

Data Synopsis for HLY0902

April 03 – May 12, 2009 Dutch Harbor to Dutch Harbor

Chief Scientist- Carin Ashjian Co-Chief Scientist- Evelyn Lessard Healy Captain- Captain Frederick Sommer

Photo by Chris Linder, Woods Hole Oceanographic Institution

Prepared by: Tom Bolmer, David Forcucci, David Hassilev, Steve Roberts, & Dale Chayes

Table of Contents

Project Summary	3
Cruise Track	4
Personnel	5
HLY0902 Science Party Personnel	5
Ship's Crew	8
Science Components and their Major Sampling Activities	10
Projects and Descriptions	
Table of Projects and Members	
Distribution Contents	14
Introduction to Data	
SCS Data Overview	
LDS Data Overview:	
Directories:	15
Contents by directory:	21
Merged Data	23
LDEO Averaged One Minute Data File	
Notes	
File Formats of Data Collected Underway	25
APPENDIX:	
Acquisition Problems and Events	
Comments that might help when using the data	
Ship Temperature, Pressure and Humidity Sensor Corrections Applied in 2008 and 2009	
Cruise Weather Summary	34
Cruise TSG Summary	35
Underway Sensors and Calibrations	
Sensors and Calibrations	
HLY0902 Shipboard Sensors	
HLY0902- CTD Sensors	
Software Versions of some Recording programs	
HLY0902 Sensor Calculations	
Instrument Locations on the Healy	
Layout plot of instrument locations	
Table of Survey measurements	

Project Summary HLY0902 – Bering Ecosystem Study and Bering Sea Integrated Research Program Spring Cruise

The overall objective of this cruise is to describe the lower trophic levels of the Bering Sea ecosystem under varying conditions of ice cover in order to better understand ecosystem response to ongoing changes in climate, ice cover (extent of ice cover and timing of ice formation and retreat), and accompanying oceanographic conditions. Twelve projects are supported on cruise HLY0902 on board the USCGC Healy in the Bering Sea during April 3 – May 12, 2009. Sampling was conducted across three major east-west transects of the shelf, along the 70 m isobath from ~70 miles south of St. Lawrence Island to ~200 m north of Dutch Harbor, AK, and in a region of the middle shelf where an ice-edge bloom was developing. This scheme permitted sampling of different regions of the shelf under varying conditions of ice cover. A range of sampling activities was supported including water column sampling using CTD/Niskens, plankton nets, floating sediment traps, and a Video Plankton Recorder, benthic sampling using Van Veen Grabs and Multicore, and on-ice sampling both directly from the ship via personnel deployment on the ice and from helicopter landings on more remote ice floes. Underway sampling of basic hydrographic, meteorological, and bathymetric parameters also was conducted. An IPY media team was aboard to document the cruise through photographs and text and to facilitate communication with museum groups. A grade school teacher participated in the cruise through the ARCUS Polar Trec program.

Cruise Track

Personnel

HLY0902 Science Party Personnel

Name	Institution	Position	Phone	Email	Date	Date	Nati	PI
					on	off	onal	Group
							ity	
Carin	WHOI	Chief	508-289-	cashjian@whoi.edu	4/1	5/12	US	Ashjian
Ashjian		Scientist	3457				А	· ·
Philip	WHOI	Technician	508-289-	alatalo@whoi.edu	4/1	5/12	US	Ashjian
Alatalo			2980				А	
Julie	OSU	Technician	541-737-	jarringt@coas.oregonsta	4/1	5/12	US	Sherr
Arrington			4655	<u>te.edu</u>			А	
Doug Bell	BIOS	Technician	441-297-	doug.bell@bios.edu	4/1	5/13	US	Lomas
			1880				А	
Megan	U of Wash	Technician	206-543-	megdawg@u.washingto	4/1	5/12	US	Lessard
Bernhardt			9658	<u>n.edu</u>			А	
Didier	LDEO	Post-Doc	845-365-	burdloff@ldeo.columbia	4/1	5/13	Fra	Sambrott
Burdloff			8619	<u>.edu</u>			nce	0
Heloise	U of	Technician	907-474-	heloisec@ims.uaf.edu	4/1	5/12	Fra	Iken
Chenelot	Alaska		7074				nce	
Ned	NOAA-	Scientist	206-526-	Edward.D.Cokelet@noa	4/1	5/13	US	Hydro
Cokelet	PMEL		6820	<u>a.gov</u>			А	_
Jessica	UAF	Grad	813-714-	j.cross@sfos.uaf.edu	4/1	5/13	US	Hydro
Cross		Student	9923				А	
Virginia	U of Wash	Grad	206-543-	vlengel@u.washington.e	4/1	5/12	US	Lessard
Engel		Student	8795	<u>du</u>			А	
Maggie	Western	Grad	360-650-	maggiesch@charter.net	4/1	5/12	US	Shull
Esch	Wash U	Student	3690				А	
Helen	WHOI	NSF IPY	301-580-	fieldsh@gmail.com	4/1	5/12	US	Linder
Fields		Outreach	9018				А	
Celia	URI	Technician	407-874-	cgelfman@gso.uri.edu	4/1	5/12	US	Campbel
Gelfman			6692				А	1
Rodger	Univ. Md	Scientist	410-326-	harvey@cbl.umces.edu	4/1	5/12	US	Harvey
Harvey			7206				А	
David	ESU	Network	206-217-	david.hassilev@uscg.mi	3/4	5/12	US	David
Hassilev		Tech	6592	<u>1</u>			А	Hassilev
Scott Hiller	SIO	CTD	858-534-	shiller@ucsd.edu	3/10	5/12	US	Scripps
Scott miler	510	Technician	7383	<u>simila dest.edu</u>	5/10	5/12	A	Senpps
Katrin Iken	UAF	Scientist	307-474-	iken@ims uaf edu	4/1	5/12	Ger	Iken
	0111		5192		., 1	0/12	man	
			•				V	
Nancy	U. Wash /	Scientist/Hy	206-526-	nancy.kachel@noaa.gov	4/1	5/13	US	Hydro
Kachel	JISAO	dro Team	6746				А	5
		Leader						
David	NOAA-	Technician	206-526-	dave.kachel@noaa.gov	4/1	5/13	US	Hydro
Kachel	PMEL		6195				А	-

Name	Institution	Position	Phone	Email	Date	Date	Nati	PI
					on	off	onal	Group
							ity	
Roger Kelly	URL-GSO	Technician	401-874-	rokelly@gso.uri.edu	4/1	5/13	US	Moran
Roger Kerry	011-050	reenneran	6273	<u>Iokeny@gso.un.edu</u>	7/1	5/15	Δ	Wioran
Chad	OSU	Technician	206-724-	cklinesteker@gmail.co	4/1	5/13	US	OSU -
Klinesteker	000	reenneidii	8149	m	7/1	5/15	A	corer
Termesterer			0117	<u> </u>			1	00101
Elizabeth	USFWS	Observer	907-786-	elizabeth_labunski@fws	4/1	5/12	US	Kuletz
Labunski			3865	<u>.gov</u>			A	
Evelyn	U of Wash	Scientist	206-543-	elessard@u.washington.	4/1	5/12	US	Lessard
Lessard			8/95	edu		5/10	A	T · · 1
Chris	WHOI	NSF IPY	206-708-	<u>clinder(a)whoi.edu</u>	4/1	5/12	US	Linder
Linder		Outreach	7488				А	
Michael	BIOS	Scientist	441-297-	michael.lomas@bios.ed	4/1	5/13	US	Lomas
Lomas			1880	<u>u</u>			А	
Chip	RSMAS/	Science	954-699-	cmaxwell@rsmas.miami	4/1	5/12	US	Chayes
Maxwell	U.Miami	Support	7588	<u>.edu</u>			А	-
Calvin	Contractor	Scientist	206-526-	Calvin.W.Mordy@noaa.	4/1	5/13	US	Hydro
Mordy	Aquatic		6870	gov			А	-
-	Solutions			-				
Brandi	SIO	CTD	858-534-	murphyb@ucsd.edu	4/1	5/13	US	Scripps
Murphy		Technician	2434				А	
Daniel	UAF	Technician	907-474-	naber@ims.uaf.edu	4/1	5/13	US	Hydro
Naber			7747				А	
Alexei	U of	Scientist	907-224-	ftaip1@uaf.edu	4/1	5/13	Rus	Pinchuk
Pinchuk	Alaska		4313				sia	
Rachel	Univ.	Technician	410-386-	pleuthner@cbl.umces.ed	4/1	5/12	US	Harvey
Pleuthner	Maryland		7261	<u>u</u>			А	
Marty	USFWS	Observer	310-455-	mtreedy@verizon.net	4/1	5/12	US	Kuletz
Reedy			3236				А	
Steve	UCAR	Science	303-497-	sroberts@ucar.edu	3/4	5/23	US	Chayes
Roberts		Support	2637				А	
Celia Ross	OSU	Technician	541-737-	cross@coas.oregonstate.	4/1	5/12	US	Sherr
			8273	edu			А	
Janet	NCAR	Technician	303-497-	anstett@ucar.edu	4/1	5/12	US	Moore
Scannell			1093				А	
Tracy Shaw	Hatfield	Technician	541-867-	tracy.shaw@noaa.gov	4/1	5/12	US	Lessard
	Marine		0306				А	
	Center,							
	NOAA							
David Shull	Western	Scientist	360-650-	david.shull@wwu.edu	4/1	5/12	US	Shull
	Wash U		3690				А	
Kris	LDEO	Technician	845-365-	kswenson@ldeo.columb	4/1	5/13	US	Sambrott
Swenson			8780	<u>ia.edu</u>			А	0
Donna Van	URI/Cons	Technician	401-294-	dvankeur@gso.uri.edu	4/1	5/12	US	Campbel
Keuren	ultant		3836				А	1
Jared	UAF	Grad	907-474-	j.weems@sfos.uaf.edu	3/10	5/13	US	Iken
Weems		Student	7074				А	

Name	Institution	Position	Phone	Email	Date on	Date off	Nati onal ity	PI Group
Simone Welch	Oyster Bilingual Elementar y School	Polar Trec Teacher	202-425- 9527	simonewelch@gmail.co m	4/1	5/13	US A	PolarTre c
Heather Whitney	U of Wash	Grad Student	206-543- 7512	hwhitney@u.washingto n.edu	4/1	5/13	US A	Devol

Ship's Crew

Sommer, Frederick CAPT Bateman, Dale CDR Stewart, Jeffrey CDR Petrusa, Douglas LCDR Adams, Ivan ET3 Alley, Tysin FS3 Angelo, James YNC Appleberry, Jason LT Ayers, Silas LT Baldwin, Robin FS3 Bartlett, Charles MST1 Beasley, Corey HSCS Beebe, Brandon FN Bender, Zachary LTJG Berringer, Mike ETC Braddock, Amelia R. SN Brogan, John MKC Brown, Betty MK3 Buford, Aimee BM2 Chaidez, Marshal MST3 Coates, Brittney FN Cooler, Jesse SA Coombe, Jeffrey MK2 Dabe, Jeffrey IT1 Davis, Jonathon ET2 **Dolton**, Peter ENS Dowd, Robert SN Dull, Steven FS2 Dunning, Lara BM2 Fernandez, Chelsey SN Ford, Angela SN Galvez, Oscar R. LT

Glenzer, William BM1 Gray, Deidre SN Griffin, Bobby SK2 Hamilton, H. Mark FS3 Harbinsky, Mark ET2 Harris, Daniel SK1 Howard, Daniel DC3 Huneycutt, Gaines BM1 Hurtado, Daniell EM1 Imgarten, Christopher DC1 Irwin, Paul EM2 Jacobs, Bryson LTJG Jones, Greg MKCS Kidd, Wayne BMC Kimmel, Patrick BM3 Kruger, Thomas MST3 Ladd, Donald EM2 Laisure, Jeremy SK2 Lambert, Douglas MKC Layman, Rich MST1 Liebrecht, Brian ET1 Lyons, Sean R CWO3 Manangan, Sorjen OSC Marsden, George DCC McNally, Terence SK1 Merten, James BM3 Miller, Valerie CWO2 Miozzi, Michael FN Murphy, Nicholas MK1 Murray, Justin SN Myatt, Lisa ENS Olson, James EM3

O'Sullivan, Brandon MK2 Passalacqua, Joseph ETCM Podhora, Curtis EMCM Powell, Gregory ET3 Quichocho, Robert MK1 Redd, Davion DC2 Rieg, Mark MSTC Rodermund, Michael, SA Rose, John CWO Roy, Evan BM3 Rudibaugh, Kenneth MK1 Schendorf, Tara ENS Shaffer, Hans EM1 Siciak, Anthony MK3 Smith, Corey MK2 Starling, Wendy MK2 Stein, Kelsey FN Swanson, Shawn ET1 Thomas, Tasha LTJG Von Kauffmann, Daniel IT1 Whiting, Allan, MK1 Williams, Tony FSCS Wilson, Thomas BMCM Yeckley, Andy BM2 Zitting, Arrene FS1

Science Components and their Major Sampling Activities

Projects and Descriptions

BEST: Sea Ice Algae, a Major Food Source for Herbivorous Plankton and Benthos in the Eastern Bering Sea (NSF ARC-0732767)

PIs: Rolf Gradinger, Bodil Bluhm, Katrin Iken (UAF)

Cruise Participants: Katrin Iken, Jared Weems, Heloise Chenelot

Abundance, biomass, community composition and productivity of sea ice algae and phytoplankton. Salinity, temperature, and nutrient concentrations in ice cores and under-ice water, ice thickness, snow cover and light regime. Sedimenting material, stable isotope ratios (d¹³C, d¹⁵N) and algal community composition. On-ice sampling with ice augers, ice-tethered sub-ice sediment traps, plankton nets, benthic grabs. Occasional small boat.

BEST: Mesozooplankton-microbial food web interactions in a climatically changing sea ice environment (NSF ARC-0732301, -0732362, -0732382)

PIs: Evelyn Sherr and Barry Sherr (OSU), Robert Campbell (URI), Carin Ashjian (WHOI)

Cruise Participants: Carin Ashjian, Celia Gelfman, Celia Ross, Julie Arrington, Donna van Keuren

Mesozooplanton/microzooplankton grazing rates and grazing impacts; high resolution vertical and horizontal distribution of plankton from Video Plankton Recorder. Plankton nets, CTD, Video Plankton Recorder

BEST: A Service Proposal to Examine Impacts of Sea-ice on The Hydrographic Structure and Nutrients Over the Eastern Bering Sea Shelf (NSF ARC-0732430, -0732640)

PIs: Whitledge (UAF), Sonnerup (U. Washington), (Stabeno (NOAA))

Cruise Participants: Calvin Mordy, Jessica Cross, Daniel Naber, Nancy Kachel, David Kachel, Ned Cokelet

Hydrography, nutrients, and chlorophyll. CTD sampling.

BEST: A service proposal to examine impacts of sea-ice on the distribution of chlorophyll-a over the eastern Bering Sea shelf. (NSF ARC-0813985)

PIs: Rolf Sonnerup (UW), T. Whitledge (UAF)

Cruise Participants: Calvin Mordy, Jessica Cross, Daniel Naber, Nancy Kachel, David Kachel, Ned Cokelet

BEST: The Trophic Role of Euphausiids in the eastern Bering Sea: Ecosystem Responses to Changing Sea-ice Conditions (NSF ARC-0732389, -0732667)

PIs: Evelyn Lessard (UW), Rodger Harvey (U Maryland)

Cruise Participants: Evelyn Lessard, Rodger Harvey, Tracy Shaw, Rachel Pleuthner, Megan Bernhardt, Virginia Endel

Age structure and diet history of important euphausids; euphausiid grazing rates and growth and trophic lipid markers. CTD, plankton nets, on ice sampling.

BEST: Nitrogen supply for new production and its relation to climatic conditions on the eastern Bering Sea Shelf. NSF ARC-0612427, -0612198

PIs: Raymond Sambrotto (LDEO-Columbia), Daniel Sigman (Princeton)

Cruise Participants: Didier Burdloff, Kris Swenson

New (nitrate) and regenerated nitrogen production; nitrogen isotope ratios. CTD.

BEST: Denitrification and global change in Bering Sea shelf sediments (NSF ARC-0612436, -0612380)

PIs: Allan Devol (U. Washington), David Shull (Western Washington U.)

Cruise Participants: David Shull, Heather Whitney, Maggie Esch

Profiles and fluxes of oxygen, nitrate, ammonium, phosphate and silicate in the sediment; measurement of ²²²Rn and ²¹⁰Pb. Benthic coring with multicore; AUV work under ice.

BEST: The Impact of Changes in Sea Ice Extent on Primary Production, Phytoplankton Community Structure, and Export in the eastern Bering Sea (NSF ARC-0732680, -0732359)

PIs: Brad Moran (URI), Mike Lomas (BBIOS)

Cruise Participants: Mike Lomas, Pat Kelly, Doug Bell

Gross and net primary production using traditional ¹⁴C, ¹³C methods, and triple oxygen isotope technique and dissolved oxygen concentrations. Water column fluxes of particulates along the slope. Sinking rates of particulates. CTD and floating sediment traps.

North Pacific Pelagic Seabird Observer Program (NPRB Project 637)

PIs: Kathy Kuletz, David Irons (USFWS)

Cruise Participants: Liz Labunski, Marty Reedy

Seabird abundance and composition relative to oceanography. Visual observations.

Bering Ecosystem Study Data Management Support (NSF ARC-0808853)

PIs: Jim Moore, Greg Stossmeister, Steve Williams (NCAR/EOL)

Cruise Participants: Janet Scannell

Develop an on-line field catalog including project documentation and data browsing capabilities during the cruise. The catalog is continually updated throughout the cruise and is expected to contain: map plots of ship and station locations, ice observation summaries and photos, periodic chief scientist reports, event log, a station summary table, preliminary analyses by onboard scientists, and access to preliminary bottle and CTD data. After the cruise the field catalog will be moved to a more permanent location on EOL's website and sensitive data will be password protected to limit distribution to BEST-BSIERP PIs only. EOL will also provide archival services for all data collected during this cruise.

Assessment of Mesozooplankton Population and Biomass in the Eastern Bering Sea for Spring and Summer of 2008, 2009 and 2010.

PIs: Ken Coyle and Alexei Pinchuk (UAF).

Cruise Participants: Alexei Pinchuk

Determine the mesozooplankton species composition, abundance, and biomass of the eastern Bering Sea during each of two cruises per year for three BEST field seasons using MOCNESS (in open water only) and CalVET plankton nets.

IPY: Collaborative Research: Live from the Poles; A Multimedia Educational Experience. (NSF DRL-0632219)

PI: Chris Linder

Cruise Participants: Chris Linder and Helen Fields

This project brings together polar researchers, science centers and broadcast media reporters to tell the story of polar research expeditions to the general public, teachers and students. A photographer (Linder) and a science writer (Helen Fields) will participate in the cruise. Information will be disseminated via the web and via several scheduled real-time phone patches to audiences at a range of museums including the Smithsonian Natural History Museum and at other media outlets.

POLAR TREC: Participation of teachers in Arctic science field work.

Cruise Participant: Simone Welch

Table of Projects and Members

Project	PIs	Healy Team	Sampling Activities
Sea Ice Algae, a Major Food Source	Rolf Gradinger,	Katrin Iken,	On-ice sampling, vertical nets, Van
for Herbivorous Plankton and	Katrin Iken,	Jared Weems,	Veen grabs, CTD and water
Benthos in the Eastern Bering Sea	Bodil Bluhm	Heloise	sampling, ice sampling by
		Chenelot	helicopter
Mesozooplankton-microbial food	Evelyn Sherr,	Carin Ashjian,	Plankton nets, water from CTD,
web interactions in a climatically	Barry Sherr,	Philip Alatalo,	Video Plankton Recorder
changing sea ice environment	Carin Ashjian,	Celia Gelfman,	
	Robert	Celia Ross,	
	Campbell	Julie Arrington,	
		Donna Van	
		Keuren	
A Service Proposal to Examine	Terry	Nancy Kachel,	CTD sampling, nutrient and
Impacts of Sea-ice on The	Whitledge and	David Kachel,	chlorophyll analysis, oxygen
Hydrographic Structure and	Rolf Sonnerup	Calvin Mordy,	analysis, underway sampling, on-
Nutrients Over the Eastern Bering		Dan Naber, Ned	ice sampling
Sea Shelf		Cokelet, Jessica	
The Trephie Dale of Euphoneiida in	Evalue Laggard	Cross Evolum Loggard	Danga nota CTD and water
the asstern Paring Son: Ecosystem	and Podgor	Podgor Horvov	sompling on ico sompling
Responses to Changing Sealice	Harvey	Tracy Shaw	sampling, on ice sampling
Conditions	Indivey	Megan	
Conditions		Rernhardt	
		Rachel	
		Pleuthner	
		Virginia Engel	
Nitrogen supply for new production	Ravmond	Kris Swenson.	CTD and water sampling, on ice
and its relation to climatic	Sambrotto and	Didier Burdloff	sampling and incubations, small
conditions on the eastern Bering	Daniel Sigman		plankton net, underway water
Sea Shelf	C		sampling
Denitrification and global change in	Allan Devol	David Shull,	Multicore benthic sampling, water
Bering Sea shelf sediments	and David Shull	Heather	sampling from CTD, on ice
		Whitney,	sampling
		Maggie Esch	
The Impact of Changes in Sea Ice	Brad Moran and	Mike Lomas,	CTD and water sampling, on-ice
Extent on Primary Production,	Mike Lomas	Pat Kelly, Doug	sampling, floating sediment traps
Phytoplankton Community		Bell	
Structure, and Export in the eastern			
Bering Sea			
North Pacific Pelagic Seabird	Kathy Kuletz	Liz Labunski,	Seabird and marine mammal
Observer Program	and David Irons	Marty Reedy	observations while underway
Bering Ecosystem Study Data	Jim Moore,	Janet Scannell	Event and data organization, web
Management Support	Greg		serving, and archiving
	Stossmeister,		
	and Steve		
	Williams		

HLY0902	Data	Syno	psis
---------	------	------	------

Project	PIs	Healy Team	Sampling Activities
Assessment of mesozooplankton	Ken Coyle and	Alexei Pinchuk	CalVET nets and MOCNESS
population and biomass in the	Alexei Pinchuk		plankton net sampling system
eastern Bering Sea for spring and			
summer of 2008, 2009, and 2010			
Live from the Poles; A Multimedia	Chris Linder	Chris Linder	Photography, web dissemination of
Educational Experience.		and Helen	information, teleconferences with
		Fields	museums
Polar Trec	ARCUS	Simone Welch	Teacher Participation in Arctic
			research. Daily web journals,
			teleconference with schools.

Distribution Contents

Introduction to Data

The Healy data acquisition systems continuously log data from the instruments used during the cruise. This document describes:

- The structure and organization of the data on the distribution media.
- The format and contents of the data strings.
- Formulas for calculating scaled, calibrated values from logged data.
- Information about the specific instruments in use during the cruise.
- A log of instrumentation issues, adjustments, acquisition problems, and events during the cruise that may affect the data.
- Calibration data for the instruments in use during the cruise.

The data is distributed on a small USB disk drive.

IMPORTANT: Read the section, "Acquisition Problems and Events," for important information that may affect the processing of this data.

There are two logging system on the Healy. The US Coast Guard Seattle Electronic Support Unit (ESU) runs the NOAA/SCS logging system and the LDEO support group runs the Lamont Data System (LDS) logging system. Although this provides some redundancy in logging, LDS is is required to provide precision time-stamping, real-time reformatting, and logging of data that SCS was not designed to support including the sonar systems, web cameras, and gravity meters.

The NOAA-developed Scientific Computer System (SCS) (version 4.2) is a data acquisition, and display system designed for Oceanographic, Atmospheric, and Fisheries research applications and was originally intended to log data from supporting sensors (not the mapping sonar's) on survey launches. It acquires sensor data from shipboard oceanographic, atmospheric, and fisheries sensors and provides this information to scientists in real time via text and graphic displays, while simultaneously logging the data to disk for later analysis. SCS also performs quality checks by monitoring I/O, providing delta/range checks and plotting data after acquisition.

The LDEO Data System (LDS) is derived the logging code originally developed on the R/V Conrad in 1986 and has evolved through use on the Conrad, Ewing, Nathaniel B. Plamer, R/V Gould, six SCICEX submarine cruises and a number of smaller, short field programs since 1987. LDS is the result of significant restructuring of the code base in 2004 and has been data acquisition system on the R/V Langseth since she went into service.

SCS Data Overview

SCS receives all of its data through asynchronous serial (RS-232) connections. In SCS a time tag is added at the beginning of each line of data in the form,

mm/dd/yyyy,hh:mm:ss.sss,[data stream from instrument] where:

Format	Value used
mm	2 digit month of the year
dd	2 digit ay of the year
уууу	4 digit year
hh	2 digit hour of the day
mm	2 digit minute
SS.SSS	seconds

An example string from the Seabeam Centerbeam file is:

04/13/2007,06:49:20.920,\$SBCTR,2007,4,13,06:49:09.437,57.158792,-165.664322,69.15,60*00

All times are reported in UTC. Each file type has it's own NEMA string name (\$SBCTR as an example).

The delimiters that separate fields in the raw data files are commas. Care should be taken when reprocessing the data that the field's separations are clearly understood.

By design, SCS separates different data records from a single serial data stream into different directories. For instance, a GPS receiver may transmit \$GPGGA, \$GPHDT, and \$GPGLL records. In the SCS data architecture, each of these messages will be logged in a different directory.

LDS Data Overview:

LDS receives most of its data through serial ports like SCS and like SCS, prepends a time stamp. Unlike SCS, LDS uses remote nodes to acquire and timestamp data and provide it to the central LDS logger. Data from the two ship's gyrocompasses is handled by a remote node installed on the bridge and data form the two gravity meters is handled by a node in IC/Gyro. Remote nodes are substantively different than terminal servers in that they timestamp the data locally which eliminates the network latency associated with acquiring data through a terminal server and then providing the timestamp later.

An example LDS data record is shown below. The first field is the instrument identifier, the second is a precision time stamp and the remainder is the raw data from the device, in this case, an LDEO iLab BGM-3 gravity meter interface:

bgm222 2008:264:00:00:26.9340 04:025508 00

Directories:

1_Minute_Averaged_Data:	This directory contains one minute averages of many of the the under way
	data types.
data:	This directory contains the data directories below.
SCS_Data:	This directory contains serial data collected by the SCS version 4.2 data
	collection system in different directories. Directory names are labeled by the

	instrument name and string type of the data collected. A description of the
	data contained in this directory is below.
LDS_Data:	This directory contains data collected by the Lamont LDS data collection
	system in different directories. Directory names are labeled by the name of
	the instrument. A description of the data contained in this directory is below.
Raw:	This directory contains raw data as recorded by individual instruments and
	put into different directories. Directory names are labeled by the instrument
	name. A description of the data contained in this directory is below.
Meta_data:	This directory contains documents useful in the post analysis of the data on
	this DVD media set. The data types are separated into different directories.
	A description of these directories is below.
Plots:	This directory contain daily and hourly plots of underway data that were
	generated in LDS.
Ice_observations:	Directories of the Ice Observations taken for the cruise.

1_Minute_Averaged_Data:

HLY0902_distance.csv.gz	Distance along track from port.
HLY0902_Averaged.csv.gz	All the Under way data averaged for 1 minute.
Shapefile	All of the 1 minute under way data averaged at 1 minute spacing in shp,
	shx and dbf GIS files.

data

SCS_Data:

/aft_a_frame	Wire tension, wire out, and wire speed for the Aft A frame winches.
/air_temp_f	Temperature data from the ship temperature snsor on the bridge in Fahrenheit. Data is derived from data from files in the rmyoung_air directory.
/air_temp3a_f	Temperature data from the MET3A sensor on top of the HCO shack in Fahrenheit. Data is derived from data from files in the met3a_sen directory.
/air_temp_bow	Temperature data from the temperature sensor on the Jackstaff in Fahrenheit.
/ashtech_attitude	Attitude in NMEA format from the Ashtech ADU5 GPS receiver.
/ashtech_gga	Position data in NMEA GGA format from the Ashtech ADU5 GPS receiver.
/ashtech_gll	Position data in NMEA GLL format from the Ashtech ADU5 GPS receiver.
/ashtech_hdt	Heading data in NMEA HDT format from the Ashtech ADU5 GPS receiver.
/flomet	Flow meter data just upstream of the TSG and Fluorometer.
/flomet_b	Flow meter data just upstream of the B TSG and Fluorometer. (if this second sensor is installed)
/fluro	Flurometer for the TSG sensor.
/fluro_b	Flurometer for B TSG sensor. (if this second sensor is installed)
/glonass_gga	Position data in NMEA GGA format from the GLONASS GPS receiver.

/glonass_gll	Position data in NMEA GLL format from the GLONASS GPS receiver.		
/gyro_mk27	Heading data in NMEA HDT format from the Sperry MK27 gyro compass.		
/gyro_mk39	Heading data in NMEA HDT format from the Sperry MK39 gyro compass.		
/ibs_waypoints	Waypoints from the Healy's Integrated Bridge Syste.m		
/isus	ISUS Nitrate Sensor small file.		
/isus3v	ISUS Nitrate Sensor 3V full file.		
/knudsen	Depth data in a proprietary PKEL format received from Knudsen 320 B/R serial output.		
/met3a_sen	Meterology data from the top of the Jackstaff.		
/oxygen	Oxygen values from the TSG.		
/oxygen_b	Oxygen values from B TSG. (if this second sensor is installed)		
/pcode_aft_gga	Position data in NMEA GGA format from the Trimble Centurion receiver located in the Computer lab.<		
/pcode_aft_gll	Position data in NMEA GLL format from the Trimble Centurion receiver located in the Computer lab.		
/pcode_aft_vtg	Course and speed over ground in NMEA VTG format from the Trimble Centurion receiver located in the Computer lab.		
/pcode_aft_zda	Time and date data in the NMEA ZDA format. Data retrieved from the Trimble Centurion receiver located in the Computer lab.		
/pcode_bridge_gga	Position data in NMEA GGA format from the Trimble GPS receiver located on the bridge.		
/pcode_bridge_gll	Position data in NMEA GLL format from the Trimble GPS receiver located on the bridge.		
/pcode_bridge_vtg	Course and speed over ground data in NMEA VTG format from the Trimble GPS receiver located on the bridge.		
/posmv_gga	Position data in NMEA GGA format from the POS/MV		
/posmv_gst	Pseudorange error statistics in NMEA GST format from the POS/MV		
/posmv_hdt	Heading data in NMEA HDT format from the POS/MV		
/posmv_pashr	Roll, pitch and heave from POS MV inertial navigation system.		
/posmv_vtg	Course and speed over ground in NMEA VTG format from the POS/MV		
/posmv_zda	Time and date data in NMEA ZDA format from the POS/MV		
/pressure_sen	Pressure sensor in the Uncontaminated Seawater System before the Bio Chem Lab which measures header pressure in PSI.		
/rmyoung_air	Temperature, humidity, air pressure data in NMEA XDR format from the ship RM Young meteorological system near the bridge.		
/rmyportwind	Wind speed and direction data in NMEA WMV format from the ship RM Young weather vane on the port side of the Healy Mast Yard.<		
/rmystbdwind	Wind speed and direction data in NMEA WMV format from the ship RM Young weather vane on the starboard side of the Healy Mast Yard.		
/samos_data	Meterology data for SAMOS.		
/seabeam_center	Center depth data from the Seabeam 2112		
/solar_radiometers	Solar Radiometer data for SW and IW.		
/sperry_speedlog	Ground/water speed data from the Sperry Speed Log.		
/stbd_a_frame	Wire tension, wire out, and wire speed for the starboard A frame winches.		

/surface_par	Photosynthetic Active Radiation volts and Microeinstens/m2 se from the surface par sensor.		
/sv2000	Sound Velocity data from the SV2000 sound velocimeter located in the ADCP BB150 sonar well.		
/temp_incubat	Temperatures from the Incubators.		
/true_wind_port	True wind speed data derived from gyro data and rmyportwind.		
/true_wind_stbd	True wind speed data derived from gyro data and rmystbdwind.		
/tsg	Thermosalinograph and fluorometer data from the TSG instruments in the Bio/Chem Lab.		
/tsg_b	Thermosalinograph and fluorometer data from the B TSG instruments in the Bio/Chem Lab. (if this second sensor is installed)		
/wind_aft	Wind data from the UltraSonic wind sensor on top of the HCO Shack.		
/wind_bow	Wind data from the UltraSonic wind sensor on top of the Jack Staff.		
/wind_mid	Wind data from the UltraSonic wind sensor on the Yard.		

Extra files in the directory SCS_Data:

ACQLOG.LOG	Contains the data as to what occurred with SCS data. It
	shows when data collection was started and stopped.
	Includes startup and shutdown events.
Incidents_YYYYMMDD-TTTTTT.DTM	Contains any incident data, which were triggered in SCS.
	Refer to the SCS documentation for the definition of
	"incidents."
sensor_YYYYMMDD-TTTTTT.scf	Contains the configuration file for data collection as
	configured by SCS.

LDS_Data:

Contains picture files separated by folders named by Year and Day of the Year (YYYYJJJ). The picture files are in 5 minute JPEG format.		
Contains picture files separated by folders named by Year andDay of the Year (YYYYJJJ). The picture files are in 5 minute JPEG format.		
Contains the navigation data sent to the ADCPs.		
Contains the data from the ADU5 GPS.		
Contains the data from the AG GPS.		
Contains Automatic Identification System (AIS) messages as encapsulated VDM sentences.		
Contains the data from the BGM221 Gravimeter.		
Contains the data from the BGM222 Gravimeter.		
Contains the logs of event for different systems.		
Contains the extracted Heading data from the POSMV.		
Contains the data from the MK27 Gyro.		
Contains the data from the MK30 Gyro.		

Page 18 of 44

/posatt	Contains the attitude data from the POSMV GPS.		
/posnav	Contains the navigation data from the POSMV GPS.		
/posreform2sb	Contains the navigation data from the POSMV GPS reformatted for the SeaBeam.		
/sbctr	Contains the center beam data from the SeaBeam.		
/sbsv	Contains the surface sound velocity data for the SeaBeam.		
/seabeam	Contains the data from the SeaBeam.		
/tsg_met	Contains the all data from SIO TSG and Met sensors.		
/SwapPingHLY	Contains ping results for Healy/Louis wireless network(swap) connection. Not currently active.		
/SwapRoute	Contains routing table stats for Healy/Louis wireless network(swap) connection. Not currently active.		
/SwapStatsHLY	Contains Healy wireless stats for Healy/Louis wireless network(swap) connection. Not currently active.		
/SwapStatsLSL	Contains Louis wireless stats for Healy/Louis wireless network(swap) connection. Not currently active.		
/winch_aft	Wire tension, wire out, and wire speed for the Aft A frame winches.		
/winch_stbd	Wire tension, wire out, and wire speed for the Starboard A frame winches.		

Raw:

/adcp150	150 Khz ADCP data.
/adcp75	75 KHz ADCP data.
/ctd	CTD data in directories by Cast number.
/ctd/TSG DATA	AUTOSAL Salinometer TSG comparison data
environmental_sensors	Temperature and Humidity Sensor data for the Climate control chambers
/knudsenraw	Knudsen 320B/R data.
/tsg_met	All the TSG and MET data.
/xbt	Expendable Bathythermograph data.

Images:

Contains satellite imagery in jpeg format

Satellite_Images/dmspData from the Defense Meteorology Satellite Program passes logged by the
Healy's Terascan . Directories are identified by Year, Month, Day
Data from the NOAA weather satellite passes logged by the Healy's Terascan .
Directories are identified by Year, Month, Day

Meta_Data:

/elog	Contains the technical support staff narrative of important events, which occurred both to the network and to individual sensors.	
/Bridge_Logs		
DDMMMYY.doc	The "smooth log" containing events recorded by the bridge watch.	
DDMMMYYWX.xls	Weather log recorded by the watch.	
DDMMMYYNAV.xls	Navigation logs recorded by the watch.	
/Sensor_Formats	Contains html and PDF files documenting the formats of all the files collected under way during the cruise.	
./Systems_Calibrations	All of the calibrations sheets for the underway instruments are here.	
./WHOisWHO	The directory has information about contacts for the Science personnel on this cruise.	

SVP:

Sound speed profiles used for the Seabeam(Not provided for HLY0902)

Plots:

./knudsen_hourly_plots:	Directories of the SIOSEIS plots of the Knudsen 3.5 kHz data are in directories named by year, month, and day. These images are in the png		
	format. There are two plots for each window in time. One is a large sized plot		
	and one is a smaller plot. The files start 10 minutes before the file name and		
	10 minutes after the hour the file is named for. The vertical axes use Two-		
	Way Travel Time. The Speed of Sound used is 1500 m/sec. To get the depth		
	in meters from these plots multiply the time depth by 750.		
./surface_daily_plots	Directories containing daily plots of under way data.		

Ice_observations:

Directories of the Ice Observations taken for the cruise.

Sea_ice_movie:

Quicktime movie of selected satellite images. Also includes the individual images used to generate the movie.

Contents by directory:

SCS Data: CallSign NOAA Data aft a frame air temp3a f air temp f airtemp bow ashtech attitude ashtech gga ashtech gll ashtech hdt flomet flomet b fluro glonass gga glonass gll gyro mk27 gyro mk39 ibs waypoints knudsen met3a sen oxygen pcode aft gga pcode_aft_gll pcode aft vtg pcode_aft_zda pcode bridge gga pcode bridge gll pcode_bridge_vtg posmv gga posmv gst posmv hdt posmv pashr posmv vtg

posmv zda pressure sen rmyoung air rmyportwind rmystbdwind samos data seabeam center sensor 2009*.scf sensor 2009*.xml solar radiometers sperry speedlog stbd a frame surface par surface temp sv2000 temp incubat true wind port true wind stbd tsg wind aft wind bow wind mid Raw: adcp150 adcp75 ctd ctd/TSG DATA environmental sensors knudsenraw tsg xbt **Images:** Satellite Images: dmsp Page 21 of 44

hrpt LDS Data: AloftConnCam FantailCam adcp nav adu5 aggps ais bgm221 bgm222 events hdgextract ibs waypoints mk27 mk39 posatt posnav posnavreform posreform2sb sbctr sbsv seabeam tsg met winch aft winch stbd **SwapPingHLY** SwapRoute SwapStatsHLY SwapStatsLSL Meta Data: Bridge Logs Systems Calibration Data Elog **WHOisWHO**

Sensor_Formats

Plots:

Knudsen_hourly_plots

Surface_daily_plots

SVP:

<u>1 Minute Averaged Data:</u>

Ice observations:

Merged Data

LDEO Averaged One Minute Data File

The data are summarized into an averaged one (1) minute data file by the LDEO technician. This file takes the average value centered on the minute, (30 seconds either side of the whole minute). The averages are calculated from the raw values as they are logged. There has been no quality control done on these files prior to the averaging. Those wishing more accurate and quality controlled values should process the data in the directories described below in the document. See the below NOTE.

HLY0902_Average.csv

6489,2009/04/06 10:45,58.7901313,-168.7344088,12.6,6.9,15.4,52.5,-

1.686, 11.760, 0.1640, 0.105, 0.090, 0.009, 0.00, 1.22, 325.99, 273.48, 273.42, 1.66, 0.13, 99.71, 999.75, 116.25, 4.32, 160.66, 6.68, 117.60, 3.82, 164.25, 6.31, 5.809, 2.148, 11.814, 2, -76, -6, 0, 1, -60, 1, 0, 13.25, 162.1, 7.58, 1.77, 6490, 2009/04/06, 10:46, 58.79, 19917, -168.7336473, 11.2, 6.9, 13.6, 51.5, -

1.686,11.866,0.1676,0.107,0.090,0.009,0.00,1.22,326.29,273.46,273.42,1.66,0.13,99.71,999.75,121.08,3 .99,162.73,6.60,121.34,4.33,161.99,6.93,5.797,2.148,11.918,2,-76,-6,0,1,-60,1,0,13.62,163.3,7.56,1.76 6491,2009/04/06 10:47,58.7938830,-168.7329548,10.5,6.9,12.6,52.2,-

1.686, 11.970, 0.1717, 0.110, 0.090, 0.009, 0.00, 1.22, 325.92, 273.46, 273.42, 1.66, 0.14, 99.71, 999.75, 121.64, 3.62, 162.85, 6.29, 125.20, 3.81, 164.85, 6.63, 5.785, 2.149, 12.021, 2, -77, -6, 0, 1, -60, 1, 0, 12.93, 163.7, 7.54, 1.76

Field	Data	Example	Units
01	ID	6489	sample count
02	date 2009/04/06	10:45	date & time UTC (year/month/day hour:minute)
03	lat	58.7901313	\$INGGA, POSMV Latitude (decimal degrees)
04	lon	-168.7344088	\$INGGA, POSMV Longitude (decimal degrees)
05	cog	12.6	\$INVTG, POSMV Course Over Ground (angular
			distance from 0 (North) clockwise through 360, 1
			minute average)
06	sog	6.9	\$INVTG, POSMV Speed Over Ground (Knots, 1
			minute average
07	heading	15.4	\$PASHR, POSMV ship heading(angular distance
			from 0 (North) clockwise through 360, 1 minute
			average)
08	depth	52.5	\$SBCTR, Seabeam centerbeam depth(meters, 1
			minute average)
09	SST	-1.686	\$PSSTA, SBE3s RemoteTemperature, Sea Chest
			intake (Celsius, 1 minute average)
10	TSG_InTemp	11.760	\$PSTSA, SBE45 Water Temperature (Celsius, 1
			minute average)
11	TSG_Cond	0.1640	\$PSTSA, SBE45 Water Conductivity
			(millisiemens/centimeter, 1 minute average)
12	TSG_Sal	0.105	\$PSTSA, SBE45 Water Salinity (PSU, 1 minute
			average)
13	SCF-FL	0.090	\$PSFLA, Seapoint Fluorometer (Ug/l, 1 minute
			average)
14	SCF-FL-V	0.009	\$PSFLA, Seapoint Fluorometer (Volts, 1 minute
			average)

HLY0902 Data Synopsis

Field	Data	Example	Units
15	tsg flow A	0.00	\$PSFMA, Flowmeter in-line with PSTSGA,
	0		PSOXA, PSFLA (LitersPerMinute, minimum value
			in 1 minute interval)
16	SWR	1.22	\$PSSRA, Short Wave Radiation (W/M^2, 1 minute
			average)
17	LWR	325.99	\$PSSRA, Long Wave Radiation (W/M^2, 1 minute
			average)
18	LWR_Dome_T	273.48	\$PSSRA, LWD Dome Temperature (Deg K, 1
			minute average)
19	LWR_Body_T	273.42	\$PSSRA, LWD Body Temperature (Deg K, 1
			minute average)
20	PAR	1.66	\$PSSPA, Surface PAR (uE/Sec/M^2, 1 minute
			average)
21	JS_Air_Temp	0.13	\$PSATC, Bow Jackstaff Air Temperature (Deg C, 1
			minute average)
22	Bridge_RH	99.71	\$PSMEB, Bridge RM Young Relative Humidity (%,
			1 minute average)
23	Bridge_Baro	999.75	\$PSMEB, Bridge RM Young Barometric Pressure
			(millibars, 1 minute average)
24	JS_WndDirR	116.25	\$PSWDC, Jackstaff Relative wind direction (deg, 1
			minute average)
25	JS_WndSpdR	4.32	\$PSWDC, Jackstaff Relative wind speed (m/s, 1
		1.60.66	minute average)
26	JS_WndDirT	160.66	\$PSWDC, Jackstaff True wind direction (deg, 1
0.7			minute average)
27	JS_WndSpdT	6.68	\$PSWDC, Jackstaff True wind speed (m/s, 1 minute
20		117 (0	average)
28	MM_wndDirR	117.60	SPSWDB, Main Mast Relative wind direction (deg,
20	MM WedgedD	2.02	1 minute average)
29	wiwi_wiaspak	3.82	spswDB, Main Mast Relative wind speed (m/s, 1
20	MM WndDirT	164.25	(dog. 1)
30		104.23	spswDB, Main Mast True wind direction (deg, 1
21	MM WndSndT	6.21	(m/s_1
51		0.51	minute average)
32	SBE Oxy	5 809	SPSOXA SBE-43 Oxygen(ml/l 1 minute average)
33	SBE Oxy Raw	2 148	\$PSOXA_SBE-43_Oxygen(Volts_1_minute average)
3/	SBE_OXY_Rdw	11 81/	\$PSOXA, SBE-43 Oxygen Temperature(Deg C 1
54	SDL_OXY_1	11.014	minute average)
35	WinchAft	2	Aft A-Frame Winch number
36	TensionAft	-76	Aft A-Frame Winch Wire tension(Pounds 1 minute
55		, , , , , , , , , , , , , , , , , , , ,	average)
37	WireOutAft	-6	Aft A-Frame Winch Wire out (Meters 1 minute
		-	average)
38	SpeedAft	0	Aft A-Frame Winch Wire speed(Meters/minute 1
	r		minute average)
39	WinchSbd	1	Starboard A-Frame Winch number
40	TensionSbd	-60	Starboard A-Frame Winch Wire tension(Pounds. 1
			minute average)

HLY0902	Data	Synopsis
---------	------	----------

Field	Data	Example	Units
41	WireOutSbd	1 Starboard A-Frame Winch Wire out (Meters, 1	
			minute average)
42	SpeedSbd	0 Starboard A-Frame Winch Wire	
			speed(Meters/minute, 1 minute average)
43	StbdWndSpdT	13.25	RMYoung True Wind Speed, starboard(Knots, 1
			minute average)
44	StbdWndDirT	162.1 RMYoung True Wind Direction, starboard(angular	
			distance from 0 (North) clockwise through 360, 1
			minute average)
45	OxySat	7.58	Dissolved oxygen (DO) saturation as a funciton of T
			and S (Weiss)(ml/L, 1 minute average)

Notes

It was determined that the TSG was malfunctioning and outputting incorrect values from the beginning of the cruise until it was replaced with a new unit on 04/12/2009 05:15 UTC. TSG parameters (TSG_InTemp,TSG_Cond,TSG_Sal) and those parameters dependent on the TSG (OxySat,AOU) should not be used for this time period.

The Ship's Bridge Barometeric Pressure(Bridge_Baro) and Humidity Sensors (Bridge_RH) were incorrectly adjusted with the wrong sequence of calibration values for the start of the cruise. On 04/28/09 near the end of the day this error was noticed and corrected. The data up to this point from these instruments are not correctly adjusted and are to be treated as suspect. There is a separate report in the associated documentation about this sequence of events.

The Science Seawater System experienced numerous outages for certain sections of the cruise due to ice blockage. This was due to the fact that incubators were drawing more water from the system than it could handle. Affected parameters are TSG_InTemp, TSG_Cond,TSG_Sal, SCF-FL,SCF-FL-V, tsg_flow_A, SBE_Oxy_SBE_Oxy_Raw, SBE_Oxy_T, OxySat and AOU. <u>Use these with caution.</u>

File Formats of Data Collected Underway

The formats of the Under way data files that were collected on this cruise are in a separate document named HLY0902_Sensors. This is now a separate document due to its large size. The file HLY0902_Sensors.htm is found in the Meta_Data directory. A PDF version of this file should also be here. To use this html file you will need to have the directory HLY0902_Sensors_files in the same directory as the html file.

Also in the Meta_Data directory there may be some PDF files for data that was collected but not part of the normal science routine.

APPENDIX:

Acquisition Problems and Events

A electronic logbook (elog) is utilized on the ship for logging of science related problems and events as they happen. A dump of the logbook is done at the end of the cruise and saved in the Meta_Data directory under the "elog" subdirectory. Two logbooks are kept: one by the technical support personnel and one of entries by the science party watchstanders. Several dump formats are made available such as html, csv, xml and raw. These logs should be consulted to help identify instrument and system anomalies affecting data quality. Times are reported in GMT (UTC, Z).

Below here is a summary of technical logbook. For exact details you should check the files in elog. The science watchstanders log is not summarized here.

This summary will NOT attempt to summarize all of the various Science Sea Water System adjustments made during HLY0902. The user should look for the table that attempts to document all of the various settings used during HLY0902. The user should also look in the Elog files distributed on the USB Disk drive.

Date	Time	Comment		
	(UTC)			
04/02/09	21:23	HCO MET-3A replaced. Precipitation still does not work		
04/03/09	17:18	HCO MET-3A powered down		
04/03/09	17:51	Start SCS ACQ logging for HLY0902		
04/04/09	00:18	Set up new PPS box form POSMV for Seabeam		
04/04/09	04:06	Start Seabeam for HLY0902		
04/04/09	04:11	Start Knudsen for HLY0902		
04/04/09	04:25	Seabeam Sea Survey not workng SBDISK not operational		
04/04/09	04:53	Start ADCP 150 for HLY0902		
04/04/09	04:57	Start ADCP 75 for HLY0902		
04/04/09	04:59	Start Science Sea Water for HLY0902		
04/04/09	18:04	SeaBeam SVP changed using hly0901XBT.sv		
04/04/09	18:27	SeaBeam SVP changed using hly0901_001.sv		
04/04/09	00:52	LDS entries using SWAP data removed		
04/05/09	10:03	SeaBeam Sea Survey SBDISK replaced and Sea Survey working		
04/06/09	10:12	TSG water flow stopped, monitoring it		
04/06/09	04:54	Gravimeters are both working again		
04/06/09	15:15	ADU5 lost heading and attitude		
04/06/09	22:48	Speed Log off while in the ice		
04/07/09	01:10	ECC secure Science Sea Water since it is clogged		
04/07/09	04:22	Science Sea Water back on after back flushing		
04/07/09	17:42	ADU5 reset and all working again		
04/08/09	06:12	Note TSG weird values Apr 05 03:55 and Apr 06 02:05 UTC		
04/08/09	23:12	Gravimeter BGM 222 started failing at 20:43 UTC		
04/09/09	21:02	New SeaBeam SVP using CTD HLY0902_016025 and AGO R4900799_073		
04/09/09	23:25	New SeaBeam SVP using CTD HLY0902_016026 and AGO R4900799_073		
04/10/09	05:37	New SeaBeam SVP using CTD HLY0902_018027 and AGO R4900799_073		
04/10/09	22:27	SCS stopped		
04/10/09	22:29	SCS restarted		

Date	Time	Comment		
	(UTC)			
04/11/09	00:38	New SeaBeam SVP using CTD HLY0902_020034 and AGO R4900799_073		
04/11/09	03:56	New SeaBeam SVP using CTD HLY0902_020035 and AGO R4900799_073		
04/11/09	06:11	LDS winch loggers stopped and restarted		
04/11/09	19:00	New SeaBeam SVP using CTD HLY0902_024038 and AGO R4900799_073		
04/12/09	17:19	New TSG (serial #0228) installed		
04/12/09	20:13	New SeaBeam SVP 025039.sv		
04/13/09	00:37	New SeaBeam SVP using CTD HLY0902_026043		
04/13/09	02:47	Knudsen to Pinger mode for multicore		
04/13/09	04:38	Knudsen to Subbottom mode		
04/13/09	05:48	Knudsen to Pinger mode for multicore		
04/13/09	06:42	Knudsen to Subbottom mode		
04/14/09	08:01	reload SeaBeam SVP using CTD HLY0902_016025		
04/14/09	20:44	New SeaBeam SVP using CTD HLY0902_029050		
04/15/09	21:39	New SeaBeam SVP using CTD HLY0902_032054		
04/16/09	01:17	Aloft Con Webcam stopped re-plugged back in and running		
04/17/09	08:50	ADU5 no heading and attitude coming in. Reset and working again		
04/18/09	20:45	VMS rebooting		
04/18/09	21:30	VMS rebooted		
04/20/09	06:21	Reuse SeaBeam SVP using CTD HLY0902 003004 and ARGO		
		R4900855_019 rebooted		
04/23/09	00:15	New SeaBeam SVP using XBT HLY0902 T7 00004 and ARGO		
		R4900855 019		
04/23/09	03:13	New SeaBeam SVP using ARGO R4900855_019		
04/23/09	04:45	New SeaBeam SVP using CTD HLY0902 060093 and ARGO		
		R4900855_019		
04/23/09	08:53	New SeaBeam SVP using CTD HLY0902_061094		
04/23/09	12:54	Knudsen to Pinger mode		
04/23/09	14:36	Knudsen to SubBottom mode		
04/23/09	16:25	Knudsen to Pinger mode		
04/23/09	17:36	Knudsen to SubBottom mode		
04/23/09	20:11	New SeaBeam SVP using CTD HLY0902_060093 and CTD 061094 for		
		deep		
04/24/09	03:13	New SeaBeam SVP using CTD HLY0902_064099		
04/24/09	06:23	New SeaBeam SVP using CTD HLY0902_065100		
04/24/09	10:38	New SeaBeam SVP HLY0902_066101.sv		
04/24/09	18:12	SCS stopped logging		
04/24/09	18:45	Reload SeaBeam SVP HLY0902_003004.sv		
04/24/09	23:48	SCS restarted		
04/25/09	01:11	Note Knudsen input correction not working well. Still on Unit 2		
04/26/09	05:55	Reload SeaBeam SVP HLY0902 018027.sv		
04/26/09	18:13	New SeaBeam SVP HLY0902 069107.sv		
04/26/09	22:42	Gyro MK 39 Reset due to no heading output		
04/27/09	01:35	start reboot of IBS CID computer		
04/27/09	01:40	reboot of IBS CID computer finished		
04/27/09	06:39	New SeaBeam SVP using CTD HLY0902 072111 and CTD 026043 for		
		deep		
04/27/09	09:02	New SeaBeam SVP HLY0902 070109.sv		
04/27/09	14:53	Note ADCP 150 short and long term averages had date of April 18 on them		

Date	Time (UTC)	Comment		
04/27/09	16:08	ADCP 150 restarted		
04/28/09	01:10	New SeaBeam SVP using CTD HLY0902_075117 and CTD 026043 for		
		deep		
04/28/09	03:48	New SeaBeam SVP using CTD HLY0902_077119 and CTD 026043 for		
		deep		
04/28/09	05:18	New SeaBeam SVP using CTD HLY0902_078120 and CTD 026043 for		
0.1/2.0/0.0		deep		
04/28/09	06:46	New SeaBeam SVP using CTD HLY0902_079121 and CTD 026043 for		
0.4/20/00	20.42			
04/28/09	20:42	New SeaBeam SVP using CTD HLY0902_080122		
04/28/09	22:20	Noted that Ship's Air Press, Air Temp and Humid sensors had wrong		
04/20/00	00.59	calibrations applied from the start of the cruise		
04/29/09	00:58	Reload SeaBeam SVP HLY0902_0/9121.sv		
04/29/09	01:44	Reload SeaBeam SVP HLY0902_078120.sv		
04/29/09	04.03	New SeeDeam SVD using CTD HI V0002_072114		
04/29/09	16:20	ADCP 75 restarted with new software 1.46		
04/29/09	16.30	ADCP 150 restarted with new software 1.46		
04/29/09	10.31	ADCP 150 restanced with new software 1.40		
04/29/09	19.43	New SeaBeam SVP using CTD HI V0002_085131 and CTD 026043 for		
04/2//0/	17.47	deen		
04/29/09	21.34	New SeaBeam SVP using CTD HLY0902_086132		
04/29/09	00.23	New SeaBeam SVP using CTD HLV0902_088134		
04/29/09	01:09	New SeaBeam SVP using CTD HLY0902_080135		
04/30/09	01:29	Reload SeaBeam SVP using CTD HLY0902_088134		
04/30/09	02:27	Reload SeaBeam SVP using CTD HLY0902_086132		
04/30/09	03:20	Reload SeaBeam SVP using CTD HLY0902 085131		
05/01/09	00:07	New SeaBeam SVP using CTD HLY0902 091141		
05/01/09	03:14	Reload SeaBeam SVP using CTD HLY0902 079121		
05/03/09	08:10	ADCP 75 has added NEMA data coming in after an added com port		
05/04/09	23:02	Environmenatgl temp loggers stopped logging		
05/03/09	08:17	ADCP 150 has added NEMA data coming in after an added com port		
05/06/09	07:43	Reload SeaBeam SVP using CTD HLY0902_089135		
05/06/09	09:17	New SeaBeam SVP using CTD HLY0902_072111		
05/06/09	14:18	Edit SeaBeam SVP to be like CTD HLY0902_115172		
05/06/09	16:00	New SeaBeam SVP using CTD HLY0902_115174		
05/06/09	21:49	Reload SeaBeam SVP using CTD HLY0902_116175		
05/06/09	23:58	Aft P-Code stopped outputting lat/long		
05/07/09	01:20	Reload SeaBeam SVP using CTD HLY0902_115174 modified		
05/07/09	06:19	Aft P-code noticed stopped output of lat/long at 5/6/9 23:58		
05/07/09	06:48	Reload SeaBeam SVP using CTD HLY0902_089135		
05/07/09	08:25	New SeaBeam SVP using CTD HLY0902_114171		
05/07/09	13:23	Reload SeaBeam SVP using CTD HLY0902_080122		
05/07/09	19:01	Knudsen SubBottom SVP from 1500 to 1437		
05/07/09	19:11	Knudsen SubBottom SVP back to 1500		
05/07/09	20:21	ADUS stopped outputting Attitude		
05/07/09	20:49	ADUS reset, working properly		
03/0//09	22:37	New Seadcam SVP using CTD HLY0902_123184		

Date	Time	Comment		
05/00/00	(UTC)			
05/08/09	00:24	New SeaBeam SVP using CTD HLY0902_124185		
05/08/09	02:03	vew SeaBeam SVP using C1D HLY0902_125186		
05/08/09	06:48	New SeaBeam SVP using CTD HLY0902_128189		
05/08/09	07:58	Note Aft P-code GPS not working since before 00:00, reset		
05/08/09	17:14	ADCP 150 stopped LTA and STA plots, stop and restart Acquisition		
05/08/09	18:04	New SeaBeam SVP editing CTD HLY0902_134195		
05/08/09	18:25	New SeaBeam SVP using CTD HLY0902_135196		
05/08/09	18:58	New SeaBeam SVP using CTD HLY0902_137198		
05/08/09	23:42	New SeaBeam SVP using CTD HLY0902_138199		
05/09/09	01:04	New SeaBeam SVP using CTD HLY0902_139200		
05/09/09	06:04	New SeaBeam SVP using CTD HLY0902_142203		
05/09/09	13:09	New SeaBeam SVP editing CTD HLY0902_146207		
05/09/09	14:52	New SeaBeam SVP using CTD HLY0902_147208		
05/09/09	16:18	New SeaBeam SVP using CTD HLY0902_148209		
05/09/09	19:05	New SeaBeam SVP editing CTD HLY0902_150211		
05/09/09	20:01	New SeaBeam SVP editing CTD HLY0902_151212		
05/10/09	04:40	New SeaBeam SVP using CTD HLY0902_156217		
05/10/09	08:23	New SeaBeam SVP editing CTD HLY0902_158219		
05/10/09	11:36	New SeaBeam SVP editing CTD HLY0902_160221		
05/10/09	15:54	New SeaBeam SVP editing CTD HLY0902_161222		
05/10/09	17:14	ADCP 150 stopped LTA and STA plots, stop and restart Acquisition?		
05/10/09	19:00	New SeaBeam SVP editing CTD HLY0902_162223?		
05/10/09	20:02	stop and restart ADCP 150 Acquisition		
05/10/09	20:03	stop and restart ADCP 75???? Acquisition		
05/11/09	00:11	New SeaBeam SVP using CTD HLY0902_165226		
05/11/09	00:46	New SeaBeam SVP using CTD HLY0902_159220		
05/11/09	02:10	New SeaBeam SVP using CTD HLY0902_166227		
05/11/09	04:01	New SeaBeam SVP using CTD HLY0902_167228		
05/11/09	06:24	New SeaBeam SVP using CTD HLY0902_168229		
05/11/09	08:18	New SeaBeam SVP using CTD HLY0902_169230 and ARGO		
	10.06	R4900855_022 for deep		
05/11/09	10:36	New SeaBeam SVP editing CTD HLY0902_170231		
05/11/09	12:58	New SeaBeam SVP using CTD HLY0902_171232		
05/11/09	14:44	New SeaBeam SVP editing CTD HLY0902_172233		
05/11/09	18:05	New SeaBeam SVP using ARGO R4900855_022		
05/12/09	00:38	Science Sea Water secured for end of HLY0902		
05/12/09	01:44	SCS logging ended for end of HLY0902		
05/12/09	01:47	ADCP 150 secured for end of HLY0902		
05/12/09	01:49	ADCP 75 secured for end of HLY0902		
05/12/09	01:52	SeaBeam to IDLE for end of HLY0902		
05/12/09	01:52	Knudsen stopped Pinging for end of HLY0902		
05/12/09	02:03	LDS stopped for end of HLY0902		

Comments that might help when using the data

1. The TSG Salinometer was replaced early in the cruise. It was determined that it was malfunctioning and outputting incorrect values from the beginning of the cruise until it was replaced with a new unit on 04/12/2009 05:15 UTC. This data should not be used prior to this replacement.

2. The SCS system has to be stopped when fixing some kinds of issues. If this is the case, you should consult the elog entries for possible explanations and look for the corresponding data in the LDS_Data directories. The data may have been recorded there.

3. The Knudsen data written into SCS_Data/Knudsen has an inconsistent time in the data. The time that the SCS writes to the start of the KEA file should be used. The Knudsen internal clock adds about 22.8 seconds to the internal clock each day near 00:00. But this is reset when the recording program is started up and when watchstanders manually synchronize the time. Use only the SCS time stamp for time in this data and it should be fine. The accuracy of the time in the SEG-Y files and KEB files should be inspected and compared to the time-stamped KEA records.

4. The SeaBeam data is raw and unedited. This data may need significant editing and care depending on the intended use. The SeaBeam 2112 has significant issues with the near-nadir beams: the bathymetry tends to be less repeatable in the near-nadir region compared to the middle of the swath. The outer beams are noisier in the icebreaker 2112 installations than those installed on non-icebreakers.. The acoustic noise plus bubble-sweep down and masking by ice under the hull all contribute to degrading the data quality while operating in ice.

5. The Knudsen subbottom data is not an accurate source of water depth for a number of reasons, including the fact that it is always recorded using a sound speed of 1500 meters/second, because the beam pattern is large (3- to 60 degrees), because of it's bottom detection algorithm and because it penetrates the seafloor.

6. Both Gravimeters had short periods of problems. BGM #221 was fixed early on and the meter was restarted. BGM #222 Gravimeter also had a short period when the data were not good. Care should be taken when using this data until calibrations have been completed.

7. During the cruise at various times many various parties were changing the water flow in the Science Sea Water system to adjust the system's response to various flow rates in response to icing up and filling up the tank in the bow for the Incubators. This changes the amount of water going through the TSG and has discernable impact on the measurements taken. You should closely follow the Elog entries for the TSG and Science Sea Water in the Elog section in the Meta_Data directory on the USB Disk drive to see when water flow rates were adjusted. These events were not always accurately entered into Elog. No attempt was made to summarize these events in the Elog summary in this document. These flow rate changes should affect all of the TSG data and care should be taken when using the TSG data.

8. The POSMV navigation system reports location at the master reference point and not at the antenna locations above the Helicopter Control Shack (HCO). The Location of the Master Reference Point (MRP) can be seen in the diagram at the end of this document showing instrument locations on the ship.

9. During HLY0902 the recording software for both the 75 and 150 ADCPs were updated. The user should be careful to be sure that the data have not changed characteristics from this software update.

10. The Ship's Bridge Barometeric Pressure, Air Temperature and Humidity Sensors were incorrectly adjusted with the wrong sequence of calibration values for the start of the cruise. On 04/28/09 near the end of the day this error was noticed and corrected. The data up to this point from these 3 instruments are not correctly adjusted and are to be treated as suspect. There is a separate report in this document about this sequence of events. See the below Table.

11. Over the past few days I have worked with Mike Lomas, Evelyn Lessard and Megan Bernhardt to "calibrate" or scale the CTD chlorophyll a fluorometer output. I use the word "calibrate" loosely because there is not, nor must there be, a constant relationship between fluorescence and chlorophyll a concentration. I am told that depends upon the phytoplankton species, their condition, their exposure to light, etc, as well as if the instrument is working correctly.

However one can establish a general relationship between Fl and chl_a concentration, and we have done that using Mike and Evelyn's chl_a determinations during this cruise. The attached graph shows the results and a linear least-squares fit to them. The abscissa contains the discrete chl_a concentrations as determined by the Lomas and Lessard groups, and the ordinate is the CTD chl_a concentration based upon the Chelsea Instruments Mk III Aquatracka's factory calibration on 6 March 2007. (Chelsea warns users that their factory calibration may not be appropriate for the species or area being studied and recommends that users do their own field calibration, as we have done.) Dave Kachel got the fluorometer's voltage and chl_a concentration from the Sea Bird bottle files, a line of which is generated each time the CTD rosette trips a bottle. Lomas' s points are in black, Lessard's in purple, a line of slope 1 is black dashed, and the linear least squares fit line is in solid green. From the diagram, you can see that the Chelsea "calibration" underestimates the chlorophyll_a concentration by about a factor of 10. The equation of the fit and the inverse equation are shown on the diagram. So to use this new "calibration" we would multiply the present Chlesea chl_a concentration by 9.9685 and subtract 1.3912 ug/l. The rms error of the fit is 0.18086. Scaling this by the inverse formula implies an rms error in the newly scaled chl_a concentrations of about 1.8 ug/l.

Mike Lomas says that his results from last year imply a scaling factor of about 5 then, so the fluorometer may be losing sensitivity with age. Scott Hiller and I have discussed this. Scott will send the fluorometer back to Chelsea at the end of the field season and ask them to do a calibration before they take it apart and another after they refurbish it. That will give us some idea if the fluorometer has degraded.

Scott Hiller and I have discussed what to do with these results. We feel that it is best to institute this new scaling now, so future CTD casts will show the chlorophyll concentration based upon our new "calibration." For those used to looking at the shape of the chl_a profiles in ug/l units, that will not change because the scaling is linear; only the numbers along the bottom axis of the CTD plots will change. For those used to looking at the fluorescence in voltage, that will not change because voltage is the basic output from the fluorometer and that is unchanged. I would point out that the relationship between fluorometer volts and chlorophyll concentration is exponential, i.e. of the form

chl a = a*10**V + b

Scott will also re-run the Sea Bird software on all the past CTD casts, and scale ALL the CTD chlorophyll concentrations to the new values from our preliminary "calibration" on this cruise.

We plan to do a similar "calibration" for the full cruise and the 2008 BEST cruises based upon the 6 total chlorophyll values that the Hydro Team measures on each CTD cast. Those results will be available when that work is done, probably a few months from now.

Edward D. (Ned) Cokelet, PhD

Ned.Cokelet@healy.polarscience.net

Aboard USCGC Healy in the Bering Sea

Ship Temperature, Pressure and Humidity Sensor Corrections Applied in 2008 and 2009

5/12/09 13:05

	<u>Bridge Pressure Sensor</u>					
Date	Translato	r Box	SIO-MET	Program	Unuse	d values
	Multiplier	Offset	Multiplier	Offset	Multiplier	Offset
	AĨ	B1	A2	B2	A2	B2
02/01/08	0.06	805.5			59.853	802.635000
01/15/09	0.06	805.5	0.0599743	803.05400		
04/28/09	1.00	0.0	0.0599743	803.05400		

	<u>Bridge A</u>					
Date	Translato	r Box	SIO-MET	Program	Unused	d values
	Multiplier	Offset	Multiplier	Offset	Multiplier	Offset
	AĪ	B1	$A\bar{2}$	B2	$\overline{A2}$	B2
02/01/08	0.01	-49.0			101.413	-50.764200
01/15/09	0.01	-49.0	101.9810000	-50.87410		
04/28/09	1.00	0.0	101.9810000	-50.87410		

<u>Bridge</u>	Humidity	Sensor
---------------	-----------------	--------

Date	Translator Box		SIO-MET Program		Unused values	
	Multiplier	Offset	Multiplier	Offset	Multiplier	Offset
	AĪ	B1	$\overline{A2}$	B2	$\overline{A2}$	B2
02/01/08	0.01	-0.1			104.836	-0.679727
01/15/09	0.01	-0.1	101.5780000	1.17977		
04/28/09	1.00	0.0	101.5780000	1.17977		

((((Raw * A1)+B1)*A2)+B2)

But it should have been: ((Raw *A2)+B2)

For all of 2008, the Calibration and Offsets found at SIO were not applied, but rather the old previous values were used in the Ship's Translator Box.

Cruise Weather Summary

Preliminary summary plot of weather conditions during HLY0902. Data from several sensors still require ground-truthing and calibration. The general trends should remain the same in the final data.

Page 34 of 44

Cruise TSG Summary

Preliminary summary plot of the surface sea water conditions during HLY0902. Data from several sensors still require ground-truthing and calibration. The general trends should remain the same in the final data.

Underway Sensors and Calibrations

Sensors and Calibrations

To see the individual Sensor Calibration Sheets go to the Meta_Data directory on the USB Disk drive. You should use the Sensor's Serial number to be sure you have found the proper sheet.

HLY0902 Shipboard Sensors

Sensor	Description	Serial #	Last Calibration Date	Status		
Meteorology & Radiometers		·				
Port Yard Arm Anemometer	RM Young 09101	L001	12/01/08	Collected		
Stbd Yard Arm Anemometer	RM Young 09101	L003	03/07/07	Collected		
Barometer	RM Young 612011	BP01643	02/22/08	Collected		
Air Temp/Rel. Hum.	RM Young 41382V	13352	02/22/08	Collected		
Helo shack PAR	BSI QSR-2200	20270	01/09/07	Collected		
Shortwave Radiation	Eppley labs - PSP	35032F3	11/11/08	Collected		
Longwave Radiation	Eppley labs - PIR	34955F3	11/13/08	Collected		
Helo shack MET3A Barometer, Relative Humidity, Temperature	Paroscientific MET3A	101757	06/27/07	Collected		
HCO Precipitation	RM Young 50202	1567	1/19/09	Collected		
Jack Staff Temperature	41342LC	15166	12/17/08	Collected		
Jack Staff Ultrasonic Anemometer	RM Young 85004	00894	09/20/07	Collected		
Yard Arm Stbd Ultrasonic Anemometer	RM Young 85004	00704	09/20/07	Collected		
Helo shack Ultrasonic Anemometer	RM Young 85004	00703	09/20/07	Collected		
Underway Ocean						
TSG	SeaBird SBE45	0215	01/09/09	Collected to 04/12/9		
TSG	SeaBird SBE45	0228	01/09/09	Collected starting 04/12/09		
Remote Sea Temp	SeaBird SBE3S	4063	12/13/08	Collected		
Fluorometer	Seapoint SCF	SCF2957	12/15/07	Collected		

HLY0902 Data Synopsis

Sensor	Description	Serial #	Last Calibration Date	Status
Oxygen Sensor	SeaBird SBE-43	1333	01/20/09	Collected
Wet lab Flowmeter	Flocat C-ES45-B003	09061005	01/07/08	Collected
Wet lab Pressure	Hiller1	001P	12/15/07	Collected
Bow Flowmeter	Signet P51530-PO	60012089621	01/07/08	NOT Collected
Ultraviolet Spectrophotometer	Satlantic MBARI-ISUS V3	0141	01/15/09	Collected
Sonars				
Knudsen- subbottom	320 B/R	K2K-00-0013	N/A	Collected
ADCP 150 kHz	Broad Band (BB150)	80	N/A	Collected
ADCP 75 kHz	Ocean Surveyor	172	N/A	Collected
Multibeam	Seabeam 2112	?	N/A	Collected
Speed log	Sperry SRD500	?	N/A	Collected
Navigation			L	
P-Code GPS (aft)	Trimble Centurion	0220035469	N/A	Collected
Attitude GPS	Ashtech ADU5	AD52003351 3	N/A	Collected
DGPS	Trimble AGGPS- AG132	0224016199	N/A	Collected
POSMV	Model- MV V4	2306	N/A	Collected
P-Code GPS (fwd)	Rockwell Collins	?	N/A	Collected
Glonass GPS	?	?	N/A	Collected
GYRO 1	Sperry MK39 Mod 3A PN 03956-1982416-2	340	?	Collected
GYRO 2	Sperry MK27A 4800880-1	025	N/A	Collected

Sensor	Comments	Serial #	Last service/ Calibration Date	Status
CTD sensor	SBE 911plus	639	01/14/09	
Pressure Sensor #1	Digiquartz with TC	83012	01/14/09	Collected
Temperature #1	SBE3- Primary	2841	12/18/08	Collected
Temperature #2	SBE3- Secondary	2824	12/18/08	Collected
Conductivity #1	SBE4C- Primary	2575	01/08/09	Collected
Conductivity #2	SBE4C- Secondary	2619	12/18/08	Collected
Pump	SBE5 Primary	3115	01/08	NA
Pump	SBE5 Secondary	3112	01/08	NA
Deck Unit	SBE 11-Plus V2	0417	12/07	NA
Altimeter	PSA916	843	01/08	Collected
Oxygen	SBE43	458	12/17/08	Collected
Fluorometer	Chelsea-Aquatrack3	088234	03/06/07	Collected
Transmisometer	Wetlabs	CST-390DR	02/27/07	Collected
PAR	Bioshperical QSP2300	70115	12/01/08	Collected
Carousel	SBE32- 12 place	347	01/08	NA

Software Versions of some Recording programs

System	Program	Version number
CTD	Seabird SeaSave	7.18c
XBT	Turo XBT software	3.03.01
XBT	Sippican (Old system)	2.1.2
ADCP 75	VMDAS	1.45 operated until 04/29/09
ADCP 75	VMDAS	1.46 installed 04/29/09
ADCP 150	VMDAS	1.45 operated until 04/29/09
ADCP 150	VMDAS	1.45 installed 04/29/09

HLY0902 Sensor Calculations

The coefficients for temperature, conductivity, fluorometer and turbidity sensors can be found in the calibrations sheets found in the Meta_Data directory.

Calculating Temperature – ITS-90

```
T = decimal equivalent of bytes 1-4
Temperature Frequency: f = T/19 + 2100
Temperature = 1/\{g + h[ln(f_0/f)] + i[ln^2(f_0/f)] + j[ln^3(f_0/f)]\} - 273.15
(°C)
```

Calculating Conductivity – ITS-90

```
C = decimal equivalent of bytes 5-8
Conductivity Frequency f = sqrt(C*2100+6250000)
Conductivity = (g + hf<sup>2</sup> + if<sup>3</sup> + jf<sup>4</sup>)/[10(1 + \deltat + \epsilonp)] (siemens/meter)
t = temperature (°C); p = pressure (decibars); \delta = Ctcor; \epsilon = CPcor
```

Calculating Fluorometry Voltage

f = decimal equivalent of bytes 15-17
Fluorometry Voltage = f/819

Calculating Transmittance

```
V_dark = 0.058 V
V_ref = 4.765 V
t = decimal equivalent of bytes 18 - 20
Transmissometer Voltage (V<sub>signal</sub>) = t/819
% Transmittance = (V<sub>signal</sub> - V<sub>dark</sub>) / (V<sub>ref</sub> - V<sub>dark</sub>)
```

Calculating PAR for surface PAR

```
raw data = mV
calibration scale = 6.08 \text{ V/}(\mu\text{Einstiens/cm}^2\text{sec})
offset (V<sub>dark</sub>) = 0.3 \text{ mV}
(raw mV - V<sub>dark</sub>)/scale x 10^4 \text{ cm}^2/\text{m}^2 \text{ x } 10^{-3} \text{ V/mV}= \mu\text{Einstiens/m}^2\text{sec}
or
(data mV - 0.3 \text{ mV}) x 1.65 (\mu\text{Einstiens/m}^2\text{sec})/\text{mV} = \mu\text{Einstiens/m}^2\text{sec}
```

Calculating Pyrgeometer Values

```
V = Eppley PIR Thermopile voltage
S = Sensitivity (Calibration factor from Eppley Cal sheet)
S = 3.32
J = Stefan-Boltzmann Constant
J = 5.6697e - 8
B = [absorption constant (for Eppley Black paint formula) 0.985 / dome
glass IR transmission 0.5]
B= 3.5 for Stock Eppley PIR
Tb = Eppley Body Temperature in degrees Kelvin
Td = Eppley Dome Temperature in degrees Kelvin
Tb and Td calculated as follows:
T = 1/(a + ln(Vo/Irt)*(b + c*(ln(Vo/Irt)**2)));
Irt = (Vref-Vin)/R1
On Healy R1 = 82500
                                      Vref = 5.0
a= 0.0010295 b= 0.0002391
                                      c = 1.568e-7
```

```
W/M2 = V/S + (J * Tb^4) + (B*J*(Tb^4 - Td^4))
```

Instrument Locations on the Healy

Layout plot of instrument locations

This layout is not to be used for exact measurements. It is included here for getting a general understanding of instrument locations on the ship. It has not been updated since 2007.

Conso	lidated Surv	vey Data					
	Elements of:						
		Avondale Survey					
		Westlake Survey					
		Lamont Survey					
	All Measurements in <u>Meters</u> relative to MRP unless otherwise stated						
	X = fore & aft with + forewardY = port & starboard with + to starboard						
	Z= vertical with + upwards						
				Х	Y	Ζ	
<u>Item</u>	<u>Survey</u>	Description		North	<u>East</u>	<u>Elevation</u>	
1	Avondale	MRP	See discussion Westlake Final Report	34.30	0.00	9.15	
2	Westlake	MRP	by Definition	0.00	0.00	0.00	
3	Westlake	Seabeam 2112					
		Transverse Array	Centerline	-7.679	0.030	9.242	
		Longitudinal Array	Centerline	-4.386	0.711	9.238	
4	Westlake	Transducers					
		Starboard - Forward					
		Transducer -	Bathy 2000 3.5 kHz	-10.252	1.362	9.243	
		Transducer -	Bathy 1500 34 kHz *	-11.866	1.559	9.245	
	_	Transducer -	Doppler Speed Log	-12.168	0.414	9.245	
		Transducer -	Spare Transducer Well	-13.081	1.449	9.237	
5	Westlake	Port - Forward to Aft					
		Transducer -	VM 150	-9.726	-1.395	9.230	

		Transducer -	Ocean Surveyor 75 kHz	-10.819	-1.290	9.230
		Transducer -	Bathy 2000 12 kHz	-11.859	-1.492	9.234
		Transducer -	Spare Transducer Well	-13.078	-1.394	9.235
6	Westlake	Gyros				
		Starboard Gyro	Centerline	4.741	0.207	-19.604
		Port Gyro	Centerline	4.746	-0.207	-19.609
7	Westlake	Antennas				
		REF DWG TBD	Antenna 9-4 * - GPS Antenna (4.1.5)	4.587	-6.622	-24.000
			Antenna 4-6 * - Northstar GPS (4.1.1)	9.374	-4.970	-23.406
			Antenna 4-2 * - Northstar (4.1.2)	9.362	-3.617	-23.451
			P CODE GPS Antenna *	9.368	-2.645	-23.609
			Antenna 4-3 * - Northstar (4.1.4)	9.355	3.638	-23.363
			GLONAS GPS Antenna *	9.379	5.066	-23.515
			Antenna base (4A)	-53.872	-0.011	-22.025
			Antenna base (4B)	-49.758	0.038	-22.010
			Antenna base (4C)	-49.785	1.629	-22.020
			Antenna base (4D)	-49.771	-1.546	-22.008
			Trimble Centurion**	-52.726	-1.717	-21.113
			Time Server **	-52.671	1.838	-21.115
8	Westlake	Vertical Ref				
			MRV-M-MV -			
			Measured at Top of mounting bracket			
			Center (mid-point) - calculated	-2.100	0.291	-0.775

			TSS 333B - Marine Motion Sensor -			
			scribe atop mounting plate			
			Center of TSS 333B	1.210	0.329	-0.013
9	LDEO	POS/MV				
		From	ТО	X	Y	Z
		IMU	Port Antenna (Master)	-2.9719	-3.9140	-5.5310
		MRP	IMU	-49.5710	1.7110	-16.7990
		MRP	Transmit array	-4.3860	0.7110	9.2380
		MRP	Port Antenna (Master)	-52.5429	-2.2030	-22.3300
10	Westlake Raw	Fan Tail				
			Aft/Port	-86.737	-4.906	-3.617
			Forward/Port	-77.600	-4.881	-3.589
			Forward/Starboard	-72.590	6.676	-3.653