Correlative Biomass Dynamics Model

NPRB Project B75 Final Report

Tadayasu Uchiyama*, Gordon H. Kruse, and Franz J. Mueter
Juneau Center, School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Pt. Lena Loop Rd., Juneau, AK 99801
* Corresponding author, email: tuchiyama@alaska.edu, phone: (907) 796-5447

March 2014

Abstract

Our first goal was to develop an age-aggregated multispecies model describing biomass dynamics of some commercially and ecologically important groundfish species in the eastern Bering Sea. We constructed multispecies models including walleye pollock, Pacific cod, arrowtooth flounder, and three other flatfish species, including their trophic interactions. Two alternative model formulations were developed: a multispecies biomass dynamics (MBD) model and a multispecies delay difference (MDD) model. Both models were able to capture observed trends in survey biomass data over 1982-2009 and both predicted the multi-species $B_{0}, M S Y$, and $F_{M S Y}$ to be lower than the sum of the estimates from singlespecies assessment models. Although the MDD model fit survey biomass estimates better than the MBD model, the MDD model and its maximum likelihood parameters produced biologically unrealistic biomass projections at $F>0.14$. Using the MBD model, our second goal was to test a hypothesis that reduction in the extent of the cold pool intensifies predation on juvenile pollock. We found that warmer temperatures increase cannibalism and predation on age-1 pollock by adult pollock (age 3+) and arrowtooth flounder, respectively, and decreases cannibalism on age- 0 pollock by adult pollock. The opposite effect of water temperature on age- 0 and age- 1 pollock likely reflects different distributions of these pollock age classes in relation to the cold pool. Our multispecies models provide useful tools for management strategy evaluations and they can be used to examine the effects of future climate change on the groundfish community on the eastern Bering Sea continental shelf.

Key words:

Multispecies model, eastern Bering Sea, biomass dynamics model, delay-difference model, predator-prey interaction, cold pool

Citation

Uchiyama, T., G.H. Kruse, and F.J. Mueter. 2014. Correlative biomass dynamics model. North Pacific Research Board Final Report B75, 79 p.

Table of Contents

Page

Abstract

2

Table of Contents 3
Study Chronology. 4
Introduction 4
Overall Objectives 6
Chapter 1 - A Multi-species Biomass Dynamics Model for Investigating Predator-prey Interactions in theBering Sea Groundfish Community8
Chapter 2 - Multispecies Biomass Dynamics Models Reveal Effects of Ocean Temperatures on Predation of Juvenile Pollock in the Eastern Bering Sea 49
Conclusions 67
Management or Policy Implications 68
Publications 69
Outreach 69
Acknowledgments 78

Literature Cited
79
Litature Cited 79

Study Chronology

By design, this Bering Sea Integrated Ecosystem Research Program (BSIERP) project began in September 2009 - one year after the start of other BSIERP projects. The delayed start was necessary to allow the modeling effort to be informed by preliminary results from project B68 Trophic Interactions Retrospective Analysis. In addition, delays were encountered while conducting this research owing the following issues: (1) a short course on model development using AD model builder (ADMB) was not available until April 2010, (2) parameter estimation was more difficult than anticipated owing to strong correlations among number of parameters in the preliminary models, large uncertainty with parameter estimates, and apparent overparameterization, (3) two alternative model forms (multispeices biomass dynamics models and multispecies delay difference models) were developed, which took longer to develop and test, (4) receipt of groundfish diet data from NMFS, used for parameter estimation, was delayed, (5) models were modified to include more age classes (age $0,1,2$) in juvenile pollock than originally planned based on results of AFSC fish diet study, and (6) an additional hypothesis regarding a climate effect on inter-specific interactions was addressed. Owing to these delays, we requested and received a no-cost extension for this project September 30, 2012 to September 30, 2013.

Introduction

Fisheries harvests off Alaska accounted for 56% of the total U.S. commercial fishery harvest and 36% of the U.S. exvessel value in 2011 (McDowell Group 2013). The Bering Sea and Aleutian Islands region alone produced seafood valued at $\$ 2.4$ billion; fisheries for groundfish in this region accounted for 40% of the entire U.S. commercial fishery harvest. Walleye pollock (Gadus chalcogrammus) is the most abundant and commercially important groundfish species in the Bering Sea. Pollock represent 56% of exploitable groundfish biomass in the Bering Sea and Aleutian Islands management area (NPFMC 2010), and pollock catches averaged 76% of the total groundfish catch by weight from 1990 to 2009 (NPFMC 2009).

These valuable fisheries are managed under a federal Fishery Management Plan under the auspices of the North Pacific Fishery Management Council. The Council's policy for groundfish fisheries includes the adoption of ecosystem-based fishery management principles, including the incorporation of ecosystem considerations into its management decisions (NPFMC 2010). In so doing, the Council recognizes that "potential changes in productivity may be caused by fluctuations in natural oceanographic conditions, fisheries, and other, non-fishing activities" and intends to "protect managed species from overfishing, and where appropriate and practicable, increase habitat protection and bycatch constraints."

Central to ecosystem-based fishery management is the need to account for ecological interactions among species. To understand variability of multiple species in the ocean, scientists often develop whole ecosystem models that attempt to explain the flow of energy from phytoplankton throughout the marine ecosystem. Such ecosystem models tend to be very complicated and require large quantities of data, many assumptions, and large teams of modelers and other researchers. Instead, multispecies models, informed by routinely collected assessment and ecological data, may provide a more practical tool to better understand trends of the most commercially important fish species, based on their trophic interactions and environmental relationships.

We explored two hypotheses:
H_{01} : Multispecies models, which incorporate species interactions, can provide good fits to historical biomass estimates for key groundfish species on the eastern Bering Sea shelf.
H_{02} : The extent of the cold pool is related to the predation rate on juvenile pollock by their major predators, including adult pollock.

In essence, the first hypothesis represented development of quantitative tools to evaluate the second hypothesis about effects of temperature on groundfish predation rates.

Although multispecies models, such as ours, are unlikely to replace single-species models for annual stock assessment and management over the near term, they can lead to improvements in single-species models. For example, multispecies models typically demonstrate that the lack of separate accounting of predation mortality in single-species models often results in natural mortality estimates that are biased low. Such errors can lead to misspecification of harvest control rules used to manage the fishery. In addition, multispecies models can be used to provide strategic management advice. For instance, multispecies models can be used to evaluate the implications of single-species harvest strategies on expected biomass of their predators and prey. Moreover, because they incorporate these trophic interactions, multispecies models can be used to estimate the effects of environmental conditions (e.g., temperature) on predation rate, thus providing a tool to forecast responses of the groundfish community to future climate changes.

Overall Objectives

The three objectives of our research were:

Objective 1: Develop multispecies biomass dynamics models [and multispecies delay difference models] for commercially or ecologically important groundfish in the eastern Bering Sea.

Objective 2: Examine inter-specific (predator-prey and competitive) interactions among a group of species that show clear evidence of covariation in productivity.

Objective 3: Examine shared climate effects on productivity and on the strength and magnitude of the inter-specific interactions among species or species groups.

For objective 1, we developed two alternative multispecies models. The first is based on the multispecies biomass dynamics model of Collie \& DeLong (1999) for the groundfish community on Georges Bank in the northwest Atlantic Ocean. Biomass dynamics models aggregate the effects of recruitment, growth, and mortality into a single production function (Haddon, 2000). As an alternative, we also modified Deriso's (1980) single-species delay difference model and reformulated it for multiple species. Unlike the biomass dynamics model, the delay difference model separates the effects of growth, mortality, and recruitment. It describes biomass dynamics of an age-structured population by assuming a von Bertalanffy growth function. In these regards, it is more realistic than the biomass dynamics model, yet still requires the same undifferentiated biomass data as does the biomass dynamics model. Details are provided in the Methods section of Chapter 1.

For objective 2 concerning interspecific interactions, we found that high F s on all species depleted the biomass of predators, which in turn reduced predation on juvenile pollock by Pacific cod and arrowtooth flounder, resulted in a rapid increase in pollock biomass. However, strong positive correlations among many of the predation parameters resulted in extremely large relative errors. This suggests that the diet data do not contain enough information to reliably estimate these parameters and that the model is overparameterized. Interspecific interactions are described in equations 5-7 and 9-27 in the Methods section of Chapter 1. Predation parameters are defined in Table 1 of Chapter 1, and parameter estimates (and relative errors) are shown in Figure 5 and 8 of Chapter 1. Correlations among selected interaction (predation) parameters are shown in Figures 6 and 7 of Chapter 1. Parameter estimates and correlations are explained in the Result and discussed in the Discussion of Chapter 1.

Objective 3 is the topic of Chapter 2. Our results suggest that variability in the extent of the cold pool on the EBS shelf affects important predator-prey interactions. Our results imply that increasing abundances of arrowtooth flounder (and to a lesser extent, adult pollock), in combination with anticipated decreases in ice extent and duration, may increase predation on age-1 pollock. These results are consistent with the hypothesis that an extensive cold pool provides a refuge for age-1 pollock from these predators (see Figure 1b of Chapter 2). Decreases in ice extent and enhanced summer temperatures have previously been shown to reduce the overwinter survival and subsequent recruitment of young-of-year pollock due to reduced prey availability (Hunt et al. 2011, Heintz et al. 2013). Our study suggests that recruitment may be further reduced in warm years because of increased predation mortality on age- 1 pollock. Therefore, anticipated declines in the future recruitment and abundance of walleye pollock in a warming climate may be even more pronounced than predicted by Mueter et al. (2011). Our main findings on the effects of temperature on predation appear in the Results, shown graphically in Figures 4 and 5, and are discussed in the Discussion of Chapter 2.

Chapter 1: A Multi-species Biomass Dynamics Model for Investigating Predator-prey Interactions in the Bering Sea Groundfish Community

Tadayasu Uchiyama*, Gordon H. Kruse, and Franz J. Mueter
Juneau Center, School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Pt. Lena
Loop Rd., Juneau, AK 99801
* Corresponding author, email: tuchiyama@alaska.edu, phone: (907) 796-5447

Abstract

Concerns over long-term cumulative impacts of fishing on marine ecosystems and the status of many marine species have led to calls for ecosystem-based approaches to fishery management. Single species population dynamics models traditionally used in fisheries stock assessment lack separate accounting of predation mortality and often underestimate natural mortality. Age-structured models used for stock assessment in the Alaska region are biologically realistic, but their applicability is limited to a relatively small number of commercially exploited species because they require accurate survey and fishery age composition data. The objective of this study was to develop a relatively simple age-aggregated multispecies model that describes biomass dynamics of some commercially and ecologically important groundfish species in the eastern Bering Sea by accounting for their trophic interactions. We developed and contrasted two alternative model formulations: a multispecies biomass dynamics (MBD) model and a multispecies delay difference (MDD) model. Both MBD and MDD models were able to capture observed trends in survey biomass data over 1982-2009. Although the MDD model fit the survey biomass estimates better than the MBD model, the MDD model and its maximum likelihood parameters produced biologically unrealistic biomass projections at $F>0.14$. Strong positive correlations among many of the predation parameters resulted in highly uncertain parameter estimates. Consistent with previous studies, both multispecies models predicted the multi-species $B_{0}, M S Y$, and $F_{M S Y}$ to be lower than the sum of the estimates from single-species assessment models. Although the results of the current study should be taken with caution because of high estimation uncertainty, our multispecies models provide useful tools for exploring long-term effects of choosing a particular harvest strategy for one species on the stock dynamics of other members of the groundfish community.

Keywords:

Multispecies model, Bering Sea, biomass dynamics model, delay-difference model, predator-prey interaction

Prepared for submission to:

Deep-Sea Research Part II: Topical Studies in Oceanography

Introduction

Increasing awareness of long-term cumulative impacts of fishing on marine ecosystems, including overfishing, have prompted serious concerns over the status of many marine species (Myers and Worm, 2003; Pauly et al., 2002; Pikitch et al., 2004). Recognition of these broader impacts has led to calls for more holistic approaches to fishery management, specifically ecosystem-based approaches. Central to ecosystem-based fishery management is the need to account for ecological interactions among species. Such interactions can be incorporated into fishery management using multispecies stock assessment models. Traditionally, fisheries stock assessment has relied on single species population dynamics models that treat natural mortality as time-invariant. This assumption, coupled to a lack of separate accounting of predation mortality, very often results in underestimation of natural mortality (Tyrrell et al., 2011).

Fisheries harvests off Alaska accounted for 56% of the total U.S. commercial fishery harvest and 36% of the U.S. exvessel value in 2011 (McDowell Group 2013). The Bering Sea and Aleutian Islands region alone produced seafood valued at $\$ 2.4$ billion; fisheries for groundfish in this region accounted for 40% of the entire U.S. commercial fishery harvest. These valuable fisheries are managed under a federal Fishery Management Plan under the auspices of the North Pacific Fishery Management Council. The Council's policy for groundfish fisheries includes the adoption of ecosystem-based fishery management principles, including the incorporation of ecosystem considerations into its management decisions (NPFMC 2010). In so doing, the Council recognizes that "potential changes in productivity may be caused by fluctuations in natural oceanographic conditions, fisheries, and other, non-fishing activities" and intends to "protect managed species from overfishing, and where appropriate and practicable, increase habitat protection and bycatch constraints."

Although all stock assessment models in use for the Alaska region are single-species population models, multispecies models are also used indirectly to incorporate trophic ecology into management decisions. For instance, linked predator-prey population models have been used to identify temporal changes in
natural mortality and stock productivity (Hollowed et al., 2011). Models used for these types of analysis include multispecies virtual population analysis (MSVPA; Livingston \& Jurado-Molina 2000, JuradoMolina \& Livingston 2002), multispecies statistical catch-at-age models (MSM; Jurado-Molina et al. 2005), and multispecies age-structured models (MSASA; Van Kirk et al., 2010). These are age-structured population dynamics models similar to the single species models used for stock assessment, but they include predator-prey linkages among two to five strongly interacting species.

Age-structured assessments subdivide the stock into age classes (cohorts) and model the dynamics of each cohort separately, requiring accurate survey and fishery age composition data. A simpler alternative to an age-structured model is the biomass dynamics model (also called surplus production model), which describes the dynamics of a stock using total biomass without regard to age, thus not requiring age composition data. Although the age-structured model is biologically more realistic, its applicability is limited to a relatively small number of commercially exploited species because of demanding data requirements. Also, simpler models can produce more precise biomass estimates than more realistic models, if available data do not provide sufficient contrast in historical information about stock status (Ludwig and Walters, 1985).

The goal of our study is to develop a relatively simple age-aggregated model that describes biomass dynamics of some commercially and ecologically important groundfish species in the eastern Bering Sea by accounting for their trophic interactions. We developed and contrasted two alternative model formulations. The first is based on the multispecies biomass dynamics model developed by Collie \& DeLong (1999) for the groundfish community on Georges Bank in the northwest Atlantic Ocean. Biomass dynamics models aggregate the effects of recruitment, growth, and mortality into a single production function (Haddon, 2000). As an alternative, we also modified Deriso's (1980) single-species delay difference model and reformulated it for multiple species. Unlike the biomass dynamics model, the delay difference model separates the effects of growth, mortality, and recruitment. It describes biomass dynamics of an age-structured population by assuming a von Bertalanffy growth function. In these regards, it is more realistic than the biomass dynamics model, yet still requires the same undifferentiated biomass data as does the biomass dynamics model.

Both multispecies models were developed for seven groundfish species in the eastern Bering Sea: walleye pollock (Gadus chalcogrammus) - a species that supports the largest commercial fishery in the U.S., arrowtooth flounder (Atheresthes stomias) - a very abundant predatory flatfish species of low economic value but high ecologically importance, Pacific cod (Gadus macrocephalus) - a predatory fish that supports valuable fisheries, and four commercially important flatfish species - yellowfin sole (Limanda
aspera), northern rock sole (Lepidopsetta polyxystra), flathead sole (Hippoglossoides elassodon), and Alaska plaice (Pleuronectes quadrituberculatus). Yellowfin sole alone supports the largest flatfish fishery in the U.S. For modeling purposes, we aggregated these last four flatfish species into a 'small-mouth flatfish' group, owing to their similar decadal trends in stock biomass and the similarity of their ecological relationships. Walleye pollock was divided into two age groups, juveniles (ages 0,1 , and 2) and adults (age 3+), because juvenile pollock serve as important forage for many other predators in the Bering Sea ecosystem. This separation also allowed us to explicitly model predation on juveniles, as well as cannibalism of juveniles by adult pollock, which is important component of their population dynamics (Wespestad et al., 2000). These seven species display tight trophic coupling owing to predator-prey relationships inferred from stomach content analyses (Figure 1), which forms the basis for our multispecies models.

Methods

Data

Biomass estimates from the summer bottom trawl survey (all species), echo-integrated trawl survey (walleye pollock only), and annual commercial catch data for all species were obtained from the Stock Assessment and Fishery Evaluation (SAFE) report for 2009 (NPFMC, 2009). The trawl survey estimates and catch data were available from 1982 to 2009, while EIT survey estimates for walleye pollock were only available in 1982, 1985, 1988, 1991, 1994, 1996, 1997, 1999, 2000, 2002, 2004, and 2006 - 2009.

Mean body weight for age-0 pollock was taken from Kooka (2012), and mean body weights for age-1, -2 , -3 , and -3+ pollock were taken from Ianelli et al (2009). Estimates of biomass lost to predation for each species for each predator were compiled from Alaska Fisheries Science Center's groundfish food habits reports for 1984-2001 (Lang et al., 2005, 2003, 1991; Livingston and DeReynier, 1996; Livingston et al., 1993). The biomass of a particular prey species lost to predation was estimated by multiplying together the daily ration of the predator by the biomass estimate of the predator, proportion of the prey species by weight in the predator's stomach, and the estimated number of feeding days by the predator. Methodological details are provided in Lang et al. (1991).

Correction for age-specific survey selectivity

To obtain an estimate of total biomass, survey biomass estimates were corrected for age-specific selectivity and model-estimated age compositions reported in NPFMC (2009). Assuming that observed biomass in year $y\left(B_{y}^{o b s}\right)$ is composed of age classes $a=\{1,2,3, \ldots \mathrm{~A}\}$ and that each age class has a
different degree of vulnerability to the survey gear (i.e., age-specific selectivity, S_{a}), then $B^{o b s}{ }_{y}$ can be estimated as:

$$
\begin{equation*}
B_{y}^{o b s}=\sum_{a=1}^{A} B_{a, y}^{o b s}=\sum_{a=1}^{A} B_{a, y} S_{a}=\sum_{a=1}^{A} N_{a, y} \bar{w}_{a} S_{a}=\sum_{a=1}^{A} N_{y} P_{a, y} \bar{w}_{a} S_{a}=N_{y} \sum_{a=1}^{A} P_{a, y} \bar{w}_{a} S_{a}, \tag{1}
\end{equation*}
$$

where:

$$
\begin{aligned}
& B_{a, y}^{o b s}=\text { observed biomass of age class } a \text { in year } y \\
& S_{a}=\text { selectivity of age class } a \\
& N_{a, y}=\text { number of individuals in age class } a \text { in year } y \\
& \bar{w}_{a}=\text { average weight of an individual of age class } a \\
& P_{a, y}=\text { proportionof populationin age class } a \text { in year } y \\
& N_{y}=\text { totalabundance in year } y
\end{aligned}
$$

From this,

$$
\begin{equation*}
N_{y}=B_{y}^{\text {obs }} / \sum_{a=1}^{A} P_{a, y} \bar{w}_{a} S_{a} \tag{2}
\end{equation*}
$$

A selectivity-corrected biomass estimate, $\widetilde{B}_{y}^{\text {obs }}$, is then obtained by setting all selectivities S_{a} in equation [1] equal to 1 :

$$
\begin{equation*}
\tilde{B}_{y}^{\text {obs }}=N_{y} \sum_{a=1}^{A} P_{a, y} \bar{w}_{a}=\frac{B_{y}^{o b s}}{\sum_{a=1}^{A} P_{a, y} \bar{w}_{a} S_{a}} \sum_{a=1}^{A} P_{a, y} \bar{w}_{a} . \tag{3}
\end{equation*}
$$

If selectivity, age proportions, and/or average weight-at-age differ between sexes, then selectivitycorrected estimates can be generalized to:

$$
\begin{equation*}
\widetilde{B}_{y}^{o b s}=N_{y} \sum_{s=1}^{2} \sum_{a=1}^{A} P_{s, a, y} \bar{w}_{s, a}=\frac{B_{y}^{o b s}}{\sum_{s=1}^{2} \sum_{a=1}^{A} P_{s, a, y} \bar{w}_{s, a} S_{s, a}} \sum_{s=1}^{2} \sum_{a=1}^{A} P_{s, a, y} \bar{w}_{s, a}, \tag{4}
\end{equation*}
$$

where subscript s denotes sex.

Models

Two forms of age-aggregated biomass models were used to model biomass dynamics of four major groundfish species/species groups in the eastern Bering Sea. The biomass dynamics equations of these species groups are connected to each other through predation terms.

Multispecies Biomass Dynamics (MBD) model

Biomass dynamics equations for all species or species group have a common basic form as follows for species x :

$$
\begin{equation*}
\hat{B}_{x, y+1}=\hat{B}_{x, y}+r_{x} \hat{B}_{x, y}\left(1-\frac{\hat{B}_{x, y}}{k_{x}}\right)-C_{x, y}-\hat{B}_{p r e d, x, y} \tag{5}
\end{equation*}
$$

where $\quad \hat{B}_{x, y}=$ biomass estimate of species x in year y

$$
\begin{aligned}
& C_{x, y}=\text { commercial catch in year } y \\
& \hat{B}_{p r e d, x, y}=\text { estimated predation on species } x \text { in year } y, \text { and }
\end{aligned}
$$

$$
r_{x}, k_{x}=\text { population growth and carrying capacity parameters, respectively, for species } x .
$$

In addition to the basic form above, the biomass dynamics equation for walleye pollock (subscript p) also includes a recruitment term $R_{p, y+1}$ that captures the part of the juvenile pollock biomass that recruits into adult biomass in year $y+1$:
$\hat{B}_{p, y+1}=\hat{B}_{p, y}+r_{p} \hat{B}_{p, y}\left(1-\frac{\hat{B}_{p, y}}{k_{p}}\right)-C_{p, y}-\hat{B}_{p r e d, p, y}+\hat{R}_{p, y+1}$,
where $\hat{R}_{p, y+1}=$ predicted recruitment.

Multispecies Delay Difference (MDD) model

Biomasses of adult walleye pollock (age 3+), arrowtooth flounder (age 1+), Pacific cod (age 1+), and the small-mouth flatfish group (age 1+) were modeled based on Deriso's delay difference model (Quinn \& Deriso 1999). In the models, the biomass of these species (or species group) were connected to each other by predation terms. The form of the biomass equation common to these species and species group was calculated following Quinn and Deriso (1999). For a given species x, predicted biomass in year $y+1$ was calculated as:
$\hat{B}_{x, y+1}=\left(1+\rho_{x}\right) s_{x, y} \hat{B}_{x, y}-\rho_{x} s_{x, y} s_{x, y-1} \hat{B}_{x, y-1}+\hat{R}_{x, y+1}$,
where:

$$
\rho_{x}=\text { Ford growth parameter for species } x
$$

$$
s_{x, y}=\text { surviving fraction of } \hat{B}_{x, y} \text { in the previous year } y
$$

$$
=\frac{\left(\hat{B}_{x, y}-\hat{B}_{p r e d, x, y}-C_{x, y}\right) e^{-m_{0, x}}}{\hat{B}_{x, y}}
$$

$$
m_{0, x}=\text { residual mortality rate of species } x \text { in year } y, \text { and }
$$

$$
\hat{R}_{x, y+1}=\text { predicted recruitment of species } x \text { in year } y+l .
$$

Recruitment for all species except pollock was modeled using a Ricker stock-recruit relationship. Spawning biomass was defined as the fraction of the biomass that survived all predation and fishing:

$$
\begin{equation*}
\hat{R}_{x, y+1}=\alpha_{x} s_{x, y} \hat{B}_{x, y} \exp \left(-\beta_{x} s_{x, y} \hat{B}_{x, y}\right) . \tag{8}
\end{equation*}
$$

Modeling of juvenile pollock biomass for both MBD and MDD models

Biomass of juvenile pollock (ages $0,1,2$) was modeled with age structure to account for the effect of predation on recruitment through multiple juvenile age classes, which have very different spatial distributions. Juvenile pollock biomass was modeled identically for both the MBD and the MDD models.

Age-0 pollock biomass was modeled to be proportional to adult (age-3+) pollock biomass:
$\hat{B}_{P 0, y}=f \hat{B}_{P 3+, y}$,
where f is a parameter combining fecundity, growth, and larval mortality.

In the subsequent two years, the surviving portion of juvenile biomass was multiplied by $\frac{w_{a+1}}{w_{a}}$, the ratio of the mean age- $a+1$ pollock body weight to the mean age- a pollock body weight to account for individual growth:
$\hat{B}_{P 1, y+1}=\left(\hat{B}_{P 0, y}-\hat{B}_{p r e d, P 0, y}\right) \frac{w_{P 1, y+1}}{w_{P 0, y}}$, and
$\hat{B}_{P 2, y+1}=\left(\hat{B}_{P 1, y}-\hat{B}_{p r e d, P 1, y}-C_{P 1, y}\right) \exp \left(m_{0, P 1}\right) \frac{w_{P 2, y+1}}{w_{P 1, y}}$.

Finally, the surviving portion of age-2 pollock biomass that recruits into the adult pollock biomass the next year is given by:
$\hat{R}_{P, y+1}=\left(\hat{B}_{P 2, y}-\hat{B}_{p r e d, P 2, y}-C_{P 2, y}\right) \exp \left(m_{0, P 2}\right) \frac{w_{P 3, y+1}}{w_{P 2, y}}$.

In equations [9-12],
$\hat{B}_{P 0, y}, \hat{B}_{P 1, y}, \hat{B}_{P 2, y}, \hat{B}_{P 3+, y}$ $=$ predicted biomass of pollock at age $0,1,2$, and $3+$ in year y, respectively.
$w_{P 0, y}, w_{P 1, y}, w_{P 2, y}, w_{P 3, y}=$ mean body weight at age $0,1,2$, and 3 in year y, respectively
$\hat{B}_{\text {pred }, P 0, y}, \hat{B}_{\text {pred, } P 1, y}, \hat{B}_{\text {pred, } P 2, y}=$ predicted biomass of pollock age $0,1,2$ lost topredation in year y
$C_{P 1, y}, C_{P 2, y}=$ observed catch of pollock at age 1 , and 2 in year y, and
$m_{0, P 1}, m_{0, P 2}=$ residual mortality parameter for pollock age1, and 2, respectively.

Predation terms

Predator-prey relationships among study species were modeled based on known trophic interactions from stomach analyses. The predation term for each prey species consisted of estimated biomass consumed by each of its predators. A Holling Type III predator functional response was used to model predator-prey relationships. In equations shown below, $d_{x z}$ is a predation parameter for prey x and predator z, and $a_{z x}$ is a search-and-handling parameter for predator z feeding on prey x. Species notations are; $P 0=$ age- 0 pollock, $P 1=$ age-1 pollock, $P 2=$ age- 2 pollock, $P 3+=$ adult pollock, $A=$ arrowtooth flounder, $C=$ Pacific cod, and $F=$ small-mouth flatfish.

Predation by adult pollock on juvenile (ages 0-2) walleye pollock is estimated as:

$$
\begin{equation*}
\hat{B}_{d P P, y}=\frac{d_{P P} \hat{B}_{P 3+, y} \hat{B}_{J, y}^{2}}{1+a_{P P} \hat{B}_{J, y}^{2}+a_{P A} \hat{B}_{A, y}^{2}+a_{P C} \hat{B}_{C, y}^{2}+a_{P F} \hat{B}_{F, y}^{2}} \tag{13}
\end{equation*}
$$

Predation by arrowtooth flounder on juvenile and adult walleye pollock is estimated as:

$$
\begin{equation*}
\hat{B}_{d P A, y}=\frac{d_{P A} \hat{B}_{A, y} \hat{B}_{P, y}^{2}}{1+a_{A P} \hat{B}_{P, y}^{2}+a_{A F} \hat{B}_{F, y}^{2}} . \tag{14}
\end{equation*}
$$

Predation by Pacific cod on juvenile and adult walleye pollock is estimated as:

$$
\begin{equation*}
\hat{B}_{d P C, y}=\frac{d_{P C} \hat{B}_{C, y} \hat{B}_{P, y}^{2}}{1+a_{C P} \hat{B}_{P, y}^{2}+a_{C A} \hat{B}_{A, y}^{2}+a_{C F} \hat{B}_{F, y}^{2}} \tag{15}
\end{equation*}
$$

and predation by small-mouth flatfish on juvenile walleye pollock is estimated as:

$$
\begin{equation*}
\hat{B}_{d P F, y}=\frac{d_{P F} \hat{B}_{F, y} \hat{B}_{J, y}^{2}}{1+a_{F J} \hat{B}_{J, y}^{2}} . \tag{16}
\end{equation*}
$$

In equation [13-15] $\quad \hat{B}_{J, y}=\hat{B}_{P 0, y}+\hat{B}_{P 1, y}+\hat{B}_{P 2, y}$ and

$$
\hat{B}_{P, y}=\hat{B}_{P 0, y}+\hat{B}_{P 1, y}+\hat{B}_{P 2, y}+\hat{B}_{P 3+, y} .
$$

Pollock biomass lost to predation was then apportioned to each age class by multiplying it by the ratio of biomass in each age class to either the sum of juvenile pollock biomasses ($\hat{B}_{J, y}$) or the sum of the biomasses of all pollock age classes ($\hat{B}_{P, y}$). Pollock predation by adult pollock and by small-mouth flatfish were apportioned to juvenile pollock age classes only, while predation by arrowtooth flounder and by Pacific cod were apportioned to all age classes including adults (age 3+). Estimates of biomass lost to predation for juvenile and adult age classes were calculated as follows.

For juvenile age classes, $\mathrm{a}=\{0,1,2\}$:
$\hat{B}_{p r e d, P a, y}=\frac{\hat{B}_{d P P, y} \hat{B}_{P a, y}}{\hat{B}_{J, y}}+\frac{\hat{B}_{d P A, y} \hat{B}_{P a, y}}{\hat{B}_{P, y}}+\frac{\hat{B}_{d P C, y} \hat{B}_{P a, y}}{\hat{B}_{P, y}}+\frac{\hat{B}_{d P F, y} \hat{B}_{P a, y}}{\hat{B}_{J, y}}$.

For adult pollock (age 3+):
$\hat{B}_{p r e d, P 3+, y}=\frac{\hat{B}_{d P A, y} \hat{B}_{P 3+, y}}{\hat{B}_{P, y}}+\frac{\hat{B}_{d P C, y} \hat{B}_{P 3+, y}}{\hat{B}_{P, y}}$.

An assumption implicit in equations [$17-18$] is that the rate of predation mortality caused by a particular predator was constant across all age classes of walleye pollock in a given year. This assumption is clearly not true, but was necessary to fit the models to age-aggregated estimates of biomass lost to predation. Despite constant predation mortality rates across all age classes, each cohort experiences different predation mortality through their juvenile life stage as predation mortality rates are time-variant. Therefore, pollock age classes 0-2 were modeled separately to reflect different predation mortality among cohorts from spawning to recruitment at age 3 .

Predation on arrowtooth flounder by adult pollock and by Pacific cod, respectively, is modeled as follows:

$$
\hat{B}_{d A P, y}=\frac{d_{A P} \hat{B}_{P 3+, y} \hat{B}_{A, y}^{2}}{1+a_{P P} \hat{B}_{J, y}^{2}+a_{P A} \hat{B}_{A, y}^{2}+a_{P C} \hat{B}_{C, y}^{2}+a_{P F} \hat{B}_{F, y}^{2}} \text { and [19] }
$$

$$
\begin{equation*}
\hat{B}_{d A C, y}=\frac{d_{A C} \hat{B}_{C, y} \hat{B}_{A, y}^{2}}{1+a_{C P} \hat{B}_{P, y}^{2}+a_{C A} \hat{B}_{A, y}^{2}+a_{C F} \hat{B}_{F, y}^{2}} . \tag{20}
\end{equation*}
$$

Therefore, total predation on arrowtooth flounder is:

$$
\begin{equation*}
\hat{B}_{p r e d, A, y}=\hat{B}_{d A P, y}+\hat{B}_{d A C, y} . \tag{21}
\end{equation*}
$$

Predation on Pacific cod by adult pollock is: $\hat{B}_{d C P, y}=\frac{d_{C P} \hat{B}_{P 3+, y} \hat{B}_{C, y}^{2}}{1+a_{P P} \hat{B}_{J, y}^{2}+a_{P A} \hat{B}_{A, y}^{2}+a_{P C} \hat{B}_{C, y}^{2}+a_{P F} \hat{B}_{F, y}^{2}}$ [22]
where $\hat{B}_{\text {pred }, C, y}=\hat{B}_{d C P, y}$.

Predation on flatfish by adult pollock, by arrowtooth flounder, and by Pacific cod is estimated as:

$$
\begin{gather*}
\hat{B}_{d F P, y}=\frac{d_{F P} \hat{B}_{P 3+, y} \hat{B}_{F, y}^{2}}{1+a_{P P} \hat{B}_{J, y}^{2}+a_{P A} \hat{B}_{A, y}^{2}+a_{P C} \hat{B}_{C, y}^{2}+a_{P F} \hat{B}_{F, y}^{2}}, \tag{24}\\
\hat{B}_{d F A, y}=\frac{d_{F A} \hat{B}_{A, y} \hat{B}_{F, y}^{2}}{1+a_{A P} \hat{B}_{P, y}^{2}+a_{A F} \hat{B}_{F, y}^{2}}, \text { and } \tag{25}\\
\hat{B}_{d F C, y}=\frac{d_{F C} \hat{B}_{C, y} \hat{B}_{F, y}^{2}}{1+a_{C P} \hat{B}_{P, y}^{2}+a_{C A} \hat{B}_{A, y}^{2}+a_{C F} \hat{B}_{F, y}^{2}} . \tag{26}
\end{gather*}
$$

Total predation on flatfish is therefore given by:

$$
\begin{equation*}
\hat{B}_{p r e d, F, y}=\hat{B}_{d F P, y}+\hat{B}_{d F A, y}+\hat{B}_{d F C, y} . \tag{27}
\end{equation*}
$$

$434-\ln L=\sum_{m e t} \sum_{x}\left\{\sum_{y=1}^{n_{\text {met, } x}} \ln \widetilde{B}_{m e t, x, y}^{\text {obs }}+\frac{n_{\text {met }, x}}{2}\left[\ln \left(\frac{2 \pi \sum_{y=1}^{n_{\text {mat,x }}}\left(\ln \widetilde{B}_{m e t, x, y}^{\text {obs }}-\ln \hat{B}_{m e t, x, y}\right)^{2}}{n_{m e t, x}}\right)+1\right]\right\}$

$$
\begin{equation*}
+\sum_{x} \sum_{z}\left\{\sum_{y=1}^{n_{d, x z}} \ln B_{d x z, y}+\frac{n_{d, x z}}{2}\left[\ln \left(\frac{2 \pi \sum_{y=1}^{n_{d, x}}\left(\ln B_{d x z, y}-\ln \hat{B}_{d x z, y}\right)^{2}}{n_{d, x z}}\right)+1\right]\right\} \tag{33}
\end{equation*}
$$

where

The list of estimated parameters is given in Table 1.

Biomass projection and calculation of biological reference points

Once parameters were estimated by fitting the models to data from 1982-2009, biomass of all species were projected forward using the estimated parameters for 100 years beginning with the predicted biomass for the last survey year (2009). Observed historical catches were subtracted from annual biomass estimates from 1982 to 2009. In forward projections, instantaneous fishing mortality rate (F) for each species was varied between 0 and 0.99 to find a combination of F s that produces the maximum sustainable yield (MSY) as the sum of the projected catches from all species at equilibrium. Catches were calculated as;
$C_{x, y}=\left(1-\exp \left(-F_{x}\right)\right) \hat{B}_{x, y}$

From biomass projections, five biological reference points (BRPs) of interest to fisheries management were calculated. Unfished equilibrium biomass, B_{0}, was obtained as the biomass in the last year of a projection (equilibrium biomass) with no fishing ($F=0$). Current depletion, B_{2009} / B_{0} was predicted biomass in 2009 divided by B_{0}. MSY was defined as the highest total yield in the last year of the projections (equilibrium yield) over all increments of F form 0 to 0.99 while maintaining biomasses of all species above 20% of their respective $B_{0} . F_{M S Y}$ and $B_{M S Y}$ corresponded to the F and equilibrium biomass at which $M S Y$ was estimated to have occurred.

Monte Carlo simulations

Precision and bias in the estimates of the model parameters and the BRPs were evaluated for both types of models using Monte Carlo (MC) simulations. The estimation models (MBD or MDD) and the maximum likelihood parameters from the original model fits were used to simulate biomasses for all species for the same number of years as in the original dataset (28 yr). From 1982 to 2009, annual catch rates in the simulations were specified based on the observed catches and the biomass estimates from the original model fit as $f_{x, y}^{M C}=C_{x, y} / \hat{B}_{x, y}$ for species x in year y. Simulated catches were then calculated as $C_{x, y}^{M C}=f_{x, y}^{M C} B_{x, y}^{M C}$, in which $B_{x, y}^{M C}$ is the simulated biomass of species x in year y. In years after 2009 in the simulations, one hundred projections were made by varying F from zero to 0.99 in increments of 0.01 . In each iterative MC simulation, the same F was applied to all species to limit the number of projections. In each year, the simulated catch and biomass consumed by predators (calculated from the simulated biomass using equations [13-27]) were subtracted from the simulated total biomass, and the remaining biomass was multiplied by a lognormal process error with a standard deviation equal to 10% of the root-mean-square error (RMSE) of the original model fit to the data. Process errors with a larger standard deviation resulted in unstable biomass projections. The simulated "true" biomass was then projected forward using either the MBD or the MDD models above and was multiplied by a lognormal observation error with a standard deviation equal to 90% of RMSE of the original fit to produce a time series of simulated "observations" $B_{x, y}^{M C, o b s}$. Model parameters for both the MBD and MDD models, as well as the five BRPs were estimated for each of 3000 simulated data sets following the procedure described above. An additional set of 3000 simulated time series were generated using the MDD model as the operating model and the MBD model as the assessment model to estimate the reference points. Estimation biases were computed as the difference between the true parameters used to simulate biomass time series and the median values of parameter estimates from the three thousand MC simulation runs. To summarize variability in the parameter estimates we calculated the $2.5^{\text {th }}$ and $97.5^{\text {th }}$ percentiles of the estimates from the MC simulations, respectively. These are referred to here as simulation intervals. Estimation biases are reported as relative errors
$\left(=\frac{\text { Estimate }- \text { True parameter }}{\text { True parameter }} \times 100\right)$.

Results

Both MBD and MDD models were able to capture the trends in the survey biomass data over 1982-2009 (Figure 2). Biomass estimates by the two types of models were almost identical for Pacific cod. For small-mouth flatfish biomass, the MDD model seemed to be much more sensitive to fluctuations in observed biomass compared to the MBD model. Overall, the MDD model fit the data only slightly better than the MBD model based on the negative log likelihood (2445.11 and 2449.02 for the MDD and the MBD models, respectively) at the expense of 11 additional parameters (42 and 53 parameters for the MBD and the MDD models, respectively). Biomass projections by the MDD model exhibited limit cycles in walleye pollock and small-mouth flatfish biomass trajectories at $\mathrm{F}=0$ (Figure 3). At higher $F \mathrm{~s}$ ($F=$ 0.34 is shown in Figure 3), pollock biomass projections by the MDD model increased exponentially over time. To correct this biologically unrealistic behavior, it was necessary to adjust some parameters in the MDD model (predation term for pollock and stock-recruit and growth parameters for the flatfish) manually. The projections were allowed to stabilize (Figure 4); however, the resulting parameters were not maximum likelihood parameters ($-\operatorname{lnL}=2485.84$). Results presented below are based on models with the adjusted parameter values.

Predicted biomass during 2010-2109 differed between the two models and depending upon F (Figure 4). In the absence of fishing, the equilibrium biomass (B_{0}) predicted by both the MBD and the MDD models were all smaller than the assessment estimates except for arrowtooth flounder (Table 2). The sum of B_{0} estimates for all species from the assessment was about twice as large as those estimated by the MBD and the MDD models. Current depletion (B_{2009} / B_{0}) estimated by the MBD and the MDD models were similar to the one by the assessment model for Pacific cod, but much higher and close to 1 for walleye pollock and flatfishes. The MDD model estimated B_{0} for arrowtooth flounder to be about twice as large as estimates from other models. When all seven species are combined, current depletion was estimated at 0.86 and 1.00 for the MBD and MDD models, respectively, compared to 0.40 for the 2009 stock assessments. Estimates of $M S Y, F_{M S Y}$, and $B_{M S Y}$ for individual species varied considerably among models, but all three models resulted in similar estimates of system-level $B_{M S Y}$ when summed across species (10 to 13 million metric tons). But, the both multispecies models predicted the eastern Bering Sea groundfish stocks to be less productive than the assessment models, except for the flatfish group for which $M S Y$ was estimated slightly higher by the MBD model (Table 2).

Model performance was assessed by examining relative errors in parameter estimates from the MC simulations (Figures 5, 6, and 7). For the first year biomass estimates by species or group ($B_{P l, 1982}$, $B_{P 2,1982}, B_{P 3,1982}, B_{P, 1982}, B_{A, 1982}, B_{C, 1982}, B_{F, 1982}$; Table 1) the median parameter values from the simulations
are very close to the true parameters for both the MBD and the MDD model (Figure 5). Estimation biases ranged from $-21 \%\left(B_{P 3,1982}\right)$ to $0.02 \%\left(B_{F, 1982}\right)$, and were of similar magnitude in the two models. However, the MDD model produced larger relative errors for all of these parameters except for $B_{P 3,1982}$.

Bottom trawl catchability for the three juvenile and adult age classes of pollock ($q_{B T, P I}, q_{B T, P 2}, q_{B T, P 3}, q_{B T}$, ${ }_{P}$) were also estimated accurately on average by both models, with median estimation biases ranging from -0.9% to 3.2%. For these parameters, the MDD estimates were much more variable than the MBD estimates (Figure 5). The median estimate of the fecundity parameter f was very close to the true parameter for both the MBD and the MDD models, but relative error ranged from $1.5 \times 10^{-3}\left(2.5^{\text {th }}\right.$ percentile) to 6.5×10^{-2} ($97.5^{\text {th }}$ percentile) for the MDD model (Figure 5). In contrast, the MBD model estimates had a much narrower distribution of $f \mathrm{~s}$.

The MBD model resulted in a much wider range of errors for many of the parameters related to predation ($d_{x z}, a_{z x}$) and mortality ($m_{0,1}, m_{0,2}$) compared to the MDD model (Figure 5). While the MDD model estimated $m_{0,1}$ and $\mathrm{m}_{0,2}$ accurately, the estimates by the MBD model were strongly biased (3368% and 575% for $\mathrm{m}_{0,1}$ and $\mathrm{m}_{0,2}$, respectively). Error distributions were also wider for the MBD estimates for $\mathrm{m}_{0,1}$ and $m_{0,2}$, whose 95% intervals both exceeded $100,000 \%$ of the true values, while the 95% interval of the MDD estimates were about 200% of the true values for both.

Estimation biases for the 20 parameters in the predation equations of the MBD model were either small $\left(<10 \% ; 2\right.$ parameters, $d_{p f}$ and $a_{f p}$), moderate ($>10 \%,<100 \% ; 5$ parameters, $d_{a p}, d_{a c}, d_{f a}, d_{p a}$, and $a_{a p}$), or very large ($>1000 \%$; 13 parameters). Error distributions were narrow ($2.5^{\text {th }}$ and $97.5^{\text {th }}$ percentiles were within 100% of the true parameter values) for two parameters with large negative biases (d_{ap} and d_{ac}, due to very small median estimates), but very large for the rest of the 20 parameters. Despite the wide 95% intervals, the true parameter values were smaller than the $2.5^{\text {th }}$ percentile for two parameters $\left(d_{p p}, a_{p p}\right)$ and larger than the $97.5^{\text {th }}$ percentile for another two ($d_{a p}$, and $d_{a c}$). Five of the 13 parameters with extremely large biases $\left(d_{p p}, a_{p p}, d_{c p}, d_{f p}, a_{p f}\right.$) were strongly positively correlated with each other (Figure 6). Another four $\left(d_{p c}, a_{c p}, d_{a c}, d_{f c}\right)$ of the 13 parameters also showed strong positive correlations with each other. Three of the five parameters with moderate biases $\left(d_{p a}, a_{a p}, d_{f a}\right)$ were also highly positively correlated with each other.

For the same 20 predation parameters, the MDD model estimated seven with small biases ($<10 \%$; $d_{p a}, a_{a p}$, $a_{p a}, d_{c p}, a_{p c}, a_{a f}$, and $\left.a_{c f}\right)$, five with moderate biases ($>10 \%$ and $<100 \% ; \mathrm{d}_{\mathrm{p}}, \mathrm{a}_{\mathrm{fp}}, \mathrm{d}_{\mathrm{ap}}, \mathrm{d}_{\mathrm{ac}}$, and d_{fa}), eight with very large biases ($>100 \% ; d_{p p}, d_{p c}, a_{p p}, \mathrm{a}_{\mathrm{cp}} \mathrm{a}_{\mathrm{ca}}, \mathrm{d}_{\mathrm{fp}}, \mathrm{d}_{\mathrm{fc}}$ and a_{pf}. Estimates were also highly variable for all of the eight parameters with large estimation biases. For these eight parameters, and for four of the seven
parameters with small biases ($a_{p a}, d_{c p}, a_{p c}$, and $a_{a f}$), the $97.5^{\text {th }}$ percentile of relative errors were $>1000 \%$ of the true parameter value. Four of the eight parameters with large biases ($d_{p p}, a_{p p}, d_{f p}$, and $a_{p f}$) had strong positive correlations with each other and with one parameter with a small estimation bias $\left(d_{c p}\right)$. The other three with large biases ($d_{p c}, a_{c p}$, and $d_{f c}$) also had strong positive correlation with each other (Figure 7). Two pairs ($d_{p f}$ and $a_{f p}, d_{a p}$ and $d_{a c}$) of parameters out of the five with moderate biases were also positively correlated with each other, while the last one of the five $\left(d_{f a}\right)$ had strong positive correlation with two parameters with small biases ($d_{p a}$ and $a_{a p}$).

There are 8 and 19 other parameters unique to the MBD and MDD models, respectively. The MBD model estimated these 8 parameters ($r_{p}, k_{p}, r_{a}, k_{a}, r_{c}, k_{c}, r_{f}, k_{f}$) fairly well (Figure 8). Estimated biases were all less than 10%. The 95% intervals of relative errors for these parameters were fairly narrow except for the carrying capacity parameter for small-mouth flatfish $\left(k_{f}\right)$ Estimates of the 19 MDD parameters were less accurate and precise (Figure 8). Out of the 19 parameters, $\operatorname{six}\left(m_{0, P}, s_{P, 1981} B_{P, 1981}, \rho_{C}, \alpha_{C}, m_{0, F}\right.$, and $\left.\alpha_{F}\right)$ had biases larger than 10%. For 12 of the 19 parameters, the range of the 95% intervals ranged from 108% to 556% of the true parameters. The other seven parameters exhibited the 95% intervals over 1000% of the true parameter values. There was no apparent correlation between the magnitude of the estimation bias and precision. Only three pairs of parameters (ρ_{p} and $m_{0, p}, m_{0, a}$ and $\alpha_{a}, m_{0, c}$ and β_{c}) showed strong correlation to each other.

The MDD model resulted in much larger biases in $M S Y$ and $B_{M S Y}(53 \%$ and 54%, respectively; Figure 9) than the MBD model (3% and 2%, respectively). When the MBD model was used to estimate the reference points from simulated biomasses generated by the MDD model, the biases were intermediate and negative (-27% and -4% for $M S Y$ and $B_{M S Y}$, respectively). Using MBD as both the operating model and the assessment model produced the most precise estimates of $M S Y$ and $B_{M S Y}$, while using the MDD model to estimate these reference points from MDD simulated biomasses were least precise.

Estimation biases for B_{0} were similarly small for all three simulation sets ($4 \%, 2 \%$, and 4% for the MBD, the MDD, and the MDD/MBD, respectively). However, relative errors for the MDD estimates were much larger compared to the other two (Figure 9). For B_{200} / B_{0}, estimation biases were similar among the three simulation sets and were moderately large around -20%. The MBD estimates for B_{2009} / B_{0} was much more precise compared to the other two sets. Regardless of the model used to project biomass (whether the MBD model or the MDD model), the estimates produced by the MBD model were more precise than the estimates by the MDD model. The only exception was $\mathrm{F}_{\mathrm{MSY}}$, the MBD estimate of which was both less accurate and precise.

Estimates of $M S Y, B_{M S Y}, B_{0}$, and B_{2009} / B_{0} by the MDD model were all strongly correlated (Figure 10). These same estimates plus $F_{M S Y}$ from the MBD models also showed moderate correlations (Figure 11 \& 12).

Discussion

Although the MDD model fit the survey biomass estimates of the eastern Bering Sea groundfish species better than did the MBD model, the MDD model and its maximum likelihood parameters produced biologically unrealistic biomass projections involving exponential increases of pollock biomass at $F>$ 0.14 . High F s on all species depleted the biomass of predators, which in turn reduced predation on juvenile pollock by Pacific cod and arrowtooth flounder, resulting in a rapid increase in pollock biomass. Biomass projections for pollock were stabilized by manually adjusting the model parameters to increase the amount of cannibalism, which introduced a tighter density-dependent control on pollock biomass. However, after this ad-hoc correction the negative log likelihood of the MDD model, given the survey biomass estimates, became greater than that of the MBD model in spite of the 11 additional parameters used in the MDD model.

Similar to the results from the multispecies biomass dynamics model of Collie and DeLong (1999), our parameter estimates were highly uncertain. Strong positive correlations among many of the predation parameters resulted in extremely large relative errors. This suggests that the diet data do not contain enough information to reliably estimate these parameters and that the model is overparameterized. Although many of the predation parameters estimated by the MDD model had narrower error ranges than the MBD model estimates, these MDD estimates were associated with large variation in the sum-ofsquared biomass residuals. This indicates that the smaller estimation error was achieved at the expense of increased errors or bias in the survey biomass estimates. While neither model is clearly better in terms of parameter estimation, unstable biomass projections is a major concern for the MDD model. Small changes in parameter values quite often lead to unrealistic or chaotic behaviors of biomass trajectories for the MDD model. Lack of self-regulation in the MDD-model biomass dynamics is particularly problematic in estimating BRPs as this requires projected biomass to reach equilibrium.

The estimates of unfished biomass (B_{0}) from the multispecies models were lower than the estimates from single-species assessment models because surplus production in the absence of fishing is consumed by predators. This also means that, under various harvesting scenarios, the biomass of a given species can be greater than its B_{0} if predator biomass is reduced by fishing. For example, the equilibrium biomass of walleye pollock was predicted to be above its B_{0} when maximizing the total yield of the system (Table 2),
as a result of fishing down predators of walleye pollock to $B_{20 \%}$, the lowest biomass level specified in the chosen harvest strategy. In the MDD-model predictions, MSY for the system was obtained by harvesting two predator species (Pacific cod and arrowtooth flounder) down to low biomass levels, thereby increasing production of pollock and flatfish. In the MBD-model predictions, Pacific cod was similarly depleted to a low biomass level to increase the production of pollock and flatfish, but arrowtooth flounder were not harvested at all because reducing the availability of arrowtooth flounder as prey in the system increases predation on juvenile pollock, especially by adult pollock (prey switching). In either case, multispecies models predicted the system-wide MSY to be much lower than that estimated by the assessment models. As a result, $F_{M S Y}$ for each species was also predicted to be lower than the estimates in the stock assessments, except for some species in the flatfish group. These results are consistent with other studies that have shown that multi-species or system level MSY is generally lower than the sum of single-species MSY (Walters et al. 2005, Mueter and Megrey 2006, Tyrrell et al. 2011).

Multispecies models are currently not used as primary assessment tools or to determine reference points. The results of the current study need to be considered carefully because of the high estimation uncertainty. However, the multispecies models developed in this study provide useful tools for exploring long-term effects of choosing a particular harvest strategy for one species on the stock dynamics of other species. In the current study, we explored the consequences of one particular harvesting strategy, in which the total sustainable yield of the multi-species system was maximized. Simulations of other harvesting strategies with different management objectives, such as maximizing economic values of catches or rebuilding a depleted stock, are also possible and worth exploring. Another fruitful area of research would be to incorporate effects of climate change on trophic interactions and to study how it may affect management decisions on these fishery resources.

Literature Cited

Collie, J.S., DeLong, A.K., 1999. Multispecies Interactions in the Georges Bank Fish Community, in: Ecosystem Approaches for Fisheries Management. Alaska Sea Grant College Program Publication AK-SG-99-01, University of Alaska, Fairbanks. Alaska Sea Grant, University of Alaska Fairbanks, pp. 187-210.

Haddon, M., 2000. Modelling and quantitative methods in fisheries. Chapman \& Hall / CRC, Boca Raton.

Hollowed, A.B., Aydin, K.Y., Essington, T.E., Ianelli, J.N., Megrey, B.A., Punt, A.E., Smith, A.D.M., 2011. Experience with quantitative ecosystem assessment tools in the northeast Pacific. Fish and Fisheries 12, 189-208.

Ianelli, J.N., Barbeaux, S., Honkalehto, T., Kotwicki, S., Aydin, K., Williamson, N., 2009. Assessment of Alaska Pollock Stock in the Eastern Bering Sea., in: Stock Assessment and Fishery Evaluation Report for the Groundfish Resources of the Bering Sea/Aleutian Islands Regions. North Pacific Fishery Management Council, Anchorage, pp. 49-148.

Jurado-Molina, J., Livingston, P., 2002. Multispecies Perspectives on the Bering Sea Groundfish Fisheries Management Regime. North American Journal of Fisheries Management 22, 1164-1175.

Jurado-Molina, J., Livingston, P.A., Ianelli, J.N., 2005. Incorporating predation interactions in a statistical catch-at-age model for a predator-prey system in the eastern Bering Sea. Canadian Journal of Fisheries and Aquatic Sciences 62, 1865-1873.

Kooka, K., 2012. Life-history traits of walleye pollock, Theragra chalcogramma, in the northeastern Japan Sea during early to mid 1990s. Fisheries Research 113, 35-44.

Lang, G.M., Derrah, C.W., Livingston, P.A., 2003. Groundfish food habits and predation on commercially important prey species in the eastern Bering Sea From 1993 through 1996. US Department of Commerce, National Marine Fisheries Service, AFSC Processed Report 2003-04.

Lang, G.M., Livingston, P.A., Dodd, K.A. 2005. Groundfish food habits and predation on commercially important prey species in the eastern Bering Sea from 1997 through 2001. US Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-158.

Lang, G.M., Livingston, P.A., Pacunski, R., Parkhurst, J., Yang, M., 1991. Groundfish food habits and predation on commercially important prey species in the eastern Bering Sea from 1984 to 1986. US Department of Commerce, NOAA Technical Memorandum NMFS F/NWC-207.

Livingston, P.A., DeReynier, Y., 1996. Groundfish food habits and predation on commercially important prey species in the eastern Bering Sea from 1990 to 1992. National Marine Fisheries Service, AFSC Processed Report 96-04.

Livingston, P.A., Jurado-Molina, J., 2000. A multispecies virtual population analysis of the eastern Bering Sea. Ices Journal of Marine Science 57, 294-299.

Livingston, P.A., Ward, A., Lang, G.M., Yang, M., 1993. Groundfish food habits and predation on commercially important prey species in the eastern Bering Sea from 1987 to 1989. US Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-11.

Ludwig, D., Walters, C.I., 1985. Are age-structured models appropriate for catch-effort data? Canadian Journal of Fisheries and Aquatic Sciences 42, 1066-1072.

Mueter, F.J., Megrey, B.A.. 2006. Using multi-species surplus production models to estimate ecosystemlevel maximum sustainable yields. Fisheries Research 81, 189-201.

Myers, R. a, Worm, B., 2003. Rapid worldwide depletion of predatory fish communities. Nature 423, 280-3.

NPFMC, 2009. Stock Assessment and Fishery Evaluation Report for the Groundfish Resources of the Bering Sea/Aleutian Islands Regions.

Pauly, D., Christensen, V., Guénette, S., Pitcher, T.J., Sumaila, U.R., Walters, C.J., Watson, R., Zeller, D., 2002. Towards suntainability in world fisheries. Nature 418, 689-695.

Pikitch, E.K., Santora, C., Babcock, E.A., Bakun, A., Bonfil, R., Conover, D.O., Dayton, P., Doukakis, P., Fluharty, D., Heneman, B., Houde, E.D., Link, J., Livingston, P.A., Mangel, M., McAllister, M.K., Pope, J., Sainsbury, K.J., 2004. Ecosystem-Based Fishery Management. Science 305, 346-347.

Quinn, T.I., Deriso, R.B., 1999. Quanitative Fish Dynamics. Oxford, New York.
Tyrrell, M.C., Link, J.S., Moustahfid, H., 2011. The importance of including predation in fish population models: Implications for biological reference points. Fisheries Research 108, 1-8.

Van Kirk, K.F., Quinn, T.J., Collie, J.S., 2010. A multispecies age-structured assessment model for the Gulf of Alaska. Canadian Journal of Fisheries and Aquatic Sciences 67, 1135-1148.

Walters, C.J., Christensen, V., Martell, S.J., Kitchell, J.F. 2005. Possible ecosystem impacts of applying MSY policies from single-species assessment. ICES Journal of Marine Science 62, 558-568.

Wespestad, V.G., Fritz, L.W., Ingraham, W.J., Megrey, B.A., 2000. On relationships between cannibalism, climate variability, physical transport, and recruitment success of Bering Sea walleye pollock (Theragra chalcogramma). ICES Journal of Marine Science 57, 272-278.

Table 1. List of estimated parameters.

Parameters common to both models	
$B_{P l, 1982}$	Biomass of age-1 pollock in 1982
$B_{P 2,1982}$	Biomass of age-2 pollock in 1982
$B_{P 3,1982}$	Biomass of age-3 pollock in 1982
$B_{P, 1982}$	Biomass of age-3+ pollock in 1982
$B_{A, 1982}$	Biomass of arrowtooth flounder in 1982
$B_{C, 1982}$	Biomass of Pacific cod in 1982
$B_{F, 1982}$	Biomass of small-mouth flatfish in 1982
$q_{B T, P 1}$	Bottom trawl survey catchability for age-1 pollock
$q_{B T, P 2}$	Bottom trawl survey catchability for age-2 pollock
$q_{B T, ~ P 3}$	Bottom trawl survey catchability for age-3 pollock
$q_{\text {BT, } P}$	Bottom trawl survey catchability for age-3+ pollock
f	Parameter combining fecundity, growth, and larval mortality of pollock
$m_{0, P l}$	Residual mortality of age-1 pollock
$m_{0, P 2}$	Residual mortality of age-2 pollock

Parameters in predation equations	
$d_{P P}$	Predation rate parameter for pollock prey and pollock predator
$d_{P A}$	Predation rate parameter for pollock prey and arrowtooth predator
$d_{P C}$	Predation rate parameter for pollock prey and cod predator
$d_{P F}$	Predation rate parameter for pollock prey and flatfish predator
$a_{P P}$	Search-and-handling parameter for pollock prey and pollock predator
$a_{A P}$	Search-and-handling parameter for pollock prey and arrowtooth predator
$a_{C P}$	Search-and-handling parameter for pollock prey and cod predator
$a_{F P}$	Search-and-handling parameter for pollock prey and flatfish predator
$d_{A P}$	Predation rate parameter for arrowtooth prey and pollock predator
$d_{A C}$	Predation rate parameter for arrowtooth prey and cod predator
$a_{P A}$	Search-and-handling parameter for arrowtooth prey and pollock predator
$a_{C A}$	Search-and-handling parameter for arrowtooth prey and cod predator
$d_{C P}$	Predation rate parameter for cod prey and pollock predator
$a_{P C}$	Search-and-handling parameter for cod prey and pollock predator
$d_{F P}$	Predation rate parameter for flatfish prey and pollock predator
$d_{F A}$	Predation rate parameter for flatfish prey and arrowtooth predator
$d_{F C}$	Predation rate parameter for flatfish prey and cod predator
$a_{P F}$	Search-and-handling parameter for flatfish prey and pollock predator
$a_{A F}$	Search-and-handling parameter for flatfish prey and arrowtooth predator
$a_{C F}$	Search-and-handling parameter for flatfish prey and cod predator

Table 1. Continued.

Parameters unique to MBD model

r_{P}	Growth parameter for walleye pollock
k_{P}	Carrying capacity parameter for walleye pollock
r_{A}	Growth parameter for arrowtooth flounder
k_{A}	Carrying capacity parameter for arrowtooth flounder
r_{C}	Growth parameter for Pacific cod
k_{C}	Carrying capacity parameter for Pacific cod
r_{F}	Growth parameter for small-mouth flatfish
k_{F}	Carrying capacity parameter for small-mouth flatfish

Parameters unique to MDD model	
ρ_{p}	Ford growth parameter for walleye pollock
$m_{0, p}$	Residual mortality rate for walleye pollock
$s_{P 2,1981} B_{P 2,1981}$	Surviving portion of age-2 pollock biomass in 1981
$s_{P, 1981} B_{P, 1981}$	Surviving portion of age-3+ pollock biomass in 1981
ρ_{A}	Ford growth parameter for arrowtooth flounder
$m_{0, A}$	Residual mortality rate for arrowtooth flounder
α_{A}	Ricker stock-recruit parameter for arrowtooth flounder
β_{A}	Ricker stock-recruit parameter for arrowtooth flounder
$s_{A, 1981} B_{A, 1981}$	Surviving portion of arrowtooth biomass in 1981
ρ_{C}	Ford growth parameter for Pacific cod
$m_{0, C}$	Residual mortality rate for Pacific cod
α_{C}	Ricker stock-recruit parameter for Pacific cod
β_{C}	Ricker stock-recruit parameter for Pacific cod
$s_{C, 1981} B_{C, 1981}$	Surviving portion of cod biomass in 1981
ρ_{F}	Ford growth parameter for small-mouth flatfish
$m_{0, F}$	Residual mortality rate for small-mouth flatfish
α_{F}	Ricker stock-recruit parameter for small-mouth flatfish
β_{F}	Ricker stock-recruit parameter for small-mouth flatfish
$s_{F, 1981} B_{F, 1981}$	Surviving portion of small-mouth flatfish biomass in 1981

Table 2. Estimates of biological reference points for the MBD, MDD, and assessment models.
Assessment model estimates were taken from NPFMC (2009). The unit for MSY, $\mathrm{B}_{\text {MSY }}$, and B_{0} are in 1,000 metric tons.

Species	Model	$\underline{\mathrm{F}_{\text {MSY }}}$	$\underline{\text { MSY }}$	$\underline{\mathrm{B}}_{\text {MSY }}$	$\underline{\mathrm{B}}_{0}$	$\underline{\mathrm{~B}}_{2009} / \underline{\mathrm{B}}_{0}$
Pollock	MBD	0.22	1,605	9,206	8,942	0.92
	MDD	0.17	946	7,085	5,213	1.34
	Assessment	0.47	3,022	8,102	21,457	0.29
Cod	MBD	0.24	90	417	2,086	0.31
	MDD	0.26	87	379	1,825	0.35
	Assessment	0.35	355	1,202	3,428	0.33
Arrowtooth	MBD	0.00	0	945	942	0.97
	MDD	0.24	64	296	1,357	0.72
	Assessment	0.30	94	368	1,051	1.08
Flatfish	MBD	0.45	904	2,473	5,857	0.95
	MDD	0.27	673	2,838	6,221	0.97
	Assessment	$0.12-0.77$	717	2,820	9,696	0.59
Total	MBD		2,599	13,041	17,826	0.86
	MDD		1,769	10,597	14,615	1.00
	Assessment		4,188	12,492	35,633	0.40

* $F_{M S Y}$ estimates varied among the four species of flatfishes.

Figure 1. Predator-prey relationships among eastern Bering Sea fish species as modeled in this study. Arrows represent directions of predator \longrightarrow prey.

Figure 2. Estimated biomass for (a) walleye pollock, (b) arrowtooth flounder, (c) Pacific cod, and (d) small-mouth flatfish for 1982-2009. Biomass was predicted from the multispecies biomass dynamics (MBD, solid line) and the multispecies delay difference (MDD, dashed line) model. Open circles are biomass estimates from the summer bottom trawl survey based on area-swept methods, and the dashed lines are biomass estimates from the single-species stock assessment models (NPFMC, 2009).

Figure 2. continued.

Figure 3. Fitted biomass over 1982-2009 and projected biomass through 2109 for (a) walleye pollock and (b) small-mouth flatfish produced by the MDD model with the maximum likelihood parameters.

Historical observed catches were applied over 1982-2009, then constant F was applied over 2010-2109.
Solid lines are projections with $F=0$. Dashed lines show projections with $F=0.34$.

Figure 4. Biomass projections for (a) walleye pollock, (b) arrowtooth flounder, (c) Pacific cod, (d) smallmouth flatfish from the MBD (thick lines) and the MDD (thin lines) models from 1982 to 2109. Solid lines are projections with $F=0$ after 2009, and dashed lines are projections with $F=F_{M S Y}$. For the MBD models, $F_{M S Y, \text { pollock }}=0.22, F_{M S Y, \text { cod }}=0.24, F_{M S Y, \text { arrowtooth }}=0, F_{M S Y, f a f f i s h}=0.45$. For the MDD models, $F_{M S Y, \text { pollock }}=0.17, F_{M S Y, \text { cod }}=0.26, F_{M S Y, \text { arrowtooth }}=0.24, F_{M S Y, \text { fatifish }}=0.27$.

900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917 918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935 936

Figure 4. continued.

Figure 5. Boxplots of parameter estimates from Monte Carlo simulations expressed as relative errors, i.e., true parameters are at 0 (dotted horizontal lines). For definitions of the parameters see Table 1. Lower and upper bounds of the boxes indicate $25^{\text {th }}$ and $75^{\text {th }}$ percentiles, respectively. Thick horizontal lines inside the boxes indicate median errors. Whiskers indicate $2.5^{\text {th }}$ and $97.5^{\text {th }}$ percentiles.

Figure 5. continued.

Figure 5. continued.

Figure 6. Scatterplots of parameter estimates by the MBD models for pairs of selected predation parameters that are strongly positively correlated. See Table 1 for parameter definitions. Both x and y axes are on natural log scale.

Figure 7. Scatter plots of parameter estimates by the MDD models for pairs of selected predation parameters that show strong positive correlation. Definitions of the parameters are found in Table 1. Both x and y axes are on natural log scale.

Figure 8. Boxplots of relative errors in parameter estimates from Monte Carlo simulations, i.e., true parameters are at 0 (dotted horizontal lines). See Table 1 for parameter definitions. Lower and upper bounds of the boxes indicate $25^{\text {th }}$ and $75^{\text {th }}$ percentiles, respectively. Thick horizontal lines inside the boxes indicate median errors. Whiskers indicate $2.5^{\text {th }}$ and $97.5^{\text {th }}$ percentiles. These parameters are unique to either the MBD or the MDD model.

Figure 9. Boxplots of relative errors for estimated biological reference points from Monte Carlo simulations, i.e., true parameters are at 0 (dotted horizontal lines). Lower and upper bounds of the boxes indicate $25^{\text {th }}$ and $75^{\text {th }}$ percentiles, respectively. Thick horizontal lines inside the boxes indicate median errors. Whiskers indicate $2.5^{\text {th }}$ and $97.5^{\text {th }}$ percentiles. Both data generation and parameter estimation were done using the MBD or the MDD models, for the plots labeled "MBD" and "MDD", respectively. For the plots labeled "D \& B", the MDD model was used to simulate data, then the MBD model was used to estimate management quantities.

Figure 10. Scatterplots of biological reference points estimated by the MDD models. Both x and y axes are on a natural \log scale.

Figure 11. Scatterplots of biological reference points estimated by the MBD models. Both x and y axes are on a natural \log scale.

Figure 12. Scatterplots of biological reference points estimated by the MBD models based on biomass projections using the MDD models. Both x and y axes are on a natural log scale.

Chapter 2: Multispecies Biomass Dynamics Models Reveal Effects of Ocean Temperatures on Predation of Juvenile Pollock in the Eastern Bering Sea

Tadayasu Uchiyama ${ }^{*}$, Franz J. Mueter , and Gordon H. Kruse
Juneau Center, School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Pt. Lena Loop Rd., Juneau, AK 99801
* Corresponding author, email: tuchiyama@alaska.edu, phone: (907) 796-5447

Abstract

Walleye pollock is the most abundant and commercially valuable groundfish species in the eastern Bering Sea (EBS). However, poor recruitment between 2001 and 2005, a period of warm ocean temperatures, led to a sharp decline in the EBS pollock stock from 2003 to 2009 and a $\sim 40 \%$ reduction in catch relative to the previous decade. Juvenile pollock are important forage fish in the EBS ecosystem, often representing the largest fraction in the diets of major Bering Sea piscivores, including arrowtooth flounder, flathead sole, Pacific cod, and adult walleye pollock. Predation on juvenile pollock, including cannibalism by adult pollock, plays an important role in determining pollock recruitment strength. Some studies have suggested that a pool of cold water on the EBS shelf provides a thermal refuge for juvenile pollock from their predators, and that the recent warming trend may have caused an increase in predation on juvenile pollock. We constructed multispecies biomass dynamics models of walleye pollock, Pacific cod, arrowtooth flounder, and three other flatfish species, including their trophic interactions, to quantify the magnitude of predation. Using model selection criterion, we tested a hypothesis that reduction in the extent of the cold pool (indicated by an increase in annual mean bottom water temperature) intensifies predation on juvenile pollock. We found that warmer temperatures increase cannibalism and predation on age-1 pollock by adult pollock (age 3+) and arrowtooth flounder, respectively, and decreases cannibalism on age- 0 pollock by adult pollock. The opposite effect of water temperature on age-0 and age-1 pollock likely reflects different distributions of these pollock age classes in relation to the cold pool. The model developed in this study can be used to examine effects of climate change on inter-specific interactions within the groundfish community and their implications on ecosystem structure and productivity.

Keywords:

Bering Sea ecosystem, the cold pool, multispecies model, biomass dynamics model, predator-prey interaction

Prepared for submission to:

Canadian Journal of Fisheries and Aquatic Sciences

Introduction

Walleye pollock (Gadus chalcogrammus) is the most abundant and commercially important groundfish species in the Bering Sea. Pollock represent 56% of exploitable groundfish biomass in the Bering Sea and Aleutian Islands management area (NPFMC 2010), and pollock catches averaged 76% of the total groundfish catch by weight from 1990 to 2009 (NPFMC 2009). Commercial fisheries for pollock represent over 40% of the global whitefish production. However, the eastern Bering Sea (EBS) pollock stock declined more than 60% from a high of 12.2 million t in 2003 (age 3+ biomass) to a low of 4.6 million t in 2008, before increasing again in more recent years (Ianelli et al. 2013). This decline in biomass was also reflected in reduced harvests. In 2009 and 2010, annual EBS pollock catch dropped to 0.81 million tons, roughly a 40% reduction from the average catch (1.28 million tons) over the previous 9 years (Ianelli et al. 2010). Changes in stock biomass are primarily due to the effect of year class variability and the sharp decline since 2003 has been attributed to poor recruitment between 2001 and 2005 (Ianelli et al. 2010, Coyle et al. 2011). The mechanisms controlling pollock recruitment are complex and poorly understood, but likely involve both physical and biological factors, as well as interactions among them (Jurado-Molina and Livingston 2002, Mueter et al. 2006).

Pollock, especially juveniles, are important forage fish in the EBS ecosystem. Juvenile pollock often represent the largest fraction in the diets of major Bering Sea piscivores, including arrowtooth flounder (Atheresthes stomias), flathead sole (Hippoglossoides elassodon), and adult walleye pollock (Aydin et al. 2007, Coyle et al. 2011). Cannibalism by adult pollock has been estimated to cause 40% of juvenile pollock mortality (Aydin et al. 2007) and plays an important role in determining the pollock recruitment strength (Wespestad and Quinn 1996). Arrowtooth flounder are a major predator of both juvenile and adult pollock, raising serious concerns about the effects of an increasing arrowtooth flounder population in the Bering Sea on future pollock recruitment.

Physical oceanographic conditions also affect pollock recruitment, either by affecting food production (bottom-up) or by affecting predation intensity (top-down). It was hypothesized that warm spring conditions and early sea ice retreat on the EBS shelf reduces the availability of large zooplankton prey for age-0 pollock, resulting in weak age- 1 recruitment the following year (Hunt et al. 2011). Low abundance of large zooplankton in warm years may reduce pollock recruitment further as fish predators turn to age-0 pollock as an alternative prey. In warm years, strong northward advection transports juvenile pollock inshore and away from adults. Spatial separation between juvenile and adults may in turn reduce cannibalism and enhance recruitment the following year (Wespestad et al. 2000, Mueter et al. 2006)

The presence of the so-called "cold pool" is one of the unique features of the EBS shelf. The cold pool is a body of cold bottom water generally $<2^{\circ} \mathrm{C}$, which persists on the middle shelf (50-100 m) throughout summer. The cold pool forms when sea ice freezes in the winter, and the size of the cold pool in summer depends on the extent of sea ice during the previous winter. Many subarctic fish species avoid the cold pool (Mueter and Litzow 2008) and are therefore excluded from much of the shelf when the cold pool is extensive, concentrating fish in the outer shelf and slope regions (Figure 1a, Spencer 2008). It has been hypothesized that an extensive cold pool increases encounter rates between prey and predators and results in higher predation rates on forage fishes (Wyllie-Echeverria and Ohtani 1999, Wespestad et al. 2000). On the other hand, there is some evidence that young pollock, in particular age- 1 fish, can tolerate cold temperatures better than older fish and thus are able to seek refuge in the cold pool to avoid predation (Francis and Bailey 1983, Bailey 1989, Wyllie-Echeverria and Wooster 1998). If that were the case, then predation on juvenile pollock is expected to be lower in cold years with an extensive cold pool (Figure $1 b)$.

In this study we use a multi-species modeling approach to examine the effects of variability in the cold pool on predation of juvenile pollock. Specifically, we test the hypothesis that the extent of the cold pool is related to the predation rate on juvenile pollock by their major predators, including adult pollock.

Methods

Overview

We quantified predation on juvenile pollock by modeling the biomass dynamics of six EBS groundfish species - walleye pollock, arrowtooth flounder, Pacific cod (Gadus macrocephalus), yellowfin sole (Limanda aspera), northern rock sole (Lepidopsetta polyxystra), and flathead sole - and predatory interactions among them (Figure 2). We aggregated all flatfish species except arrowtooth flounder into a
'small-mouth flatfish' group because of similar decadal trends in stock biomass and similar trophic and ecological roles in the ecosystem. Walleye pollock was divided into two age groups, juveniles (age 0,1 , and 2) and adults (age $3+$) to explicitly model cannibalism of juveniles by adult pollock. Model details are provided in Appendix 1. The model provides a good fit to the data and captures the major biomass dynamics and apparent interactions among the species groups [Uchiyama et al., in prep].

To test for the effects of variability in the cold pool on predation we included temperature-dependent predation rates in the model as described below. The model was fit to survey biomass data, catch data, and mean bottom water temperature as a proxy for the cold pool extent. Several alternative models that each included temperature-dependence for one selected predator-prey interaction were considered and a multi-model approach was used to quantify the evidence for different temperature-dependent predation terms.

Data

Survey biomass estimates of the study species, commercial catch statistics, and estimated biomass lost to predation used in this study are described in Appendix 1. In addition, estimates of summer bottom temperature $\left(T_{B}\right)$ were obtained from the Alaska Fisheries Science Center (http://www.afsc.noaa.gov/RACE/groundfish/survey_data/ebswater.htm).

Apportionment of pollock predation into age classes

Estimated biomass lost to predation reported in the Alaska Fisheries Science Center's groundfish food habits reports represent aggregated biomass of all prey age classes. To fit model predicted predation on pollock by age class, reported predation estimates were assigned to pollock age classes 0 through 3+ using the methods described below. The length distribution of pollock prey consumed by their predators was obtained from the Alaska Fisheries Science Center (Kerim Aydin, NMFS, personal communication). These pollock prey length data were subdivided into four sampling quarters (January - March, April June, July - September, October - December). Based on visual examination, we assumed that pollock prey in each quarter consisted of four distinct cohorts and that body length of individual prey in each cohort followed a normal distribution around a mean. The smallest cohort in the first sampling quarter was assumed to be age-1 because the mean body length of this cohort was as large as that of the second smallest cohort in the second quarter, and because pollock spawning peaks in early April in the EBS (Wespestad et al. 2000). For the second, third, and forth sampling quarters, the smallest cohort was assumed to be age-0. Parameters of cohort body length distributions (i.e., means and variances) were
estimated using the R package 'mixtools' (Benaglia et al. 2009). Based on the quarter-specific cohort body length distributions, the probability that prey of a given size in a given quarter belongs to a particular cohort was calculated to assign individual pollock prey to one of four age classes $(0,1,2$ and $3+$). Body weights of individual prey were estimated from their body length and the length-weight relationship in Kooka (2012). Individual prey weights were summed by prey age class, predator, and sampling year. The proportion by weight of each prey age class was then calculated for each predator and year. The biomass of each pollock age class lost to predation was then calculated by multiplying total pollock biomass lost to predation by the age class proportions calculated above.

Models

Previously, we developed two alternative multispecies models for focal EBS groundfish species - a biomass dynamics model and a delay difference model (Uchiyama et al., in prep.). Although each model has advantages and disadvantages, we selected the multispecies biomass dynamics model as the preferred model, largely because small changes in parameter values often led to unrealistic or chaotic behaviors of biomass trajectories for the multispecies delay difference model. Therefore, in this study, biomass dynamics of adult walleye pollock (age 3+), arrowtooth flounder (age 1+), Pacific cod (age 1+), and small-mouth flatfish group (age $1+$) were modeled using the multispecies biomass dynamics model described in Uchiyama et al. (in prep), modified to include temperature-dependent predation rates.

To examine the effects of bottom temperature on juvenile pollock predation we modeled predation rates (d in Appendix 1) in the biomass dynamics model as a linear function of summer bottom temperature anomalies $\left(T_{B}\right)$:

$$
d_{z a}=\bar{d}_{z a}+\mathrm{e}_{z a} * T_{B},
$$

where $d_{z a}$ is the predation rate for predator z and prey (juvenile age class) $a, \bar{d}_{z a}$ is the mean predation rate at $T_{B}=0$, and $e_{z a}$ is the slope parameter for the linear relationship between predation rate and temperature. Models were constructed to test for the effects of temperature on one predator-prey pair at a time by estimating the parameter $e_{z a}$ for the predator-prey combination of interest and fixing $e_{z a}$ at zero for all other predator-prey combinations. Thus, each model corresponds to the hypothesis that the per-capita predation rate of predator z on juvenile age class a increases $\left(e_{z a}>0\right)$ or decreases $\left(e_{z a}<0\right)$ with changes in bottom temperature. A total of thirteen models were tested, including all combinations of three pollock age classes and four predators, plus a model with no effect of bottom temperature. Model parameters were estimated using the maximum likelihood method. The likelihood function is described in Appendix 1.

Model selection

We quantified the evidence for different temperature-dependent predation rates using the Akaike Information Criterion and Akaike weights. For each of the 13 model configurations, the Akaike Information Criterion corrected for small sample size $\left(\mathrm{AIC}_{\mathrm{C}}\right)$ was calculated following Burnham \& Anderson (2002):
$A I C c=-2 \ln (L)+2 k+\frac{2 k(k+1)}{n-k-1}$,
where $L=$ likelihood

$$
k=\text { number of parameters. }
$$

$$
n=\text { number of observations. }
$$

Akaike weights (w_{i}) were calculated for each model by the following equation;

$$
w_{i}=\frac{\exp \left(-\frac{1}{2} \Delta_{i}\right)}{\sum_{i=1}^{R} \exp \left(-\frac{1}{2} \Delta_{i}\right)},
$$

where $\quad \Delta_{i}=A I C_{C, i}-A I C_{C, \text { minimum }}$

$$
R=\text { number of models compared. }
$$

Akaike weights, w_{i}, reflect the weight of evidence in favor of model i being the best model among the models considered. To reduce the bias related to model selection uncertainty, parameter estimates were averaged over the entire set of models following Burnham \& Anderson (2002):

$$
\hat{\bar{\theta}}_{j}=\sum_{i=1}^{R} w_{i} \hat{\theta}_{j, i},
$$

where $\quad \hat{\bar{\theta}}_{j}=$ model-averaged estimate of $\mathrm{j}^{\text {th }}$ parameter.

$$
\hat{\theta}_{j, i}=\text { estimator of the } j^{\text {th }} \text { parameter in model } i .
$$

Model-averaged predictions for biomass and biomass lost to predation by year were computed similarly:

$$
\hat{\bar{B}}_{\mathrm{y}}=\sum_{i=1}^{R} w_{i} \hat{B}_{y, i},
$$

where $\quad \hat{\bar{B}}_{\mathrm{y}}=$ model-averaged prediction of biomass or biomass lost to predation in year y.
$\hat{B}_{y, i}=$ the model-averaged estimated biomass or biomass lost to predation in year y for model i.

Results

The model that included an effect of bottom temperature on predation of age- 1 pollock by arrowtooth flounder was most strongly supported by the data (Table 1). Three other models (bottom temperature effect on cannibalism of age- 0 and age- 1 pollock by adult pollock, and predation of age- 0 pollock by Pacific cod) had better support than the null model (i.e., no bottom temperature effect) although the difference in $\mathrm{AIC}_{\mathrm{c}}$ was small. Bottom temperature had a positive effect (i.e., predation increased with increasing temperature) in seven of the 12 models, including pollock predation on age-1 pollock, arrowtooth predation on juvenile pollock of all ages, cod predation on age-0 pollock, and flatfish predation on age- 0 and age- 1 pollock. In contrast, warmer bottom temperature was estimated to cause a decrease in cannibalism of age- 0 and age- 2 pollock by adult pollock, predation of age- 1 and age- 2 pollock by cod, and predation of age- 2 pollock by flatfish.

Model-averaged predictions suggest that a large portion of the biomass of age- 0 and age- 1 pollock was lost to predation, but predation was relatively small for age-2 pollock, adult pollock (age $3+$), arrowtooth flounder, Pacific cod, and small-mouth flatfish (Table 2, Figure 3).

Temperature had the largest relative effect on age-1 predation by arrowtooth flounder, with predation rates varying $\pm 25 \%$ relative to the estimated predation rate at the mean temperature of $2.25{ }^{\circ} \mathrm{C}$ (Figure 4). Temperature effects on predation of age- 0 and age- 2 pollock were largest for Pacific $\operatorname{cod}(\pm 10 \%$, Figure 4), although the absolute predation rates were small (Figure 3). For age-0 and age-2 pollock, predation by adult pollock, arrowtooth flounder, and small-mouth flatfish changed by less than $\pm 3 \%$ relative to
predation at the mean temperature. Predation on age-1 pollock by adult pollock increased with temperature by 8%, while predation by cod decreased and predation by flatfish increased with temperature by less than 1%. Predation on age- 2 pollock decreased with increasing temperature for all predators except arrowtooth flounder. However, the change in arrowtooth predation was small ($<1 \%$), as was the change in flatfish predation.

Compared to the effect of changes in predator biomass on predation, the effects of changing bottom temperature on predation rates are negligible, except in three cases (cod predation on age-0 and age-2, arrowtooth predation on age-1).

Discussion

Our results suggest that variability in the extent of the cold pool on the EBS shelf affects important predator-prey interactions. In particular, warmer temperatures are associated with enhanced predation on juvenile pollock (age-1) by arrowtooth flounder and, to a lesser extent, by adult pollock. These results are consistent with the hypothesis that an extensive cold pool provides a refuge for age-1 pollock from these predators (Figure 1b).

Other lines of evidence also suggest that changes in water temperature affect predation on juvenile pollock. Walleye pollock migrate from their spawning ground to the feeding ground on the shelf in spring. Pollock migrate further inshore when the bottom temperature is high (Kotwicki et al. 2005); increased cannibalism of age-1 pollock is associated with spatial overlap between age-1 and adult pollock. Arrowtooth flounder are more widely distributed on the shelf when the cold pool is smaller (Spencer 2008, Ciannelli et al. 2012). The overlap between distribution of juvenile pollock and that of arrowtooth flounder on the shelf increases in warm years, and pollock recruitment is negatively correlated with the magnitude of the overlap (Hunsicker et al. 2013).

Our results imply that increasing abundances of arrowtooth flounder, in combination with anticipated decreases in ice extent and duration, may increase predation on age- 1 pollock. Decreases in ice extent and enhanced summer temperatures have previously been shown to reduce the overwinter survival and subsequent recruitment of young-of-year pollock due to reduced prey availability (Hunt et al 2011, Heintz et al 2013). This study suggests that recruitment may be further reduced in warm years because of increased predation mortality on age-1 pollock. Therefore, anticipated declines in the future recruitment and abundance of walleye pollock in a warming climate may be even more pronounced than predicted
(Mueter et al 2011). While Mueter et al. (2011) included scenarios with increasing arrowtooth flounder abundances in projections, the effect of increasing temperatures on predation was not considered.

Our results suggest that bottom temperature affects predator-prey interactions differently among different age classes of pollock prey. While predations on age-1 pollock were predicted to increase with increasing bottom temperature, predation on age- 0 pollock by adult pollock was predicted to decrease with increasing temperature. The difference in predicted temperature effect may reflect different distributions of juvenile age classes in relation to the cold pool. Age-1 pollock can tolerate wider range of water temperature than age-0 pollock and are found more often near the bottom (Bailey 1989, Duffy-Anderson et al. 2003, Hollowed et al. 2012), while age-0 pollock are typically distributed above the thermocline during summer (Olla et al. 1996). If age-0 pollock are excluded from the cold pool as are many of their predators, but age-1 pollock are not, reduction of the size of the cold pool may have opposite effects on predation of age- 0 and age- 1 pollock.

We identify some caveats in our approach. Although our results suggest that bottom temperature affects predator-prey interactions among the EBS groundfish species, estimated effects were highly uncertain and mostly weak (except ATF on age-1), hence these may not be ecologically important relationships. In the current study, estimated temperature effects on predation rates were assumed to be linear for simplicity. Results may change if fish respond to change in temperature in a non-linear fashion. For example, predation rates might increase up to some optimum temperature and decrease thereafter. Effect of bottom temperature on each of the predator-prey interaction was assumed independent of one another. However, change in one interaction may affect others, as it changes proportions of available prey to predators.

In the current study, we examine effects of bottom temperature on predator-prey interactions in the EBS groundfish community using multispecies biomass dynamics model. The model developed in this study could be used to examine effects of other covariates on inter-specific interactions, to help explain observed changes in the fish community, and to understand implications of climate change on an ecosystem and its productivity.

Literature Cited

Aydin, K., Gaichas, S., Ortiz, I., Kinzey, D., Friday, N., National Technical Information Service Springfield, VA, U.S.D. of C., and US Department of Commerce, N.O. and A.A. 2007. A comparison of the Bering Sea, Gulf of Alaska, and Aleutian Islands Large Marine Ecosystems through food web modeling. In NOAA Technical Memorandum. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center.

Bailey, K.M. 1989. Interaction between the vertical distribution of juvenile walleye pollock Theragra Chalcogramma in the eastern Bering Sea, and cannibalism. Marine Ecology Progress Series 53: 205-213.

Benaglia, T., Hunter, D.R., and Young, D.S. 2009. mixtools : An R Package for Analyzing Finite. 32.

Burnham, K.P., and Anderson, D.R. 2002. Model selection and multi-model inference: A practical information-theoretic approach. In 2nd edition. Springer, New York.

Ciannelli, L., Bartolino, V., and Chan, K.-S. 2012. Non-additive and non-stationary properties in the spatial distribution of a large marine fish population. Proceedings. Biological sciences / The Royal Society 279: 3635-42. doi: 10.1098/rspb.2012.0849.

Coyle, K.O., Eisner, L.B., Mueter, F.J., Pinchuk, A.I., Janout, M.A., Cieciel, K.D., Farley, E. V, and Andrews, A.G. 2011. Climate change in the southeastern Bering Sea: impacts on pollock stocks and implications for the oscillating control hypothesis. Fisheries Oceanography 20: 139-156. doi: DOI 10.1111/j.1365-2419.2011.00574.x.

Duffy-Anderson, J.T., Ciannelli, L., Honkalehto, T., Bailey, K.M., and Sogard, S.M. 2003. Distribution of age-1 and age- 2 walleye pollock in the Gulf of Alaska and eastern Bering Sea: sources of variation and implications for higher trophic levels. In The Big Fish Bang. Proceedings of the 26th Annual Larval Fish Conference. Edited by H.I. Browman and A.B. Skiftesvik. Institute of Marine Research, Bergen. pp. 381-394.

Francis, R.C., and Bailey, K.M. 1983. Factors affecting recruitment of selected gadoids in the northeast Pacific and east Bering Sea. In From Year to Year: Interannual Variability of the Environment and Fisheries of the Gulf of Alaska and the Eastern Bering Sea. Edited by W.S. Wooster. Washington Sea Grant, University of Washington Press, Seattle, WA. pp. 35-60.

Hollowed, A.B., Barbeaux, S.J., Cokelet, E.D., Farley, E., Kotwicki, S., Ressler, P.H., Spital, C., and Wilson, C.D. 2012. Effects of climate variations on pelagic ocean habitats and their role in structuring forage fish distributions in the Bering Sea. Deep Sea Research Part II: Topical Studies in Oceanography 65-70: 230-250. Elsevier. doi: 10.1016/j.dsr2.2012.02.008.

Hunsicker, M.E., Ciannelli, L., Bailey, K.M., Zador, S., and Stige, L.C. 2013. Climate and demography dictate the strength of predator-prey overlap in a subarctic marine ecosystem. PloS one 8: e66025. doi: 10.1371/journal.pone. 0066025 .

Hunt, G.L., Coyle, K.O., Eisner, L.B., Farley, E. V., Heintz, R. a., Mueter, F., Napp, J.M., Overland, J.E., Ressler, P.H., Salo, S., and Stabeno, P.J. 2011. Climate impacts on eastern Bering Sea foodwebs: a synthesis of new data and an assessment of the Oscillating Control Hypothesis. ICES Journal of Marine Science 68: 1230-1243. doi: 10.1093/icesjms/fsr036.

Ianelli, J.N., Barbeaux, S., Honkalehto, T., Kotwicki, S., Aydin, K., and Williamson, N. 2010. Assessment of Alaska pollock stock in the eastern Bering Sea. In Stock Assessment and Fishery Evaluation Report for the Groundfish Resources of the Bering Sea/Aleutian Islands Regions. North Pacific Fishery Management Council, Anchorage. pp. 53-156.

Ianelli, J.N., Honkalehto, T., Barbeaux, S., Kotwicki, S., Aydin, K., and Williamson, N. 2013. Assessment of the walleye pollock stock in the eastern Bering Sea. In Stock Assessment and Fishery Evaluation Report for the Groundfish Resources of the Bering Sea/Aleutian Islands Regions. pp. 53-152.

Jurado-Molina, J., and Livingston, P. 2002. Climate-forcing effects on trophically linked groundfish populations: implications for fisheries management. Canadian Journal of Fisheries and Aquatic Sciences 59: 1941-1951. doi: Doi 10.1139/F02-160.

Kooka, K. 2012. Life-history traits of walleye pollock, Theragra chalcogramma, in the northeastern Japan Sea during early to mid 1990s. Fisheries Research 113: 35-44. Elsevier B.V. doi: 10.1016/j.fishres.2011.09.001.

Kotwicki, S., Buckley, T.W., Honkalehto, T., and Walters, G. 2005. Variation in the distribution of walleye pollock (Theragra chalcogramma) with temperature and implications for seasonal migration. Fishery Bulletin 103: 574-587.

Lang, G.M., Derrah, C.W., and Livingston, P.A. 2003. Groundfish food habits and predation on commercially important prey species in the eastern Bering Sea From 1993 through 1996. US Department of Commerce, National Marine Fisheries Service, AFSC Processed Report 2003-04.

Lang, G.M., Livingston, P.A., Dodd, K.A. 2005. Groundfish food habits and predation on commercially important prey species in the eastern Bering Sea from 1997 through 2001. US Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-158.

Lang, G.M., Livingston, P.A., Pacunski, R., Parkhurst, J., and Yang, M. 1991. Groundfish food habits and predation on commercially important prey species in the eastern Bering Sea from 1984 to 1986. US Department of Commerce, NOAA Technical Memorandum NMFS F/NWC-207.

Livingston, P.A., and DeReynier, Y. 1996. Groundfish food habits and predation on commercially important prey species in the eastern Bering Sea from 1990 to 1992. National Marine Fisheries Service, AFSC Processed Report 96-04.

Livingston, P.A., Ward, A., Lang, G.M., and Yang, M. 1993. Groundfish food habits and predation on commercially important prey species in the eastern Bering Sea from 1987 to 1989. US Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-11.

Mueter, F.J., Ladd, C., Palmer, M.C., and Norcross, B.L. 2006. Bottom-up and top-down controls of walleye pollock (Theragra chalcogramma) on the eastern Bering Sea shelf. Progress in Oceanography 68: 152-183. doi: DOI 10.1016/j.pocean.2006.02.012.

Mueter, F.J., and Litzow, M. a. 2008. Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecological Applications 18: 309-20.

NPFMC. 2009. Stock Assessment and Fishery Evaluation Report for the Groundfish Resources of the Bering Sea/Aleutian Islands Regions. North Pacific Fishery Management Council, Anchorage.

NPFMC. 2010. Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands Management Area. North Pacific Fisheries Management Council, Anchorage.

Olla, B.L., Davis, M.W., Ryer, C.H., and Sogard, S.M. 1996. Behavioural determinants of distribution and survival in early stages of walleye pollock, Theragra chalcogramma: A synthesis of experimental studies. Fisheries Oceanography 5: 167-178.

Spencer, P.D. 2008. Density-independent and density-dependent factors affecting temporal changes in spatial distributions of eastern Bering Sea flatfish. Fisheries Oceanography 17: 396-410. doi: 10.1111/j.1365-2419.2008.00486.x.

Wespestad, V.G., Fritz, L.W., Ingraham, W.J., and Megrey, B.A. 2000. On relationships between cannibalism, climate variability, physical transport, and recruitment success of Bering Sea walleye pollock (Theragra chalcogramma). ICES Journal of Marine Science 57: 272-278.

Wespestad, V.G., and Quinn, T.J.I. 1996. Importance of cannibalism in the population dynamics of walleye pollock, Theragra chalcogramma. NOAA Technical Report NMFS 0: 212-216.

Wyllie-Echeverria, T., and Ohtani, K. 1999. Seasonal sea ice variability and the Bering Sea Ecosystem. In Dynamics of the Bering Sea. Edited by T.R. Loughlin and K. Ohtani. University of Alaska Sea Grant, Fairbanks. pp. 435-452.

Wyllie-Echeverria, T., and Wooster, W.S. 1998. Year-to-year variations in Bering Sea ice cover and some consequences for fish distributions. Fisheries Oceanography 7: 159-170.

1365

Table 1. Comparison of estimated model parameters: $\mathrm{AIC}_{\mathrm{C}}, \square \mathrm{AIC}_{\mathrm{C}}, \mathrm{w}_{\mathrm{i}}$.

Predator	Prey age class	Parameter estimate (model-averaged)	$\square \mathrm{AIC}_{\mathrm{C}}$	W_{i}
Arrowtooth	1	60.424	0	0.798
Pollock	1	0.049	4.96	0.067
Pollock	0	-0.051	6.98	0.024
Cod	1	-0.255	7.08	0.023
NA	NA	NA	7.55	0.018
Arrowtooth	0	0.058	7.76	0.016
Cod	2	-0.577	8.34	0.012
Flatfish	1	1.116	8.54	0.011
Cod	0	0.474	9.16	0.008
Arrowtooth	2	0.014	9.22	0.008
Pollock	2	$-8.7 \mathrm{E}-05$	9.38	0.007
Flatfish	0	0.519	9.98	0.005
Flatfish	2	$-4.8 \mathrm{E}-12$	22.18	0.000

Table 2. Percentage of prey biomass consumed by each predator, averaged over 1982 - 2009.

Predator	pollock	cod	ATF	flatfish	Total
Prey					
age-0 pollock	42.96%	0.01%	0.07%	0.25%	43.29%
age-1 pollock	63.61%	0.92%	9.44%	3.30%	77.27%
age-2 pollock	0.78%	0.35%	1.80%	0.00%	2.93%
adult pollock		1.23%	0.15%		1.38%
cod	0.02%				0.02%
ATF	0.00%	0.09%			0.09%
flatfish	0.01%	0.36%	0.19%		0.56%

1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383

Figure 1. Schematic diagrams showing alternative hypotheses on how the cold pool may affect predation on juvenile pollock. The cold pool (a) excludes young pollock from the shelf, exposing them to predators on the slope; or (b) protects young pollock from predators if they can tolerate the cold temperature.

Figure 2. Predator-prey relationships among EBS fish species modeled in this study. Arrows represent the directions of predator \longrightarrow prey.

—Juvenile pollock
—Adult pollock
—Arrowtooth
—Pacific cod
—Flatfish

Figure 3. Model-averaged predicted biomass and biomass lost to predation by predator for (a) age-0 pollock, (b) age-1 pollock, (c) age-2 pollock, (d) adult pollock, (e) Pacific cod, (f) arrowtooth flounder, and (g) small-mouth flatfish.

Figure 4. Relative effects of bottom temperature on predation on juvenile pollock by their predators. The y axes show predicted biomass of juvenile pollock lost to predation for the range of observed temperature, expressed in proportion to the biomass lost to predation at the mean bottom temperature $\left(2.25^{\circ} \mathrm{C}\right)$.

$-0.0036{ }^{\circ} \mathrm{C}$
$-2.25^{\circ} \mathrm{C}$
$-4.49{ }^{\circ} \mathrm{C}$

Figure 5. Predicted changes in predation on juvenile pollock age classes by their predators over a range of predator biomasses at three different bottom temperatures. The y-axes show changes in juvenile pollock biomass lost to predation in proportion to the amount at the mean predator biomass. Prey biomasses were fixed at their respective mean values. Predator biomasses were varied from mean biomass -2 SD to mean biomass +2 SD. Each line represents predation amount at $0.004,2.245$, and $4.490^{\circ} \mathrm{C}$.

Conclusions

We successfully developed multispecies simulation models of pollock, cod, and flatfish in the eastern Bering Sea. Not only did these models allow us to reproduce observed changes in populations of pollock, cod, and flatfish in the eastern Bering Sea since the 1980s, but the models captured known predator-prey relationships as revealed by groundfish diet data. Both model formulations, the multispecies biomass dynamics (MBD) model and a multispecies delay difference (MDD) model, yielded good fits to the data. Also, both models predicted the multispecies $B_{0}, M S Y$, and $F_{M S Y}$ to be lower than the sum of the estimates from single-species assessment models, consistent with multispecies dynamics models developed for other ecosystems. Although the MDD model fit survey biomass estimates better than the MBD model, the MDD model and its maximum likelihood parameters produced biologically unrealistic biomass projections at values of $F>0.14$. More realistically, under the MBD model, when high values of F was exerted on all species, the biomass of Pacific cod and arrowtooth flounder was depleted, which in turn reduced predation on juvenile pollock, resulting in a rapid increase in pollock biomass. Thus, we feel that we have satisfactorily achieved objectives 1 and 2 . Nevertheless, results must be interpreted with caution, given strong positive correlations among many of the predation parameters that resulted in large relative errors.

Using the MBD model, we tested a hypothesis that reduction in the extent of the cold pool intensifies predation on juvenile pollock. We found that warmer temperatures increase cannibalism and predation on age-1 pollock by adult pollock (age 3+) and arrowtooth flounder, respectively, and decreases cannibalism on age- 0 pollock by adult pollock. The opposite effect of water temperature on age-0 and age- 1 pollock likely reflects different distributions of these pollock age classes in relation to the cold pool. These results are consistent with the hypothesis that an extensive cold pool provides a refuge for age-1 pollock from these predators. Decreases in ice extent and enhanced summer temperatures have previously been shown to reduce the overwinter survival and subsequent recruitment of young-of-year pollock due to reduced prey availability (Hunt et al. 2011, Heintz et al. 2013). Our study suggests that recruitment may be further reduced in warm years because of increased predation mortality on age-1 pollock. Therefore, anticipated declines in the future recruitment and abundance of walleye pollock in a warming climate may be even more pronounced than predicted by Mueter et al. (2011). This enhanced understanding of the effects of temperature on pollock through predation achieves objective 3 of our study. Future studies should continue to explore ways that environmental conditions alter these relationships, and to evaluate their implications on fishery management and expected future fishery yields.

Management or Policy Implications

The groundfish species that we studied support valuable fisheries that are managed under a federal Fishery Management Plan under the auspices of the North Pacific Fishery Management Council. The Council's policy for groundfish fisheries includes the adoption of ecosystem-based fishery management principles, including the incorporation of ecosystem considerations into its management decisions (NPFMC 2010). Thus, the Council recognizes that "potential changes in productivity may be caused by fluctuations in natural oceanographic conditions, fisheries, and other, non-fishing activities" and intends to "protect managed species from overfishing, and where appropriate and practicable, increase habitat protection and bycatch constraints." Central to ecosystem-based fishery management is the need to account for ecological interactions among species. Multispecies models, informed by routinely collected assessment and ecological data, may provide a practical tool to bring multispecies considerations into the annual fishery management process.

Although multispecies models, such as ours, are unlikely to replace single-species models for annual stock assessment and management over the near term, they can lead to improvements in single-species models. As one specific example, multispecies models typically demonstrate that the lack of separate accounting of predation mortality in single-species models often results in natural mortality estimates that are biased low. Such errors can lead to misspecification of harvest control rules used to manage the fishery. Thus, estimates of natural mortality, and hence harvest control rules, in single species models can be informed by improved mortality estimates estimated by multispecies models.

In addition, multispecies models can be used to provide tactical management advice. For instance, multispecies models can be used to evaluate the implications of single-species harvest strategies on expected biomass of their predators and prey so that these ecosystem considerations can be taken into account during the annual harvest specification process. We explored the consequences of one particular harvest strategy, in which total sustainable yield of the multi-species system was maximized. However, simulations of other harvest strategies with different management objectives, such as maximizing economic values of catches or rebuilding depleted stocks, are also possible and worth exploring.

Finally, because they incorporate these trophic interactions, multispecies models can be used to estimate the effects of environmental conditions (e.g., temperature) on predation rate, thus providing a tool to forecast responses of the groundfish community to future climate changes. Thus, another fruitful applied area of research would be to incorporate effects of climate change on trophic interactions and to study how these effects may affect management decisions on these important fishery resources.

Publications

Uchiyama, T., G.H. Kruse, and F.J. Mueter. 2014. Correlative biomass dynamics model. North Pacific Research Board Final Report B75, 79 p.

Uchiyama, T., G.H. Kruse, and F.J. Mueter. In prep. A multi-species biomass dynamics model for investigating predator-prey interactions in the Bering Sea groundfish community. Prepared for submission to Deep Sea Research Part II: Topics Studies in Oceanography.

Uchiyama, T., F.J. Mueter, and G.H. Kruse. In prep. Multispecies biomass dynamics models reveal effects of ocean temperatures on predation of juvenile pollock in the eastern Bering Sea. Prepared for the Canadian Journal of Fisheries and Aquatic Sciences.

Outreach

Exhibits/Displays/Demonstrations Developed

None.

Community Meetings

- August 12/13, 2008: Franz Mueter provided testimony on the impacts of climate change on fish and fisheries to a panel convened by the Aspen Institute in Fairbanks. A copy of the presentation was provided to Nora Deans, NPRB.
- In August 2011, Gordon Kruse testified in Dutch Harbor at a hearing on the Arctic by the Alaska State Legislature's Joint Alaska Northern Waters Task Force. He summarized fisheries research being conducted by UAF in the Bering, Chukchi and Beaufort Seas. The presentation included an overview of the BSIERP program in general, with more detail on those BSIERP projects involving UAF scientists, including the current project.
- Gordon Kruse participated in the Alaska Young Fishermen's Summit, sponsored by the University of Alaska Marine Advisory Program, and held in Juneau, Alaska on February 13, 2012. Gordon spoke to 51 young Alaskan fishers about the role of science in state and federal fisheries management of groundfish and other species groups.
- On May 29, 2012, Mueter presented a public outreach seminar to the community of Nome as part of the " Strait Science Series" on "Limits to the northward movement of fishes in the eastern Bering Sea", Nome, AK.

Presentations at Festivals/Events

None.

Workshop Presentations

- August 2008: Several earlier workshops sponsored by PICES and NPRB resulted in PICES Scientific Report \#34 "Forecasting Climate Impacts on Future Production of Commercially Exploited Fish and Shellfish". Kruse prepared a section for the report on status of knowledge and proposed mechanisms linking climate change to the production of red king crab, Tanner crab and snow crab.
- September 13-16, 2008: Mueter participated in the ESSAS (Ecosystem Studies of the Sub Arctic Seas) Annual Meeting in Halifax, Nova Scotia, including a workshop on climate variability in subarctic seas.
- On June 18, 2009, Franz Mueter co-chaired (with Earl Dawe, DFO, St. Johns, Newfoundland) a workshop on gadid-crustacean interactions in subarctic ecosystems at the ESSAS Annual Meeting in Seattle. He presented an overview (with Siddeek Shareef and Jie Zheng) of gadid and crustacean fisheries and dynamics in the Gulf of Alaska and eastern Bering Sea.
- On September 9, 2009, Gordon Kruse was invited to give an invited presentation on Climate Change and Marine Protected Areas: A Fisheries Perspective from Alaska to the Marine Protected Areas Federal Advisory Committee (FAC). Kruse also served on a panel of experts to field questions from the MPA FAC for two hours. This was reported on the evening news on KTUU (Anchorage) on September 9, 2009. Kruse reported on climate change effects on groundfish, crabs, herring, and other marine species and their implications to the design of marine protected areas.
- November 16-18, 2009: Mueter gave an invited presentation by videoconference to the Alaska Community-Based Climate Change Adaptation Outreach Program Development Workshop on "Climate change impacts on fisheries".
- Gordon Kruse participated as a member of a panel to address the question: What will our fisheries and oceans look like in 20 years? The panel was convened during the Alaska Young Fishermen's Summit hosted by the Alaska Marine Advisory Program in Anchorage on December 8, 2009.
- April 24, 2010. Mueter participated in a workshop on "Networking across global marine "hotspots", held in conjunction with the international symposium on "Climate change effects on fish and fisheries: Forecasting impacts, assessing ecosystem responses, and evaluating management strategies." in Sendai, Japan. As part of the workshop he gave an invited presentation on "Biological responses to recent climate variability on the eastern Bering Sea shelf".
- May 10-14, 2010: Mueter participated in an International Stock Production Modeling Workshop at Woods Hole, MA, contributing biological and physical time series of variability in the Bering Sea and Gulf of Alaska for analysis at the workshop.
- August 30 - September 1, 2010. Mueter and M.S. student Laurinda Marcello participated in the Ecosystem Studies of the Subarctic Seas (ESSAS) Annual Meeting in Reykjavik, Iceland, which featured a workshop on effects of climate variability in subarctic ecosystems and a workshop on gadid-crustacean interactions in subarctic seas. Mueter gave a invited presentation (co-authored with Mike Litzow) on linking climate and fish in the Northeast Pacific as part of the first workshop and Marcello presented results from her retrospective work on snow crab recruitment in the Eastern Bering Sea.
- On April 7-8, 2011, Franz Mueter participated in a workshop on stock-specific indicators at the Alaska Fisheries Science Center in Seattle and gave a presentation on forecasting pollock recruitment and growth.
- Mueter helped organize a half-day workshop and a scientific session on gadid-crustacean interactions at the ESSAS Open Science Meeting in May 2011. MS student Laurinda Marcello presented her work on snow crab (partially supported by BSIERP) at the meeting and submitted an associated manuscript.
- On October 27-28, 2011, Franz Mueter participated via WebEx in a workshop on Management Strategy Evaluations held at the Alaska Fisheries Science Center in Seattle.
- On February 6-9, 2012, Franz Mueter participated in a BEST Synthesis workshop in Bermuda.
- On April 4-5, 2012, Franz Mueter participated in a workshop on Workshop on Assessment and Management Issues Related to Recruitment at the Alaska Fisheries Science Center in Seattle and gave a presentation on environmental forcing of recruitment in the Bering Sea and Gulf of Alaska and its use in stock assessments and stock projections.
- In May 2012, Mueter participated in a full-day workshop on "Climate change and range shifts in the ocean" at the $2^{\text {nd }}$ International Symposium on the effects of climate change on the World's Oceans in Yeosu, South Korea.
- Mueter participated in a full-day workshop on interactions between the subarctic and Arctic at the PICES Annual Meeting in Hiroshima, Japan, in October 2012 and presented a paper on the spatial dynamics of fish stocks in the eastern Bering Sea.
- On February 26-28, 2013, Franz Mueter participated in a BEST Synthesis workshop in Friday Harbor, WA.

None.

Press Articles (Newspaper/Journal/Newsletter)

- May 2008: An article on climate change and Alaska's fisheries, written by Kruse, appeared in the Periodical "Alaska Seas and Coasts", published by Alaska Sea Grant and the Marine Advisory Program of the University of Alaska Fairbanks.
- July 13, 2008: Kruse was interviewed and quoted in a newspaper article in the Fairbanks Daily News Miner on the effects of climate change on marine ecosystems of Alaska.
- October 2008: Mueter was interviewed about responses of fish populations in the Bering Sea to climate variability by Ken Weiss from the LA Times for an article on climate warming and marine fishes Los Angeles Times, October 19, 2008: "Migrating Alaskan pollock are creating the potential for a new dispute with Russia"
- February 4, 2009. Dr. Kruse was interviewed by reporter Tom Kazzia for an article on the effects of climate change on Tanner crabs and other species in Alaska. The article "Crab comeback in Kachemak Bay" appeared in Anchorage Daily News on 2/21/2009. Kruse was quoted twice in the article.
- November 23, 2009: Franz Mueter was interviewed by Lu Snyder for an article on the effects of climate change on fishes that was published in the December 2009 edition of FISHRAP, the newsletter of the Northern Southeast Regional Aquaculture Association (Vol. 27, no. 2, p. 1).
- September 2, 2011: Mueter gave a phone interview on changes in arrowtooth flounder abundance to Craig Medred of the Alaska Dispatch.
- On September 9, 2012, Gordon Kruse was interviewed on camera for two hours by Luke GriswoldTergis for a future PBS documentary on fisheries management in Alaska. It is a story about the evolution of fisheries management and current issues in Alaska. Mr. Griswold-Tergis produced a recent movie, Smokin' Fish (http://smokinfishmovie.com/), featuring Juneau's Cory Mann, which brings to light the epic art of being and remaining an American Indian in the 20th Century. The film played on PBS and was screened at many events, including film festivals, libraries, and schools both nationally and internationally. A one-hour film is intended for the current film production with similar distribution.
- In May 2011 Gordon Kruse was interviewed for a UAF Aurora Magazine article that was published in fall 2011. He was heavily quoted concerning the collapse of many of Alaska's king crab stocks,
their failure to recover, and broader ecosystem changes in the GOA and EBS (see http://www.uaf.edu/aurora/).

Factsheets Produced

Uchimaya, T., G.H. Kruse, and F.J. Mueter. 2014. Understanding Bering Sea groundfish populations: Using models to shed light on patterns and trends. BEST-BSIERP project headlines. BEST-BSIERP Bering Sea Project.

Video or Film Produced

None.

Radio/Television Interviews

- On August 13, 2009, both Kruse and Mueter were interviewed by Marc Kagan, video director and producer for NOAA, for a film on climate change and its effects on fish, crabs and other species in the marine ecosystems of Alaska. Gordon spoke about work related to this project, as well as other NPFB-funded research projects, such as Pacific herring. Franz spoke about changes in distribution of fish and shellfish in the eastern Bering Sea and other climate effects on the Bering Sea ecosystem, based in part on results from the retrospective analyses.
- On March 27, 2010, Mueter was interviewed by Anne Hillman from KUCB, Dutch Harbor, on the effects of climate variability on walleye pollock. The interview aired on the local public radio station and is available online.
- On September 9, 2012, Gordon Kruse was interviewed on camera for two hours by Luke GriswoldTergis for a future PBS documentary on fisheries management in Alaska. It is a story about the evolution of fisheries management and current issues in Alaska. The interview included discussion of some of the issues associated with the Bering Sea groundfish fishery and research resulting from the BSIERP project.
- On January 24, 2013, Franz Mueter was interviewed by Jaqueline Estes (APRN) on the potential effects of climate change on fish communities in the Arctic and Subarctic. The story aired on APRN on the following days.
- On January 24, 2013, Franz Mueter was also interviewed by Lauren Rosenthal from KUCB (Dutch Harbor), which led to an online article and a story on KUCB, largely focusing on the Arctic (http://www.alaskapublic.org/2013/01/24/chukchi-trawl-survey-sheds-light-on-unexplored-waters/) .
- Gordon Kruse was interviewed by Jay Barrett of KMXT in Kodiak for a radio report on the 29th Lowell Wakefield Fisheries Symposium on Fisheries Bycatch: Global Issues and Creative Solutions. The report aired on KMXT on 10/31/13 and an expanded version on 11/4/13. The report was also aired during the Alaska Fisheries Report on 11/7/13. Gordon is the chair of the Scientific Steering Committee for this international symposium to be held during May 13-16, 2014.

Podcast and Blogs

None.

Web Page or Site Developed

None.

Conference Presentations (Chronological order)

Mueter, F.J., K. Coyle. (Oral presentation) "From physics to humans: Climate effects on Bering Sea food webs and fisheries. PICES $27^{\text {th }}$ Annual Meeting, Dalian, China, October 30, 2008.

Mueter, F.J. (Invited Seminar). Climate effects on Bering Sea food webs and fisheries. Juneau Center, School of Fisheries and Ocean Sciences, University of Alaska Fairbanks. Juneau, Alaska, January 23, 2009.

Mueter, F.J. (Invited seminar). Environmental and Ecological Indicators for the Eastern Bering Sea. NOAA, NMFS, Ted Stevens Marine Research Institute. May 4, 2009.

Mueter, F.J., Siddeek Shareef, Jie Zheng (Oral presentation). Gadid-crustacean interactions in the eastern Bering Sea and Gulf of Alaska. Ecosystem Studies of Subarctic Seas (ESSAS) Annual Meeting. June 18, 2009.

Mueter, F.J. (Invited Seminar). Climate effects on Bering Sea food webs and fisheries. University of Alaska Fairbanks, Fairbanks, AK. September 30, 2009. A copy of the presentation was submitted with the semi-annual report on October 1, 2009.

Mueter, F.J. and M.A. Litzow (Invited Presentation). The spatial footprint of biological re-organization in a demersal community. PICES $28^{\text {th }}$ Annual Meeting Science Board Symposium, Cheju Island, Korea, October 26, 2009.

Mueter, F.J., Gordon H. Kruse, Vernon Byrd, and Heather Renner (Poster). Covariation among major fish, seabird, and mammal populations in the eastern Bering Sea. Alaska Marine Science Symposium, January 20, 2010, Anchorage, AK.

Mueter, F.J., Carol Ladd, Phyllis Stabeno, Ron Heintz, Ken Coyle, Gordon H. Kruse (Oral presentation). Environmental controls of gadid year class strength in the eastern Bering Sea. Alaska Marine Science Symposium, January 21, 2010, Anchorage, AK.

Mueter, F.J. (Invited presentation). Climate variability on the eastern Bering Sea shelf: Effects on the distribution and productivity of fish populations. Western Alaska Interdisciplinary Science Conference (WAISC). 24 March 2010, Unalaska, AK.

Mueter, F.J. (Invited presentation). Climate variability in the eastern Bering Sea. Western Alaska Interdisciplinary Science Conference (WAISC). 24 March 2010, Unalaska, AK

Mueter, F.J., Bond, N.A., and Ianelli, J.N. (Invited Presentation). Long-term forecasts of walleye pollock dynamics in the eastern Bering Sea based on estimated responses of recruitment and growth to climate variability. PICES 2010 Annual Meeting, Tuesday, October 26, 2010.

Mueter, F.J. (Oral Presentation). Spatial dynamics of Bering Sea groundfish: Effects of temperature and density. Alaska Chapter, American Fisheries Society, Annual Meeting. November 4, 2010.

Kruse, G.H., and Mueter, F.J. (Invited keynote presentation). Climate change and the future of Alaska's fisheries. Alaska Chapter, American Fisheries Society, Annual Meeting, Juneau, AK. November 3, 2010.

Mueter, F.J. Effects of temperature and density on spatial dynamics of Bering Sea groundfishes. Alaska Marine Science Symposium. January 20, 2011.

Mueter, F.J. (Invited seminar) The Bering Sea ecosystem: From climate to plankton to fish. University of Alaska Southeast. Biological Sciences seminar, Juneau, AK, April 13, 2011.

Mueter, F.J. (Keynote) Groundfish in Hot Water: Challenges facing fish and fisheries in Alaska. Alaska Department of Fish \& Game. Statewide groundfish meeting in Anchorage, AK April 27, 2011.

Mueter, F.J., Stepanenko, M.A., Smirnov, A.V., and Yamamura, O. (Invited). Comparing walleye pollock dynamics across the Bering Sea and adjacent areas. International Symposium on "Comparative
studies of climate effects on polar and sub-polar ocean ecosystems: progress in observation and prediction" (ESSAS Open Science Meeting). Seattle, WA, May 23, 2011.

Kruse, G.H. (Invited oral presentation). Overview of the BEST-BSIERP Program. Presented to Fishery Science Committee, Annual Meeting of the North Pacific Marine Science Organization (PICES), Khabarovsk, Russia. October 19, 2011.

Mueter, F.J., Bohaboy, E.C., Bundy, A., Fu C., Hjermann, D.O., Link, J.S. Common patterns, common drivers: comparative analysis of aggregate surplus production across ecosystems. American Fisheries Society 141st Annual Meeting, Seattle, WA, September 4-8, 2011.

Uchiyama, T., Kruse, G.H., and Mueter, F.J. (Poster). Predator-prey interactions in the Eastern Bering Sea Ecosystem: A Study Using Multispecies Biomass-dynamics Models. Alaska Marine Science Symposium, Anchorage, AK. January 2012.

Uchiyama, T., Kruse, G.H., and Mueter, F.J. (Poster). Warm Conditions in the Eastern Bering Sea Increase Pollock Cannibalism: A Study Using Multispecies Biomass-dynamics Models. BEST/BSIERP PI meeting, Anchorage, AK. March 2012.

Mueter, F.J. Spatial dynamics of fish communities in subarctic and arctic seas under a changing climate. PICES-ICES workshop on a "Global assessment of the implications of climate change on the spatial distribution of fish and fisheries", St. Petersburg, Russia, May 22, 2013.

Mueter, F.J., Litzow, M.A., Lauth, R.L., Danielson, S.L., and Spencer, P.D. Spatial dynamics of groundfish: the roles of temperature, abundance and advection. Ecosystem Studies of the Subarctic Seas (ESSAS) Annual Science Meeting, Hakodate, Japan, January 9, 2013.

Mueter, F.J., Litzow, M.A., Lauth, R.L., Danielson, S.L., and Spencer, P.D. The roles of temperature, abundance and advection in modifying the spatial dynamics of groundfish at the Subarctic-Arctic boundary in the eastern Bering Sea. PICES 2012 Annual Meeting, Hiroshima, Japan, October 12, 2012.

Mueter, F.J. (Keynote). Ecosystems, complexity, and sustainability from global to regional to local scales. American Fisheries Society, Alaska Chapter, Annual Meeting. Kodiak, Alaska, October 24, 2012.

Conference Participation

- September 2008: Kruse participated in the Annual Science Conference of the International Council for the Exploration of the Sea (ICES).
- October 2008: Kruse and Mueter participated in the Annual PICES meeting in Dalian. Kruse coconvened the Science Board Symposium on "Beyond observations to achieve understanding and forecasting in a changing North Pacific Ocean" and convened the Fisheries Contributed Paper Session.
- Dr. Kruse chaired the Steering Committee for the 25th Lowell Wakefield Symposium on "Biology and Management of Exploited Crab Populations under Climate Change" held in Anchorage, AK, during March 10-13, 2009. The meeting was attended by approximately 80 participants from 6 countries. Dr. Kruse was also lead editor for the symposium proceedings.
- From March 24-27, 2010, Mueter participated in the Western Alaska Interdisciplinary Science Conference (WAISC) in Unalaska. In addition to giving two presentations related to the BSIERP project, he participated in discussions with the community on global warming and ocean acidification issues.
- Mueter, with Laura Richards (DFO, Canada), John Field (NOAA, USA), and Sanae Chiba (Japan) organized a session at the 2010 PICES Annual Meeting in Portland, Oregon, entitled "Observations of ecosystem mixing under climate change" that featured an invited presentation by BEST/BSIERP PI Lorenzo Cianelli.
- Kruse organized both a session and an international symposium that both highlighted BEST/BSIERP research at the 2010 PICES Annual Meeting in Portland, Oregon.
- In November, 2010, Kruse chaired a scientific session titled, "Dynamics of Marine Ecosystems", at the Annual Meeting of the Alaska Chapter, American Fisheries Society, in Juneau Alaska. This session included BSIERP-related talks, including a BEST/BSIERP overview talk by Mike Sigler.
- In November 2010, Gordon Kruse organized and chaired the Steering Committee for the 26th Lowell Wakefield Symposium titled, "Ecosystems 2010: Global Progress on Ecosystem-based Fisheries Management." The symposium attracted 108 participants from 19 countries. Talks included multiple BEST/BSIERP presentations, including those delivered by Mike Sigler, Ivonne Ortiz, Kerim Aydin and others.
- In May 2011 both Mueter and Kruse participated in the ESSAS Open Science Meeting in Seattle, where Franz Mueter gave an invited BSIERP presentation on walleye pollock dynamics during the Bering Sea session and Gordon Kruse delivered a presentation on red king crab dynamics in the session on gadid-crustacean interactions.
- Mueter attended the Annual Meeting of the American Fisheries Society in Seattle in September 2011 and presented in a session on increased variability in fish populations and in a session on surplusproduction models. Both drew on some retrospective data compiled as part of BSIERP.
- Mueter participated in the $2^{\text {nd }}$ International Symposium on the effects of climate change on the World's Oceans in Yeosu, South Korea, participated in a workshop and co-authored three papers partially supported by this project, presented by George Hunt, Paul Spencer, and Ting-Chun Kuo.
- Both Mueter and Kruse participated in the PICES Annual Meeting in Hiroshima, Japan, in October 2012, participated in and helped organize workshops and scientific sessions, and co-authored several papers presented at the meeting that were partially supported by this project.
- Both Mueter and Kruse participated in the PICES Annual Meeting in Nanaimo, BC, in October 2013, participating in workshops, committee meetings, and scientific sessions.

Social Media (Facebook, Twitter, YouTube Channel, etc.)

None.

Teacher Workshops or Hosted Teacher-at-Sea

None.

Books

None.

Acknowledgments

This research was made possible by funding from the North Pacific Research Board (NPRB) Project B75 and a graduate student fellowship from the Pollock Conservation Cooperative Research Center at the University of Alaska Fairbanks.

Literature Cited

Collie, J.S., DeLong, A.K., 1999. Multispecies Interactions in the Georges Bank Fish Community, in: Ecosystem Approaches for Fisheries Management. Alaska Sea Grant College Program Publication AK-SG-99-01, University of Alaska, Fairbanks. Alaska Sea Grant, University of Alaska Fairbanks, pp. 187-210.

Deriso, R.B. 1980. Harvesting strategies and parameter estimation for an age-structured model. Canadian Journal of Fisheries and Aquatic Sciences. 37: 268-282.

Haddon, M., 2000. Modelling and quantitative methods in fisheries. Chapman \& Hall / CRC, Boca Raton.

Heintz, R.A.,Siddon,E.C.,Farley,Jr.E.V.,Napp,J.M.,2013.Correlation between recruitment and fall condition of age-0 pollock (Theragra chalcogramma) from the eastern Bering Sea under varying climate conditions. Deep-Sea Research Part II: Topical Studies in Oceanography 94:150-156.

Hunt, G.L., Coyle, K.O., Eisner, L.B., Farley, E. V., Heintz, R. a., Mueter, F., Napp, J.M., Overland, J.E., Ressler, P.H., Salo, S., and Stabeno, P.J. 2011. Climate impacts on eastern Bering Sea foodwebs: a synthesis of new data and an assessment of the Oscillating Control Hypothesis. ICES Journal of Marine Science 68: 1230-1243. doi: 10.1093/icesjms/fsr036.

McDowell Group, Inc. 2013. Economic value of the Alaska seafood industry. Prepared for Alaska Seafood Marketing Institute. McDowell Group, Inc., Juneau. Alaska.

Mueter, F. J., Bond, N. A., Ianelli, J. N., and Hollowed, A. B. 2011. Expected declines in recruitment of walleye pollock (Theragra chalcogramma) in the eastern Bering Sea under future climate change. ICES Journal of Marine Science 68: 1284-1296.

NPFMC, 2009. Stock Assessment and Fishery Evaluation Report for the Groundfish Resources of the Bering Sea/Aleutian Islands Regions.

NPFMC. 2010. Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands Management Area. North Pacific Fisheries Management Council, Anchorage.

