.	mgal
	.36 (POS - NEG)	mrad	mrad
	Adjustments		
	NOMINAL		
	POS	mgal.	mgal.
	NEG	mgal.	mgal.
	.36 (POS - NEG)	mrad	mrad
	Adjustments		
	NOMINAL		

BASE CALIBRATION	READINGS				
BGM S/N: 221 AARV	SURVOPS: ACC NO:				
SHIP: HEALY	SURVOPS DATES: TO:				
PORTS: SEATTLE, WA	TO:				
PERSONNEL: HERR					
DEPARTUR	E BASE CALIBRATION READINGS				
date: 29 F9B 08 J.D. O	60 TIME GMT: 1700 TO: 1800 MEAN: 7	230			
STA.# :					
STA. NAME: PIER 36	STA GRAV @ PIER LEVEL 980728.35	MGALS			
	PIER STA HGT 7.4' X .094 + .70	MGALS			
	BASE & @ WATER LEVEL 980 729.05	MGALS			
s.f.: 5.017387	BGM OBS GRAV 980729.34	MGALS			
CORR. BIAS : 855284.64	OBS g – BASE g + 0.29	MGALS			
DRIFT CORR. ENTERED: N/A					
ARRIVA	L BASE CALIBRATION READINGS				
DATE: J.D.:	TIME GMT: TO: MEAN:				
STA.#:					
STA. NAME:	STA GRAV @ PIER LEVEL	MGALS			
	PIER STA HGTX .094 +	MGALS			
	BASE g @ WATER LEVEL	MGALS			
S.F.:	BGM OBS GRAV	MGALS			
CORR. BIAS:	OBS g – BASE g	MGALS			
LAND METER NO.					
DEPARTURE J. D.: TIME	GMT: VALUE: C.D. =	MGALS			
ARRIVAL J. D.: TIME	GMT: VALUE: C.D. =	MGALS			
	DIFFERENCE:	MGALS			
	STA.GRAV @ PIER LEVEL DIFFERENCE:	MGALS			
	MISTIE:	MGALS			
BCR BY:	CHECKED BY:				

51.5

BGM-3 PLATFORM TESTS

Sensor Subsys.	S/N 222
C.P.S.	S/N 325
Platform	S/N 325

ZERO DAMP period (SPEC: 533 SEC +/- 5)

CANG		ROLL (R49)	PITCH (R65)
2000	2222 2	533 sec.	<u>537</u> sec. 2236 E
		sec.	sec.
		sec.	sec.
	TILT TEST (SPEC: +/-	0.7 MRAD)	
		ROLL (R41)	PITCH (R56)
234	37 NOMINAL 97	9515 24	12 894 04
	POS	312.18 mgal.	3/2.02 mgal. 0001
	NEG	312.21 mgal.	312.30 mgal.
	.36 (POS - NEG) ~0,03	-0,0108 mrad 24	4 -0.0869mrad
	Adjustments	NONE	None
12F5805	OOLG NOMINAL 979	813.31	
	POS	mgal.	mgal.
	NEG	mgal.	mgal.
	.36 (POS - NEG)	mrad	mrad
	Adjustments		
	NOMINAL		
	POS	mgal.	mgal.
	NEG	mgal.	mgal.
	.36 (POS - NEG)	mrad	mrad
	Adjustments		
	NOMINAL		
	POS	mgal.	mgal.
	NEG	mgal.	mgal.
	.36 (POS - NEG)	mrad	mrad
	Adjustments		
	NOMINAL		
	POS	mgal.	mgal.
	NEG	mgal.	mgal.
	.36 (POS - NEG)	mrad	mrad
	Adjustments		
	NOMINAL		

NSOR S/N Z 2 2 DATE IZ PB C PS S/N 325 TIME (2) 001. ATFORM S/N 3 25 ALLE FACTOR 4.949 006 443 AS $FSG735.4953$ AS FSG735.4953 NSOR TEST POINTS CPS MONITOR 1 30.23 1 14.55 2 26.06 2 9.96 3 0.97 4 3 /F.54 3 0.97 4 0.02 5 3 /F.54 3 0.97 4 0.02 5 0.03 6 -14.98 6 -0.6 5 0.03 6 -0.6 6 7 -0.97 1.01.8 5 0.02 6 -0.07 6 9 /3.87 9 0.01 6 -0.07 6 -0.07 6 10 /F.03 11 4.52 10 10 16 0.2 10 16 0.2 10 16 0.02 10 16 0.2 16 16 16 15 15 10<			1	
$\begin{array}{c cccc} SS/N & 325 & \text{TIME (2)} & 001, \\ \text{ATFORM S/N} & 325 \\ \text{ALE FACTOR} & 4, 949 006 443 \\ \text{AS FSG735.4753} \\ \text{AS FSG735.4753} \\ \text{NSOR TEST POINTS} & CPS MONITOR \\ 1 & 30.23 & 1 & 14.53 \\ 2 & 26.06 & 2 & 9.92 \\ 3 & 17.54 & 3 & 0.96 \\ 4 & 17.74 & 4 & 0.05 \\ 5 & 15.04 & 5 & 0.05 \\ 6 & -14.98 & 6 & -0.6 \\ 7 & -7 & 1.01, \\ 8 & 5.04 & 8 & -0.07 \\ 9 & 13.86 & 9 & 0.01 \\ 10 & 16.03 \\ 11 & 4.52 \\ 12 &04 \\ 13 & 5.0 & -0 \\ 14 & -15.23 \\ 15 & -4.94 \\ 16 & .0.2 \\ 16 & .0.2 \\ 16 & .0.2 \\ 10 &$	SENSOR S/N	222	DATE 12	PBOS
ATFORM S/N 325 CALE FACTOR $4,9490064443$ AS 556735.4953 NSOR TEST POINTS CPS MONITOR 1 30.23 $1/4.53$ 2 25.06 29.96 3 17.54 30.96 4 17.74 $40.0.5$ 5 15.04 50.03 6 -14.98 $6-0.6$ 7 71.07 $8-0.07$ 8 5.04 $8-0.07$ 9 13.87 $9-0.07$ 10 16.03 11 415.23 12 04 13 $5.0 - 0$ 0.07 10 16.03 11 42.52 0.07 12 04 13 $5.0 - 0$ 14 -18.23 15 -4.94 16 16 0.2 0.2 16 0.2 5 16 0.2 5 15 -4.94 5 16	CPS S/N	325	TIME (Z)	0015
ALLE FACTOR 4,949.006.4443 AS $F56735.4953$ AS $F56735.4953$ NSOR TEST POINTS CPS MONITOR 1 30.23 1 2 26.06 2 9.96 3 $/F.54$ 3 0.96 4 $/7.744$ 0.03 5 $/5.0475$ 0.03 6 -14.98 6 -0.6 7 -7 1.07 8 5.044 8 -0.07 9 $/3.872$ 9 -0.07 10 $/6.03$ 9 -0.07 11 4.522 12 044 13 $5.0 - 0$ 0 14 $-/8.23$ 15 -4.944 16 0.22 0.24 0.25 CCEL OVEN 100 45 0.24 CCEL OVEN 100 45 0.24 CCEL OVEN 100 45 0.25 CCEL OVEN 45 55 56	LATFORM S/N	325		
AS $F56735.4953$ NSOR TEST POINTS CPS MONITOR 1 30.23 1 /4.5 2 28.06 2 9.9 3 /F.54 3 0.9 4 /7.74 4 0.0 5 /5.04 5 0.0 6 -14.98 6 -0.6 7 7 7 1.07 8 5.04 8 -0.0 9 /3.86 9 0.07 10 /6.03 11 6.52 1204 13 5.0 - 0 14 -/8.23 15 -4.94 16 .02 CCEL OVEN 100 CCOVEN 45 FTC OVEN 165 NT VOLTAGE 26.5 EX VOLTAGE 27.8 EC CURRENT .02 A	SCALE FACTOR	4,949004	e 443	
NSOR TEST POINTS CPS MONITOR 1 30.23 1 14.53 2 25.06 2 9.96 3 17.74 4 0.05 4 17.74 4 0.05 5 15.04 5 0.05 6 -14.98 6 -0.6 7 -7 $1.01.6$ 8 5.04 8 -0.07 9 13.86 9 -0.01 10 16.03 9 -0.01 11 4.52 12 04 13 $5.0 - 0$ 0 0.01 14 -18.23 15 -4.94 16 0.2 0.2 0.01 16 0.2 0.2 0.01 16 0.2 0.02 0.01 16 0.2 0.2 0.01 16 0.2 0.01 0.01 16 0.2 0.02 0.02 16 0.2 <td< td=""><td>SIAS F5673</td><td>5.4953</td><td></td><td></td></td<>	SIAS F5673	5.4953		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ENSOR TEST POIN	NTS	CPS M	ONITOR
$\begin{array}{c cccc} 2 & 2F.06 & 2 & 9.96 \\ \hline 3 & /F.54 & 3 & 0.96 \\ \hline 4 & /7.74 & 4 & 0.0 \\ 5 & /5.04 & 5 & 0.05 \\ \hline 6 & -14.98 & 6 & -0.6 \\ \hline 7 & -7 & 1.07 \\ \hline 8 & 5.04 & 8 & -0.07 \\ \hline 9 & /3.86 & 9 & -0.07 \\ \hline 10 & /F.03 \\ \hline 11 & 6.52 \\ \hline 12 &04 \\ \hline 13 & 5.0 & -0 \\ \hline 14 & -/F.23 \\ \hline 15 & -6.94 \\ \hline 13 & 5.0 & -0 \\ \hline 14 & -/F.23 \\ \hline 15 & -6.94 \\ \hline 16 & .02 \\ \hline 16 & .02 \\ \hline 16 & .02 \\ \hline 16 & .03 \\ \hline 16 & .05 \\ \hline 17 \\ COVEN & 100 \\ \hline 16 & .05 \\ \hline 17 \\ COVEN & 165 \\ \hline 16 \\ \hline 15 \\ \hline 16 \\ \hline 15 \\ \hline 17 \\ COVEN & 165 \\ \hline 16 \\ \hline 16 \\ \hline 17 \\ \hline 16 \\ \hline 17 \\ \hline 16 \\ \hline 10 \\ \hline$	1	30.23	1	14.50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	28.06	2	9.90
$\begin{array}{ccccccc} 4 & 17.74 & 4 & 0.0.5 \\ 5 & 15.04 & 5 & 0.02 \\ 6 & -14.98 & 6 & -0.6 \\ 7 & & 7 & 1.01. \\ 8 & 5.04 & 8 & -0.0 \\ 9 & 13.86 & 9 & -0.01 \\ 10 & 16.03 \\ 11 & 6.52 \\ 12 &04 \\ 13 & 5.0 & -0 \\ 14 & -18.23 \\ 15 & -4.94 \\ 16 & .0.2 \\ 15 & -4.94 \\ 16 & .0.2 \\ 16 & .0.2 \\ 16 & .0.5 \\ 17 & 0VEN & 165 \\ 18 & 000 \\ 19 & 000 \\ 10 & 000 \\ $	3	18.54	3	0.985
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	17.74	4	0.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	15.04	5	0.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	-14.98	6	-0.69
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7		7	1.013
9 13.86 9 -0.01 10 16.03 11 4.52 12 04 13 $5.0 - 0$ 14 -18.23 15 -4.94 16 $.0.2$ CCELOVEN 100 COVEN 45 PTCOVEN 45 PTCOVEN $.65$ NT VOLTAGE 26.5 EX VOLTAGE 27.8 EC CURRENT $.02$ A	8	5.04	8	-0.071
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	13.84	9	-0.012
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	18.03		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	4.52		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	- , 04		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	5.0-0		
15 _6.94 16 .0_2_ CCELOVEN 100 CCOVEN 45 TCOVEN .65 NT VOLTAGE 26.5 EX VOLTAGE 27.5 EC CURRENT .15 A IGR CURRENT .02 A	14	-18.23	-	
10 .02 CCELOVEN 100 CCOVEN 45 TCOVEN .65 TVOLTAGE 26.5 EX VOLTAGE 27.5 EC CURRENT .15 A IGR CURRENT .02 A	15 .	-4.94		
ICELOVEN 100 ICOVEN 45 ICOVEN 45 ITCOVEN .65 ITVOLTAGE 26.5 EX VOLTAGE 27.8 EC CURRENT .15 A IGR CURRENT .02 A	16	. O Z_		
COVEN 45 PTCOVEN .65 NT VOLTAGE 26.5 EX VOLTAGE 27.8 EC CURRENT .15 A IGR CURRENT .02 A	ACCEL OVEN	100		
TC OVEN .65 NT VOLTAGE 26.5 EX VOLTAGE 27.5 EC CURRENT .15 A IGR CURRENT .02 A	PRC OVEN	45		
TVOLTAGE 26.5 EX VOLTAGE 27.8 EC CURRENT .15 A IGR CURRENT .02 A	BPTC OVEN	.65		
EX VOLTAGE 27.5 EC CURRENT .15 A IGR CURRENT .02 A	BAT VOLTAGE	26.5		
IGR CURRENT	ELEX VOLTAGE	27.8		
IGR CURRENT .OZ A	ELEC CURRENT	.15 A		
	HGR CURRENT	OZ A		
			+	

				L_
	POST INSTA	LLATION SYS	TEM CHECKO	U
CENCOR 6 (1)			r mant	-
SENSOR S/N	222	DATE Z	1+2305	1
CPS S/N	325	TIME (Z)	1710	Ļ
PLATFORM S/N	323			1
SCALE FACTOR	4.944000	443	-	_
BIAS	\$55285	59 8	56735.7	70
SENSOR TEST PO	INTS	CPS N	IONITOR	-
1 .	30.01	1	14.47	-
2	27.95	2	9,92	-
3	18.45	3	-985	
4	17.66	4	.04	
5	14.95	5	105	
6	-14.95	6	. 373	
7		7	1281	
8	4.99	8	073	
9	13.77	9	010	
10	17.93			
11	647			
12	.016			
13	OLC			
14	-16.18			
15	-4.94			
16	0.000			
ACCEL OVEN	95			
PRC OVEN	45			
BPTC OVEN	.45			
BAT VOLTAGE	24.9			
ELEX VOLTAGE	28.0			
ELEC CURRENT	.17			
CHGR CURRENT	.07			

POST- INSTALLATION

(1, 2)

5

.

-3

92 . 2

HEALY SASTER

BGM-3 PLATFORM TESTS

28 FEB 08

Sensor Subsys.	S/N	222
C.P.S.	S/N	325
Platform	S/N	325

ZERO DAMP period (SPEC: 533 SEC +/- 5)

ROLL (R49)			PITCH	(R65)
1930Z	532	_sec. 0 ~	535	sec./945-2
	1	_sec.		_sec.
		sec.		_sec.

TILT TEST (SPEC: +/- 0.7 MRAD)

		ROLL (R41)	PITCH (R56)
1843	Z NOMINAL 97	9724.92	
	POS	23.82 mgal.	24.03 mgal. 18592
	NEG	24.16 mgal.	23.92 mgal.
	.36 (POS - NEG)- .32	115 mrad.u	.039 mrad
	Adjustments	NONE	NONE OF
	NOMINAL		
	POS	mgal.	mgal.
	NEG	mgal.	mgal.
	.36 (POS - NEG)	mrad	mrad
	Adjustments		
	NOMINAL		
	POS	mgal.	mgal.
	NEG	mgal.	mgal.
	.36 (POS - NEG)	mrad	mrad
	Adjustments		
	NOMINAL		,
	POS	mgal.	mgal.
	NEG	mgal.	mgal.
	.36 (POS - NEG)	mrad	mrad
	Adjustments		
	NOMINAL		
	POS	mgal.	mgal.
	NEG	mgal.	mgal.
	.36 (POS - NEG)	mrad	mrad
	Adjustments		
	NOMINAL		

BASE CALIBRATION READINGS				
BOM SIN 222/HOLY	SUDVODS.	10010		
SHID. HSALV	SURVOPS:	ACC NO:		
PORTS SERTZIE UIA	SURVOPS DATES:	TO:		
PORTS: Scherce, wh	10:	· · · · · · · · · · · · · · · · · · ·		
DEPARTURE E	BASE CALIBRATION READINGS			
DATE: 29 FEB OS LD. OG	D TIME GMT: 1700 TO:	COD MEAN 1730		
STA#:		MEAN. 1730		
STA NAME PIED 36	STA CRAV @ DED I EVEL	96077825 4040		
I TECOU	BIED STA UCT 3/1 × 604 -	-160720:33 MGALS		
	PIEK STA HG1_7.4_X .094 +	MGALS		
ST. 4949001	BASE g @ WATER LEVEL	- 480729.05 MGALS		
S.F.: 7.144006	BGM OBS GRAV	460729.26 MGALS		
CORR. BIAS : 056740.23	OBS g – BASE g	+0.2 MGALS		
DRIFT CORR. ENTERED: N/A	BASE CALIBRATION READING	s		
DATE: LD:	TIME GMT: TO:	MEAN		
STA #	10;10	MEAN:		
STA NAME				
51A. NAME.	_ STA GRAV @ PIER LEVEL	MGALS		
	PIER STA HGTX .094 -	MGALS		
	BASE g @ WATER LEVEL	MGALS		
S.F.:	BGM OBS GRAV	MGALS		
CORR. BIAS:	OBS g – BASE g	MGALS		
LAND METER NO.				
DEPARTURE J. D.: TIME GN	T: VALUE: C.I). = MGALS		
ARRIVAL J. D.: TIME GN	fT:VALUE:C.E). = MGALS		
	DIFFEREN	CE: MGALS		
ST	A.GRAV @ PIER LEVEL DIFFEREN	CE: MGALS		
	MIST	TE: MGALS		
BCR BY:	CHECKED B	Y:		

Climate Control Chambers Sensors

It is unknown what Chamber each of these sensors is associated with. The sensors are installed in a manner that makes inspecting the serial numbers difficult. At this time it was decided not to mess with the sensors since they are working.

Serial # CPABUDG

 Sensatronics, LLC
 20A Dunklee Road, Bow, NH 03304

 Fax: (603) 224-2401
 Phone: (603) 224-0167

 Email: sales@sensatronics.com
 www.sensatronics.com

Using Technology For Environmental Tracking

NIST report for probe CPABUDG

Test date:	9/11/2007		Tester:	Shawn Bouchard
Test result PASS			Standard (N	NPAACER) traceable to N.I.S.T., avail. on req.
Test environment:	Stirred liquid	d bath	NPAACER	calibration date: 9/27/2005
	1		NPAACER	due for recalibration: 9/27/2008
Acceptable accuracy	is +- 0.5 F fr	om -20 to 120	F, +- 1.5F fro	rom -40 to -20 and 120
to 140.				
Target (NPAACER)	CPABUDG	Error		
3.3	3.2	-0.1		
42.1	42.4	0.3		
72.5	72.6	0.1		
104.7	104.8	0.1		
136.4	136.7	0.3	والمراجع والمحافظ والمحافظ والمحافظ والمحافيات	a an
	Signature:	Shaw	n Tou	whare
	a second second		\bigcirc	

Equipment used: Sensatronics precision probe serial # NPAACER

Note: Precision probes are not a standard Sensatronics product and are for internal use only. Their analog accuracy is 0.05 F, and the digital conversion equipment used is 10 times as precise as standard Sensatronics Model E/Cryo/EM1 products.

 Sensatronics, LLC
 20A Dunklee Road, Bow, NH 03304

 Fax: (603) 224-2401
 Phone: (603) 224-0167

 Email: sales@sensatronics.com
 www.sensatronics.com

Using Technology For Environmental Tracking

NIST report for probe CPABUDI

Test date:	9/11/2007		Tester:	Shawn Bouchard
Test result PASS			Standard (N	IPAACER) traceable to N.I.S.T., avail. on req.
Test environment:	Stirred liquid	d bath	NPAACER	calibration date: 9/27/2005
			NPAACER	due for recalibration: 9/27/2008
Acceptable accuracy	is +- 0.5 F fr	om -20 to 120	F, +- 1.5F fr	om -40 to -20 and 120
to 140.				
Target (NPAACER)	CPABUDI	Error		
3.3	3.0	-0.3	1	
42.1	42.1	0.0		
72.5	72.4	-0.1	1	
104.7	104.5	-0.2	}	
136.4	136.6	₁ 0.2		- And a second se
	Ι	nll	-	P()
	Signature:	Shaun	Douch	and
	The second s	~ (The second se

Equipment used: Sensatronics precision probe serial # NPAACER

Note: Precision probes are not a standard Sensatronics product and are for internal use only. Their analog accuracy is 0.05 F, and the digital conversion equipment used is 10 times as precise as standard Sensatronics Model E/Cryo/EM1 products.

Sensatronics, LLC 20A Dunklee Road, Bow, 11H 03304 Fax: (603) 224-2401 Phone: (603) 224-0167 Email: sales@sensatronics.com www.sensatronics.com

Using Technology For Environmental Tracking

NIST report for unit EM3I9H0T155

Test time: 9/11/	07 5:57 AM		Tester:	Shawn Bou	uchard			
Test result: PASS			Standard (NC3G0C0T	101) tracea	ble to N.I.S	T., avail. or	n rea.
Test environment:	21C +- 3C		NC3G0C0	T101 calibra	ation date: 4	/15/2005	,	
	40% +- 20%	% RH	NC3G0C0T101 due for recalibration: 4/15/2006					
Acceptable accuracy f	Acceptable accuracy for all ports: +- 0.3 degrees F from -20 to 120,							
+- 1.5 degrees F from	-40 to -20 a	nd from 12	0 to 140, +-	0.5 %RH				
Target temp	Group 1	Error	Group 2	Error	Group 3	Error	Group 4	Error
131.3	131.0	-0.3	131.4	0.1	131.5	0.2	131.7	0.4
117.4	117.3	-0.1	117.6	0.2	117.6	0.2	117.8	0.4
96.8	96.8	0.0	96.9	0.1	97.0	0.2	97.1	0.3
62.1	62.0	-0.1	62.1	0.0	62.1	0.0	62.2	0.1
29.4	29.4	0.0	29.4	0.0	29.4	0.0	29.4	0.0
-1.1	-1.1	0.0	-1.2	-0.1	-1.2	-0.1	-1.1	0.0
-16.8	-16.9	-0.1	-16.9	-0.1	-17.0	-0.2	-17.0	-0.2
-34.7	-34.7	0.0	-34.7	0.0	-34.7	0.0	-34.7	0.0
Target humidity								
74.8	75.2	0.4	75.0	0.2	75.0	0.2	75.0	0.2
		and manufactures and a second second						

Thaman Bouchare Signature:

Sensatronics, LLC 20A Dunklee Road, Bow, NH 03304 Fax: (603) 224-2401 Phone: (603) 224-0167 Email: sales@sensatronics.com www.sensatronics.com

Using Technology For Environmental Tracking

NIST report for unit EM4I9H0T155

Test time: 9/11/	07 5:57 AM		Tester:	Shawn Bou	uchard				
Test result: PASS			Standard (NC3G0C0T	101) tracea	ble to N.I.S.	T., avail. or	n req.	
Test environment:	21C +- 3C		NC3G0C0	T101 calibra	ation date: 4	/15/2005			
	40% +- 209	% RH	NC3G0C0	T101 due fo	r recalibrati	on: 4/15/200	06		
Acceptable accuracy f	or all ports:	+- 0.3 degre	ees F from ·	-20 to 120,					
+- 1.5 degrees F from	-40 to -20 a	nd from 120	0 to 140, +-	0.5 %RH					
Target temp	Group 1	Error	Group 2	Error	Group 3	Error	Group 4	Error	
131.3	131.0	-0.3	131.4	0.1	131.5	0.2	131.7	0.4	
117.4	117.3	-0.1	117.6	0.2	117.6	0.2	117.8	0.4	
96.8	96.8	0.0	96.9	0.1	97.0	0.2	97.1	0.3	
62.1	62.0	-0.1	62.1	0.0	62.1	0.0	62.2	0.1	
29.4	29.4	0.0	29.4	0.0	29.4	0.0	29.4	0.0	
-1.1	-1.1	0.0	-1.2	-0.1	-1.2	-0.1	-1.1	0.0	
-16.8	-16.9	-0.1	-16.9	-0.1	-17.0	-0.2	-17.0	-0.2	
-34.7	-34.7	0.0	-34.7	0.0	-34.7	0.0	-34.7	0.0	
Target humidity									
74.8	75.2	0.4	75.0	0.2	75.0	0.2	75.0	0.2	
				والمحافظ المراجعة والمحافظ والمحافظ المحافظ والمحافظ والمحا	and the second second second second second				

Signature: Thaun Boucharre

Serial # RT1I6I1T101

Sensatronics, LLC 20A Durklee Road, Bow, NH 03304 Fax: (603) 224-2401 Phone: (603) 224-0167 Email: sales@sensatronics.com www.sensatronics.com

Using Technology For Environmental Tracking

NIST report for probe

RT11611T101

Test date:		9/25/2007		Tester:	SHAWN BOUCHARD				
Test result:	PASS								
Test enviror	nment:	Environmental	chamber						
				Standard (A4230093) traceable to N.I.S.T., avail. on req.					
Acceptable	ceptable accuracy for all ports: +- 0.5 degrees F from -20 to 120 @ 40% RH,								
+- 1.5 degre	ees F from -4	0 to 140							
+- 3% RH (full range)								
Target (°F)	(A4230093)	RT1I6I1T101	Error	Target (A4230093)	RT11611T101	Error			
	74.3	74	-0.3	13.6%	13.6%	0.0%			
	72.4	72.2	-0.2	43.9%	46.0%	2.1%			
	73.5	73.9	0.4	67.8%	67.4%	-0.4%			

hum Signature:

Company	Model	Serial	Accuracy	Cal date	Due for recal
Vaisala	HMI41	A4230093	-0.03	01/29/07	01/29/08

Serial # RT3I5I1T101

Sensatronics, LLC 2011 Clunkies Road, Bow, NH 03304 Fax: (603) 224-2401 Phone: (603) 224-0167 Email: sales@sensatronics.com www.sensatronics.com

Using Technology For Environmental Tracking

NIST report for probe

RT3I5I1T101

Test date:		9/25/2007	1	Tester:	SHAWN BOUCH				
Test result:	PASS					·····			
Test enviror	nment:	Environmental	chamber						
				Standard (A4230093) traceable to N.I.S.T., avail. on req.					
Acceptable	cceptable accuracy for all ports: +- 0.5 degrees F from -20 to 120 @ 40% RH,								
+- 1.5 degre	ees F from -4	0 to 140							
+- 3% RH ((full range)								
Target (°F)	(A4230093)	RT3I5I1T101	Error	Target (A4230093)	RT3I5I1T101 E	Error			
	74.3	74.1	-0.2	13.6%	13.3%	-0.3%			
	72.4	72.7	0.3	43.9%	45.0%	1.1%			
	73.5	73.7	0.2	67.8%	66.8%	-1.0%			

Signature:

Company	Model	Serial	Accuracy	Cal date	Due for recal
Vaisala	HMI41	A4230093	-0.03	01/29/07	01/29/08

Serial # RT6I4I1T101

Sensatronics, LLC 20A Dunklee Road, Bow, NH 03304 Fax: (603) 224-2401 Phone: (603) 224-0167 Email: sales@sensatronics.com www.sensatronics.com

Using Technology For Environmental Tracking

NIST report for probe

RT6I4I1T101

Test date:		9/25/2007		Tester:	ster: SHAWN BOUCHARD				
Test result:	PASS								
Test enviror	nment:	Environmental	chamber						
				Standard (A423009	.I.S.T., ava	iil. on req.			
Acceptable	cceptable accuracy for all ports: +- 0.5 degrees F from -20 to 120 @ 40% RH,								
+- 1.5 degre	ees F from -4	0 to 140							
+- 3% RH (full range)								
Target (°F)	(A4230093)	RT6I4I1T101	Error	Target (A4230093)	RT6I4I1T101	Error			
	74.3	74.6	0.3	13.6%	13.7%	0.1%			
	72.4	72.6	0.2	43.9%	45.9%	2.0%			
	73.5	73.2	-0.3	67.8%	68.9%	1.1%			

Sauchone Signature:

Company	Model	Serial	Accuracy	Cal date	Due for recal
Vaisala	HMI41	A4230093	-0.03	01/29/07	01/29/08

 Sensatronics, LLC
 20A Dunklee Road, Bow, NH 03304

 Fax: (603) 224-2401
 Phone: (603) 224-0167

 Email: sales@sensatronics.com
 www.sensatronics.com

Using Technology For Environmental Tracking

NIST report for probe

RT6I5I1T101

Test date:		9/25/2007 Tester: SHAWN BOUCHARD						
Test result:	PASS							
Test enviror	nment:	Environmental	chamber					
	Standard (A4230093) traceable to N.I.S.T., avail.						ail. on req.	
Acceptable	cceptable accuracy for all ports: +- 0.5 degrees F from -20 to 120 @ 40% RH,							
+- 1.5 degre	ees F from -4	0 to 140						
+- 3% RH (full range)							
Target (°F)	(A4230093)	RT6I5I1T101	Error	Target (A4230093)	RT6I5I1T101	Error		
	74.3	74.5	0.2	13.6%	13.6%	0.0%		
	72.4	72.1	-0.3	43.9%	45.7%	1.8%		
	73.5	73.9	0.4	67.8%	69.3%	1.5%		

Signature:

Company	Model	Serial	Accuracy	Cal date	Due for recal
Vaisala	HMI41	A4230093	-0.03	01/29/07	01/29/08

Instrument Locations on the Healy

Layout plot of instrument locations

Page 80 of 83

Table of Survey measurements

Conso	lidated Surv	vey Data				
	Elements of	of:				
		Avondale Survey				
		Westlake Survey				
	-	Lamont Survey				
	All Measu	rements in <u>Meters</u> rela	tive to MRP unless otherv	wise stated		
	-					
	X = fore &	aft with + foreward		· · · · ·		
	Y = port &	z starboard with + to s	tarboard			
	Z= vertica	l with + upwards				
				Х	Y	Z
<u>Item</u>	<u>Survey</u>	<u>Description</u>		<u>North</u>	<u>East</u>	<u>Elevation</u>
1	Avondale	MRP	See discussion Westlake Final Report	34.30	0.00	9.15
2	Westlake	MRP	by Definition	0.00	0.00	0.00
3	Westlake	Seabeam 2112				
	-	Transverse Array	Centerline	-7.679	0.030	9.242
	-	Longitudinal Array	Centerline	-4.386	0.711	9.238
4	Westlake	Transducers				
	-	Starboard - Forward	to Aft			
·	-	Transducer -	Bathy 2000 3.5 kHz	-10.252	1.362	9.243
	-	Transducer -	Bathy 1500 34 kHz *	-11.866	1.559	9.245
	-	Transducer -	Doppler Speed Log	-12.168	0.414	9.245
	-	Transducer -	Spare Transducer Well	-13.081	1.449	9.237
5	Westlake	Port - Forward to Af	ť			
				1		

HLY0806 Data Synopsis

		Transducer -	VM 150	-9.726	-1.395	9.230
		Transducer -	Ocean Surveyor 75 kHz	-10.819	-1.290	9.230
		Transducer -	Bathy 2000 12 kHz	-11.859	-1.492	9.234
		Transducer -	Spare Transducer Well	-13.078	-1.394	9.235
6	Westlake	Gyros				
		Starboard Gyro	Centerline	4.741	0.207	-19.604
		Port Gyro	Centerline	4.746	-0.207	-19.609
7	Westlake	Antennas				
		REF DWG TBD	Antenna 9-4 * - GPS Antenna (4.1.5)	4.587	-6.622	-24.000
			Antenna 4-6 * - Northstar GPS (4.1.1)	9.374	-4.970	-23.406
			Antenna 4-2 * - Northstar (4.1.2)	9.362	-3.617	-23.451
			P CODE GPS Antenna *	9.368	-2.645	-23.609
			Antenna 4-3 * - Northstar (4.1.4)	9.355	3.638	-23.363
			GLONAS GPS Antenna *	9.379	5.066	-23.515
			Antenna base (4A)	-53.872	-0.011	-22.025
			Antenna base (4B)	-49.758	0.038	-22.010
			Antenna base (4C)	-49.785	1.629	-22.020
			Antenna base (4D)	-49.771	-1.546	-22.008
			Trimble Centurion**	-52.726	-1.717	-21.113
			Time Server **	-52.671	1.838	-21.115
8	Westlake	Vertical Ref				
			MRV-M-MV -			
	·		Measured at Top of mounting bracket			

			Center (mid-point) - calculated	-2.100	0.291	-0.775
			TSS 333B - Marine Motion Sensor -			
			scribe atop mounting plate			
			Center of TSS 333B	1.210	0.329	-0.013
9	LDEO	POS/MV				
		From	ТО	X	Y	Ζ
		IMU	Port Antenna (Master)	-2.9719	-3.9140	-5.5310
		MRP	IMU	-49.5710	1.7110	-16.7990
		MRP	Transmit array	-4.3860	0.7110	9.2380
		MRP	Port Antenna (Master)	-52.5429	-2.2030	-22.3300
10	Westlake Raw	Fan Tail				
			Aft/Port	-86.737	-4.906	-3.617
			Forward/Port	-77.600	-4.881	-3.589
			Forward/Starboard	-72.590	6.676	-3.653