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Introduction
New estimates of total monthly precipitation have been generated for the time period of January 1979 
through July 2002 at points above 45 degrees north. These estimates combine the spatially complete 
“background” field of ECMWF ERA-40 precipitation with in-situ observations of precipitation which 
vary in availability in both space and time. The methodology used to combine these “background” and 
observed fields is Optimal Interpolation (OI) assimilation (e.g. Bouttier and Courtier, 1999). 

The ERA-40 analysis already includes some data assimilation and represents a best guess at 
precipitation over the Arctic (Serreze et al, 2005). ERA-40 precipitation data include large-scale rain 
rate, convective rain rate and snowfall rate. These data were interpolated to an equal area grid from the 
N80 grid using bilinear interpolation. The new grid is known as the EASE 100km grid (Brodzik and 
Knowles, 2002), each cell has the square root of area ~=100.27 km. Extensive observations of 
precipitation in the Arctic (and above 45 degrees north) have been compiled into a database spanning 
the years 1950-2003. This data set is informally known as the “Big Merge” and is used in Serreze and 
Etringer (2003) and Serreze et al 2005. With the big merge are included scant observations from 
Russian drifting Ice stations in the Arctic Ocean. (Some day perhaps these will be officially merged 
too.) Reported monthly totals of station precipitation were adjusted following the seasonally and 
spatially variable precipitation gauge correction factors of Legates and Willmont (1990). 

Since the observation data is total precipitation at monthly resolution, total monthly ERA-40 
precipitation (summing over convective 
rainfall, large-scale rain fall and snowfall) 
is found for each month and the 
assimilation described below is performed 
specifically on total monthly precipitation. 
While the data may be left at this level, we 
have disaggregated the total monthly 
precipitation back to it's constituent 
variables (large-scale rainfall, convective 
rainfall, and snowfall) and also 
disaggregated it in time, back to the 
original ERA-40 6-hourly resolution.   Our 
disaggregation scheme is a very simple one, 
we follow how the total precipitation was 
initially distributed or weighted for the 
monthly ERA-40 and apply this to the new 
magnitude of total precip. In other words, 
the temporal distribution of the 
precipitation variables is left unaltered 
except for the total area under the curves (ie 
the height of the curves) while the ratios of 
the total precipitation between the 3 
variables remain constant. 

This study focuses on the satellite era, post Figure 1. Percent difference of time averaged assimilated 
precip compared ERA-40 precip for assimilation A.



1978, when ERA-40  is believed to be 
more reliable. The analysis is computed on 
the same, equal-area grid to which the 
ERA-40 data have been interpolated in the 
study of Slater et al (2007). The assimilated 
product is essentially an update of the 
background ERA-40 data towards the 
observations when and where they are 
available. 

The assimilated field confirms the ERA-40 
biases found by Serreze et al. (2005) as can 
seen by comparing figures 1 and 2 (full 
size png files accompany this document, 
externally) to figure 3 (this is a copy of 
figure 7 of Serreze et al (2005)). Where 
observations are available on a regular 
basis, biases in ERA40 can be  estimated 
by the average difference of ERA-40 and 
the assimilated product over the time 
period of study. In areas where 
observations do not exists, the ERA-40 
values are left unaltered. In areas where 
data occur infrequently, the background 
also remains relatively unaltered over the 
period of study and no real bias can be 
inferred. 

Methodology
This section pertains to Optimal Interpolation (OI) assimilation, other simple details of the method 
have been outlined in the introduction. Optimal Interpolation assimilation derives an “analysis” or 
assimilated value by adjusting the background value at a given time according to its error with N 
selected observations at that time. The adjustment to the background value is termed the analysis 
increment. In the following equation x a is the resulting analysis and x b is the background value 
(ERA-40). The analysis increment depends on several quantities; y is a vector of N selected 
observations, H represents an interpolation operator which translates the background value onto the N 
observations, and W is the set of optimal weights (or gain) of the errors used to adjust the background 
value by linear combination of the N differences on the observations:

(*)          x a =xb +W T  y−H [ xb ]             

The interpolation operator, H, is subjectively determined by the analyst. In our case, Cressman 
interpolation was used to interpolated the background field onto the observations as the background is 
evenly distributed in space.

A basic assumption of OI is that only a few observations are important for determining the analysis 
increment. The intuitive idea is that only observations near a grid point should matter for assimilation 
at that point and that there is no correlation (or teleconnection) with points far away. This is made 
formal by our choice of spatial structure function, which describes the correlation of any two points in 

Figure 2. Percent difference of time averaged assimilated  
precip compared to ERA-40 for assimilation B.  



space based on their separation. Here we use a Gaussian form

uij=exp−1
2 [ d ij

d ef ]
2


where uij is the correlation between points i and j, their distance is denoted d ij and the parameter d ef is 
the e-folding distance. The distance at which observations may be considered insignificantly correlated 
to a background value is determined by some threshold of correlation which is in turn determined by 
the choice of e-folding distance. One can choose either a distance or a correlation threshold at which to 
exclude observations. We have used several choices for d ef ranging from 100km to 500km. The value 
of 300km is used by ECMWF in their land surface data assimilation (I assume this includes precip). 
For precipitation, this value represents assimilation at the synoptic scale. 

The structure function plays a central role in OI. To determine the “optimal”weights, W, intervariable 
correlation is used to account for the effects of “clustering” in the data, hence the name OI. For 
example, say there were 10 observations reported within 1km of each other at 10 km due north of our 
assimilation point. Say there were also 1 observation reported 10km due south of the point. The 
structure function deems that the 10 observations to the north are all very highly correlated and adjusts 
their weights so as not to overemphasize this region and neglect the single observation to the south.

To specify clustering in the data, both grid point to 
observation distances (correlations implied 
immediately via the structure function) and inter-
observation distances (correlations) are computed. 
Grid point to observation correlations are given in 
the vector b (length N) and inter-observation 
correlation is provided by the matrix B (dimension 
NxN). These correlations are transformed to 
covariance by multiplying each by the (scalar) 

background error, σ b
2

. To express the variance in 
the observations themselves, we form the O matrix, 
Iσo

2 =O , where I is the identity matrix and  σ o
2

is 
the (scalar or vector) error associated with the 
measurement of the observations. Now the optimal 
weights can be considered as the linear 
transformation that maps observation covariances, 
B+O, on to grid to observation covariances, b. 
Alternatively, the weights may be seen as the grid 
to observation covariances normalized by the 
observation covariances:

 B+O W=b
W=B+O −1b

In this way, W accounts for clustering in the 
observations when weighting the differences on the 
observations for determining the analysis 
increment (at point of assimilation) in equation (*). 
The optimal weights are similar to those of 

ordinary Kriging in that W is a “best linear estimator.” Here the term best means that variance in the 

Figure 3. Biases in reanalysis products of Arctic  
precipitation, taken from Serreze et al, 2005,  
figure 7.



interpolation error is minimized by W. This is achieved by the appropriate linear combination of 
differences on the observations assuming a spatial structure function.

In formulating the covariances, the background error, σ b
2

, and the observation error, σ o
2

, were 
introduced. While these numbers are separate, only their ratio affects change in W. This ratio specifies 
the amount of confidence placed on the background versus the observations. The free parameters in OI 

assimilation include interpolation method, H, structure function, u, and  the error covariances, σ b
2

 and 
σ o

2
. Error covariances are the most problematic to estimate as changing the ratio exhibits significant 

control over the results of the assimilation. If there is some objective measure of the background and 
measurement errors, then this becomes a less arbitrary parameter. However, when assimilating at large 
scales and for such a spatially heterogeneous phenomena as precipitation, one is confronted by the 
representativeness problem of the estimates which has to be factored into the errors. Even if we know 
the actual rain gauge error, this is not an appropriate for estimating the observation error at scales of 
hundreds of kilometers. In practice, one subjectively makes decisions about the free parameters of OI 
and produces results for several different scenarios, effectively probing the sensitivity of the analysis to 
these. The analyst draws conclusions from this variety of results.

Results
Results for 2 assimilations are shown in figures 1 and 2 (full size png versions of these are included). 
The figures depict the time averaged (1979-2002) percent difference in precipitation at each pixel for 
the individual assimilation runs as compared with the ERA-40. (Assimilation A corresponds to the data 
in directory BM_assim.07.06.15.12.46.07 and assimilation B to those in BM_assim.07.06.22.11.01.09.) 
The parameters of each assimilation are sketched in the bottom right hand corner of each figure and 
these are reproduced in table 1. The relative trust in the observations as compared with the background 
values is the same in both OI assimilations at 3:1, which is the ratio background error variance to 
observation error variance. This ratio was deemed a reasonable way to weight the competing fields and 
to generate a product with substantial new information. However, the effect of the structure function, 
which essentially determines the spatial scale of representativeness of each assimilated observation, is 
investigated in the 2 different assimilations. In assimilation A (figure 1) the e-folding distances of both 
structure functions (between observations, ie efld_B, and between the background and observed points, 
ie efld_go, as these are referenced in the figures) are set to 100km. In  assimilation B, these 

Assimilation 
and code name

Observation 
error 
variance

Background 
error variance

Cressman 
interpolation 
radius

E-folding 
distance for grid-
obs covariance 

E-folding distance 
for observation 
covariance

A: 07.06.15.12.46.07 1 3 300km 100km 100km

B: 07.06.22.11.01.09 1 3 300km 300km 300km
Table 1: Summary of parameter values used in the included precipitation assimilations.  

values are both set to 300km. (The max_dist parameter effectively sets a cut-off when searching for 
points to participate in the assimilation at a give point. This is accordingly adjusted in these two 
assimilations.) In varying the e-folding distances between the assimilations, we investigate the effect of 
assuming the observed values are more locally representative (A) versus them being more synoptically 
representative. In the later case, the observations affect a more widespread change from the background 
field, which is evidenced in the figures. In addition to being more widespread in their influence, the 



magnitude of the adjustment (xa-xb) in the later assimilation (B) will tend to be greater in areas of 
sparse observations. This is because of increased covariance at the same distance. However, this can be 
effect can be offset by clustering of competing observations and the increase in the intra-observation 
covaraince. So, while the spatial effect of the change of parameters is fairly obvious in the figures, the 
impact of of the parameters on the adjustment is less obvious and has to be understood in terms of how 
the observations are clustered. 

The results show good agreement the biases found by Serreze et al (2005) in their figure 7, reproduced 
here as figure 3 (also included as a jpg file). In areas with data on an inter-annual basis, the assimilation 
reproduces the biases. Areas of no change (gray) in the assimilation figures 1 and 2 indicate one of two 
things, either that there is insufficient data over the period of study to significantly adjust the 
background field in the time averaged way presented, or that there is actually very little bias in the 
ERA-40 product relative to the observations. A map of the temporal density of data would help 
separate these two cases. 

Summary

The Optimal Interpolation assimilation of an expansive set of precipitation observations (“The Big 
Merge”) into the ERA-40 precipitation product provides a way to mathematically generate new, best-
guess fields of precipitation over the Arctic. The results express the findings of Serreze et al (2005) in a 
form which can be used for analysis or modeling.  
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