HIPPO MEDUSA Flask Sample Trace Gas and Isotope Data (R_20121129)

Summary:

This data set provides atmospheric trace gas concentrations of flask samples collected with the Multiple Enclosure Device for Unfractionated Sampling of Air (MEDUSA) on Missions 1 - 5 of the HIAPER Pole-to-Pole Observations (HIPPO) of the Carbon Cycle and Greenhouse Gases Study. The Missions took place from January of 2009 to September 2011.

The MEDUSA flask sampler collects air into glass flasks that are continuously purged at a controlled flow and pressure with a mixing time of around 30 sec and a representative sampling time kernel that drops off exponentially with a several-minute tail. Up to 32 flask samples could be collected per flight. Number total number of flask samples collected was 1,690.

Flasks gas samples were analyzed for O_2 , Ar/N₂, 13CO₂, and C¹⁸O¹⁶O on a sector-magnet mass spectrometer and for CO₂ on a LiCor non-dispersive infrared CO₂ analyzer by the Atmospheric Oxygen Research Group at Scripps Institution of Oceanography.

MEDUSA flask sample results were joined with selected variables from concurrent Merged 1second data (cite 1-second). This product accounts for flask fill dynamics by aggregating the 1second data by weighted averages according to the sample kernel for each flask.

Values in this file are identical to those in the discrete file, but presented here for MEDUSA flasks alone, with additional MEDUSA diagnostic information, and without a correction for the Scripps-NOAA CO₂ scale offsets. The data file is in space delimited ASCII format.

MEDUSA served several roles in the HIPPO. It acted as a discretely-sampled comparison for onboard ("in-situ") real-time O_2/N_2 ratio measurements from the AO_2 instrument; as a redundant measurement of CO_2 ; and as the only measurement of argon and 14C isotopes. The complementary measurements (CO_2 , O_2/N_2) allow ground-truthing of onboard instrument measurements in a laboratory setting, where analysis conditions can often be more stringently proscribed, and carefully monitored. Isotope and argon measurements can provide additional information about land and ocean controls over the carbon cycle, about the age and source of the air sampled, and about the convective activity of the troposphere.

Summary of 10-Second Data Completeness by Mission

A supplementary file is provided with this product that summarizes the completeness of the reported data values. The completeness entries are the number of non-missing observations for

each species in the main data file for each mission and in total. The number of observation given for species "jd" is the maximum number of possible non-missing observations per mission. The data are provided in one space-delimited format ASCII file.

Data Set Citation:

[Back To Contents]

Cite this data set as follows:

Wofsy, S. C., B. C. Daube, R. Jimenez, E. Kort, J. V. Pittman, S. Park, R. Commane, B. Xiang, G. Santoni, D. Jacob, J. Fisher, C. Pickett-Heaps, H. Wang, K. Wecht, Q.-Q. Wang, B. B. Stephens, S. Shertz, A.S. Watt, P. Romashkin, T. Campos, J. Haggerty, W. A. Cooper, D. Rogers, S. Beaton, R. Hendershot, J. W. Elkins, D. W. Fahey, R. S. Gao, F. Moore, S. A. Montzka, J. P. Schwarz, A. E. Perring, D. Hurst, B. R. Miller, C. Sweeney, S. Oltmans, D. Nance, E. Hintsa, G. Dutton, L. A. Watts, J. R. Spackman, K. H. Rosenlof, E. A. Ray, B. Hall, M. A. Zondlo, M. Diao, R. Keeling, J. Bent, E. L. Atlas, R. Lueb, M. J. Mahoney. 2012.
HIPPO MEDUSA Flask Sample Trace Gas and Isotope Data (R_20121129). Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. http://doi.org/10.3334/CDIAC/hippo_014 (CDIAC Release 20121129/ NCAR EOL Version 1.0) ***

******* Users are encouraged to include the Data File Name(s) with the citation to document the data file and version used for reproducibility. Please append: "[File name(s): list file name(s) or reference another included table or source that lists the files]"

Data Set Contents:

[Back To Contents]

	Data Product	File Name w/ CDIAC Version	Date Published	Date Superseded	Change Description
N	MEDUSA	HIPPO_medusa_flasks_merge_insitu_20121129.tbl	20121129		First archived version
ſ	Trace Gas	MEDUSA_meta_summary.tbl	20121129		First archived version

Data files with version control information:

User's Guide Contents:

Data and Documentation Access Data Set Citation Data Set Contents HIPPO Data Fair Use Data Description Data Dictionary References Data Center Information

HIPPO Project

The HIAPER Pole-to-Pole Observations (HIPPO) study is investigating the Carbon Cycle and greenhouse gases throughout various altitudes of the western hemisphere through the annual cycle. HIPPO is supported by the National Science Foundation (NSF) and its operations are managed by the Earth Observing Laboratory (EOL) of the National Center for Atmospheric Research (NCAR). Its base of operations is EOL's Research Aviation Facility (RAF) at the Rocky Mountain Metropolitan Airport (RMMA) in Jefferson County, Colorado. The main goal of this study is to determine the global distribution of carbon dioxide and other trace atmospheric gases by sampling at various altitudes and latitudes in the Pacific Basin.

Figure 1. NSF/NCAR G-V aircraft at various locations during Mission 1.

Data and Documentation Access:

[Back To Contents]

Get Data:

EOL HIPPO Data Archive and Web Site: Download imagery, publications, supporting documentation, instrument descriptions, data dictionary and component data: (www.eol.ucar.edu/projects/hippo)

Links to Companion Files and Supplemental Information:

EOL HIPPO Data Quality Reports: (<u>www.eol.ucar.edu/projects/hippo</u>)

- Mission Data Quality Reports
- Investigator provided "Readme Files"

HIPPO Data Policy -- Sharing, Access, and Use Recommendations:

https://www.eol.ucar.edu/system/files/HIPPO_Full_Data_Policy_lah_20170915_1.pdf

UCAR HIPPO Project Web Site: <u>http://hippo.ucar.edu/</u>

HIPPO Flight Tracks in Google Earth: <u>Download *.kmz files for Google Earth</u>

HIPPO Data Fair Use

[Back To Contents]

Before you use HIPPO data, please first familiarize yourself with the HIPPO Data Fair Use agreement below. Your cooperation is appreciated.

The HIPPO data provided on this public archive are freely available and were furnished by HIPPO researchers who encourage their use. Data users are encouraged to consider the following recommendations for fair, appropriate, and optimal use of data products.

HIPPO Scientist Interactions:

- Please kindly inform the HIPPO scientist(s) associated with each data product about the new data analysis activity near the beginning of the effort, and of any publication plans as the effort nears completion.
- Consult with the respective HIPPO scientist(s) concerning your data analysis plans to assure that the latest data product is being used and that it is being used appropriately.
- HIPPO science team members are listed at <u>http://hippo.ucar.edu/team</u>. Alternatively, initiate contact with Dr. Steven C. Wofsy (<u>swofsy@seas.harvard.edu</u>), Lead Principal Investigator.

Acknowledgments:

- Please acknowledge (1) the use of HIPPO data products with a citation as provided in the data archive documentation, and (2) website information downloads as a bibliographic web citation.
- Acknowledge the agency or organization (e.g., NSF and NOAA) that supported the collection of the original HIPPO data when publishing new analyses and results using HIPPO data products.
- Please submit a HIPPO publication reference or reprint at http://www.eol.ucar.edu/projects/hippo/publications/publication_refs.html of your independent work so that all publications resulting from HIPPO data products may be tracked, recorded, and referenced.

Read the complete HIPPO Data Policy: Sharing, Access, and Use Recommendations

https://www.eol.ucar.edu/system/files/HIPPO_Full_Data_Policy_lah_20170915_1.pdf

Data Description:

[Back To Contents]

Temporal and Spatial (horizontal) Coverage of Research Flights

These tables describe at a general level the mission-by-mission research flights

Mission	Flight Path Notes	Flight Path
HIPPO-1	Northern polar flight #1 reached 80° N.	-
Sampling Dates	Southbound Pacific flights followed the typical central flight path.	time and the
January 8 to January 30, 2009	Southern ocean flight reached 67° S, 175° W	
Vertical Profiles Flown	The northbound flights followed an Eastern Pacific Route over Central and Southern North America.	
138	HIPPO-1 was only mission to not return to the Arctic a second time.	Google and State
Mission	Flight Path Notes	Flight Path
HIPPO-2	Northern polar flight #1 reached 80° N.	
HIPPO-2 Sampling Dates	Northern polar flight #1 reached 80° N. Both southbound and northbound Pacific flights followed a central flight path.	
Sampling Dates October 31 to November 22,	Both southbound and northbound Pacific	
Sampling Dates October 31 to	Both southbound and northbound Pacific flights followed a central flight path.	
Sampling Dates October 31 to November 22, 2009 Vertical Profiles	Both southbound and northbound Pacific flights followed a central flight path. Southern ocean flight reached 66° S, 174° W	

Mission	Flight Path Notes	Flight Path		
HIPPO-3	Northern polar flight #1 reached 84.75° N.	- •		
Sampling Dates	Both southbound and northbound Pacific flightsfollowed a central flight path.Southbound RF04 reached 41,000 feet over			
March 24 to April 16, 2010	the equator allowing insight into the atmospheric cross section near the Intertropical Convergence Zone (ITCZ).			
Vertical Profiles Flown	 Northbound RF09 was coordinated to track with the NASA Global Hawk (50,000 feet higher) and both intercepted the track of the NASA Aura satellite, which carries the 			
136	 Microwave Limb Sounder (MLS). Southern ocean flight reached 66.8° S, 170° E. Northern polar flight #2 reached 85° N. Polar flight RF10 flew three 500 feet altitude by 5 minute legs crossing extensive networks of fractures in ice 	Consecutive State Instance Town of December 2014		
Mission	Flight Path Notes	Flight Path		
Mission HIPPO-4	Flight Path Notes Northern polar flight #1 reached 84° N.	Flight Path		
	Northern polar flight #1 reached 84º N. Southbound Pacific flights followed the typical central flight path.	Flight Path		
HIPPO-4 Sampling	 Northern polar flight #1 reached 84º N. Southbound Pacific flights followed the typical central flight path. In the Southern Pacific, a Chilean volcanic ash cloud caused a schedule change. Flights were delayed to allow ash-free air masses to 	Flight Path		
HIPPO-4 Sampling Dates June 14 to	 Northern polar flight #1 reached 84º N. Southbound Pacific flights followed the typical central flight path. In the Southern Pacific, a Chilean volcanic ash cloud caused a schedule change. Flights 	<section-header></section-header>		

Mission	Flight Path Notes	Flight Path
HIPPO-5	Northern polar flight #1 reached 82° N.	
Sampling Dates	Both southbound and northbound Pacific flights followed a central flight path.	
August 9 to September 8, 2011	 Southern ocean flight reached 67° S, 164° E. Flight RF09 reached the ice edge; one profile crossed the edge and another 	
Vertical Profiles Flown	profile was over solid ice. Northern polar flight #2 reached 87° N.	
190		

Bounding Box for All Research Flights:

Flight paths for all five Missions

Longitude	Longitude	Northernmost Latitude	Southernmost Latitude
128.2 E	-84.0 W	87.04313 N	-67.15801 S

Spatial Coverage (vertical) of Research Flights

The 10-second merged data are highly time resolved due to the component 1-second in situ reporting frequency and vertically-resolved as well because of GV flight plans that performed 787 vertical ascents /descents from the ocean/ice surface/land surface to as high as the tropopause. It was planned to have two maximum altitude ascents per flight to the tropopause/lower stratosphere, one in the first half and one in the second half of a research flight. In between, several vertical profiles from below the planetary boundary layer (PBL) to the mid-troposphere (1,000-28,000 feet) were flown.

- Profiles were flown approximately every 2.2° of latitude with 4.4° between consecutive nearsurface or high-altitude samples.
- Rate of climb and descent was 1,500 ft/ minute (457 m/minute).
- During these profiles, the GV averaged a ground speed of about 175 m/sec or 10 km/min.

<u> Typical Flight Plan</u>

Ideally a flight would take off and go to FL430 (43,000 ft or 13,100 m) over the first 15 minutes, then descend belowFL290 (29,000 ft or 8,850 m) and proceed in a sawtooth pattern between FL270 (27,000 ft or 8250 m) and FL10 (1,000 ft or 300 m) with a 1,500 ft (457 m)/minute climb/descent rate, then climb to FL450 (45,000 ft or 13,700 m) near the end of the flight for about 15 minutes, then descend, and proceed to the airport.

Most of a flight was conducted below the international Reduced Vertical Separation Minimum (RVSM) usually 29,000 ft or 8,850 m, in order to allow the G-V to descend and climb constantly to collect data at different altitudes throughout the troposphere. All flights plans were subject to modifications depending upon local atmospheric conditions and approval by air traffic control.

On average, consecutive profile samples in the midtroposphere are separated by 2.2° of latitude, with 4.4° between consecutive near-surface or high-altitude samples. Most profiles extended from approximately 300 to 8,500 m altitude, constrained by air traffic, but significant profiling extended above approximately 14 km.

Flight Patterns

These two images provide a good visualization of the typical HIPPO flight pattern, which is designed to sample the global distribution of carbon dioxide and other trace atmospheric gases at various altitudes and latitudes in the Pacific Basin.

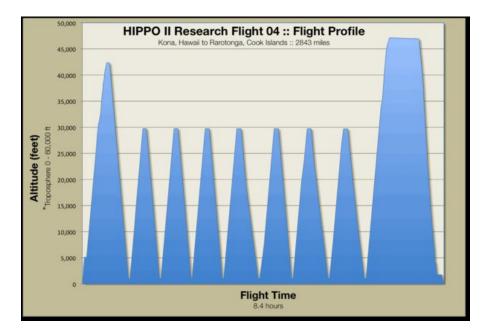


Figure 2. Example of NSF/NCAR G-V aircraft flight pattern. Eighteen profiles are shown in the image; the ascending and descending flight paths of each peak are a separate profile.

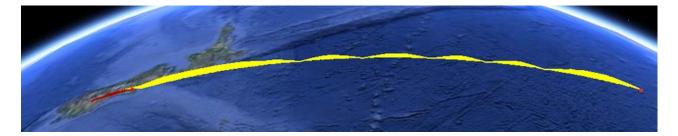


Figure 3. Example of NSF/NCAR G-V aircraft flight pattern. The x-axis in this figure is space and is a more realistic representation of the vertical aspect of a flight than in Figure 2.

Temporal Resolution of Merged Observations

Data Center Note: To provide a more complete description of the temporal resolution of measurements, we will be developing a table that lists for each instrument or sampling device, the native sampling duration, the reporting or integration interval, and the inter-sample interval.

Data File Description

A note about North American training and research flights:

For Mission 2-5, results of measurements collected during instrument check training flights and research flights conducted over North America are included in the data file. For Missions 2, 3, and 4, the training flights have "flt" values of -1 and 0. For Mission 5, research flights have "flt" values of 1 and 2. Users may want to exclude those from their HIPPO data analyses. The next flight in the series, the first HIPPO flight, originated at NCAR's Earth Observing Laboratory, Research Aviation Facility (RAF), located at the Rocky Mountain Metropolitan Airport (KBJC), Broomfield, CO and proceeded to Anchorage, AK.

Note that the first research flight for Mission 1 originated in Billings, MT, and has a"flt" value of 2.

Instrumen t code	Instrument detail	Institutio n	Investigators	Method
ttouc			Investigators	Vacuum-ultraviolet absorption
AO2-IR	NCAR Airborne Oxygen Instrument	NCAR	Stephens, Bent	and Infrared absorption
AO2-M	NCAR Airborne Oxygen Instrument	NCAR	Stephens, Bent	Multiple
AO2-QCLS-				
OMS	Various	Multiple	Various	Various
AO2-VUV	NCAR Airborne Oxygen Instrument	NCAR	Stephens, Bent	Vacuum-ultraviolet absorption
GV-1DOAP	One Dimensional Optical Array Probe	NCAR	Romashkin	Laser beam, diode array
GV-2D-C	2D-C Probe	NCAR	Romashkin	Laser beam, diode array
GV-2DOAP	Two Dimensional Optical Array Probe	NCAR	Romashkin	Laser beam, diode array
GV-				
AEROLASE				
R	GV AeroLaser VUV CO sensor	NCAR	Campos	VUV fluorescence
GV-AV	GV Avionics	NCAR	Romashkin	Thermal sensor?
				Diode laser - forward scattered
GV-CDP	Cloud droplet probe on GV	NCAR	Romashkin	light
GV-CDPT	GV calibrated differential pressure transducer	NCAR	Romashkin	Pressure sensors
GV-CMS	GV cooled-mirror sensor	NCAR	Romashkin	Condensation?
GV-GP	GV gust probe	NCAR	Romashkin	Radome differential pressure
GV-GUST	GV 5-hole radome gust probe	NCAR	Romashkin	Differential pressure?
				IRS (Inertial Reference System)
	GV Honeywell YG1854 Laseref SM Inertial			and GPS (Global Positioning
GV-HIRS	Reference System 1	NCAR	Romashkin	System)
	GV PMS liquid water content sensor (King	NCAR	Devestille	Heat loss from water
GV-LWCS GV-	probe)	NCAR	Romashkin	vaporization
GV- MENSOR	GV Mensor 6100 sensor	NCAR	Romashkin	Pressure sensor
GV-		NCAN	Normashkin	
MULTIPLE	Multiple GV instruments	NCAR	Romashkin	Various
				GPS (Global Positioning
GV-NOGPS	GV Novatel Omnistar-enabled GPS (Reference)	NCAR	Romashkin	System)
	GV Paroscientific Model 1000, using fuselage			
GV-PS	holes	NCAR	Romashkin	Pressure transducer
GV-RICE	GV Rosemount Model 871FA icing rate detector	NCAR	Romashkin	To be determined
GV-				
SENSOR	GV aircraft sensor	NCAR	Romashkin	To be determined
GV-TIME	GV time sychronized to GPS	NCAR	Romashkin	To be determined

Sources of data compiled for this MEDUSA flask data set.

Instrumen		Institutio		
t code	Instrument detail	n	Investigators	Method
GV-UCATS	GV and UCATS instruments	NCAR	Romashkin	Various
	GV near-infrared vertical cavity surface emitting			
GV-VCSEL	laser (VCSEL) hygrometer	Princeton	Zondlo	Laser hygrometer
MEDUSA-	Multiple Enclosure Device for Unfractionated	Scripps,		
DA	Sampling of Air (MEDUSA)	NOAA	Stephens, Keeling, Bent	Data analysis
MEDUSA-	Multiple Enclosure Device for Unfractionated	Scripps,		
IR	Sampling of Air (MEDUSA)	NOAA	Stephens, Keeling, Bent	Infrared absorption
MEDUSA-	Multiple Enclosure Device for Unfractionated	Scripps,		
ME	Sampling of Air (MEDUSA)	NOAA	Stephens, Keeling, Bent	Manual entry
MEDUSA-	Multiple Enclosure Device for Unfractionated	Scripps,		Sector-magnet mass
MS	Sampling of Air (MEDUSA)	NOAA	Stephens, Keeling, Bent	spectrometry
MEDUSA-	Multiple Enclosure Device for Unfractionated	Scripps,		
PR	Sampling of Air (MEDUSA)	NOAA	Stephens, Keeling, Bent	Electronic pressure gauge
MEDUSA-	Multiple Enclosure Device for Unfractionated	Scripps,		
SC	Sampling of Air (MEDUSA)	NOAA	Stephens, Keeling, Bent	System clock
MEDUSA-				
SM				_
MEDUSA-	Multiple Enclosure Device for Unfractionated	Scripps,		
TM	Sampling of Air (MEDUSA)	NOAA	Stephens, Keeling, Bent	Thermal mass flow meter
NA	Not applicable	Harvard	Wofsy	Not applicable
	National Advisory Committee for Aeronautics			National Advisory Committee
NACA	method	NCAR	Romashkin	for Aeronautics method
NA-V	Various	Various	Various	Not applicable
	Harvard Licor 6251 NDIR CO2 sensor, heritage			
	NASA "Observations of the Middle		Daube, Pittman, Kort,	Non-dispersed infrared
OMS	Stratosphere"	Harvard	Jimenez	absorption
	Quantum Cascade Laser System (NCAR system			
QCLS-IR	built by Harvard/Aerodyne)	Harvard	Daube, Jimenez, Kort	Infrared absorption
	Quantum Cascade Laser System (NCAR system			Nondispersive infrared
QCLS-NDIR	built by Harvard/Aerodyne)	Harvard	Daube, Jimenez, Kort	analyzer
602	Cincle resticle cost shots water	NOAA- CSD	Fahey, Gao, Spackman,	LII (Laser-induced
SP2	Single particle soot photometer		Schwarz, Perring	incandescence)
SP2-PRES	Single particle soot photometer	NOAA- CSD	Fahey, Gao, Spackman, Schwarz, Perring	Pressure sensor
UCATS-	Single particle soot photometer	NOAA-	Scriwarz, Perring	Pressure sensor
PHOT	2B (modified) UV ozone photometer (UCATS)	GMD	Hurst, Hintsa	Photometer
UCATS-	Unmanned Aircraft Systems (UAS)	NOAA-		
UWV	Chromatograph for Atmospheric Trace Species	GMD	Hurst, Hintsa	Tunable diode laser
			· · ·	
UHSAS	Ultra-high sensitivity aerosol spectrometer	NCAR	Cooper	Aerosol spectrometer
UV-PHOT-		NOAA-		
Ν	UV ozone photometer (NOAA)	CSD	Fahey, Gao, Spackman	Ultraviolet absorption

Data Dictionary:

[Back To Contents]

Each row contains the results from one MEDUSA flask sample. A row is uniquely defined by H.no, flt, and UT_MID, the average sample time for the sample kernel for each flask, in seconds since 0000 UTC on day the flight started. The variable "jd" also uniquely defines each roe.

In order to compare in situ and flask values, an averaging kernel is provided. The kernel takes into account flow rate and mixing time, tau, at time of sampling in order to express the sample as the result of ideal mixing. The leading tail of the integral has been removed, and a very slight correction has been applied to the remaining values in order to result in an integral of 1.

This product accounts for flask fill dynamics by aggregating the 1 Hz data by weighted averages according to the sample kernel for each flask.

These data are considered at **Quality Level 2**. Level 2 indicates a complete, externally consistent data product that has undergone interpretative and diagnostic analysis by HIPPO researchers. Sampling, data collection and instrument calibration issues are identified in the daily mission summary reports, daily technician's reports and the Project Managers' Data Quality Reports, and have been addressed to the extent possible as indicated in the metadata.

Note that the **data file is space delimited and uses "NA" as the missing value code**. NA is typically used in data products processed by "R".

Column	Column name	Expanded description	Unit	Unit long name	Instrument	Instrument code
Column	column name		onit	onit long hame	mstrument	instrument code
meo	hippo_var	desc lay	unit	unit long	inst code	inst detail
		Decimal day number				
		for HIPPO project,				
		sequential, starting				
1	jd	with January 1, 2009	d	day	NA	Not applicable
		HIPPO mission number				
2	H.no	(1 through 5)	None	None	NA	Not applicable
3	Year	Year	У	year	NA	Not applicable
4	DOY	Day of the year	d	day	NA	Not applicable
		Flight sequence				
-	flt	number within the mission	News	Naza	NA	Natavaliashla
5	nt	mission	None	None	NA	Not applicable Multiple Enclosure
						Device for
						Unfractionated
		MEDUSA flask position				Sampling of Air
6	MEDpos	within rack (1-32)	dimensionless	dimensionless	MEDUSA-ME	(MEDUSA)
						Multiple Enclosure
						Device for
						Unfractionated
7	MEDflID	MEDUSA sample flask identification number	dimensionless	dimensionless	MEDUSA-ME	Sampling of Air (MEDUSA)
/		Representative sample	unitensioness	uiittetisiottiess		
		time, seconds, since				
8	UT_MID	0000 UTC on day flight	s	second	NA-V	Various

Column	Column name	Expanded description	Unit	Unit long name	Instrument	Instrument code
		started				
		Started				
						GV Novatel Omnistar-
9	GGLON	Longitude from GPS, datum WGS84	decimal degree	decimal degree	GV-NOGPS	enabled GPS (Reference)
9	GOLON		decimal degree	decimal degree	dv-NOGF3	GV Novatel Omnistar-
		Latitude from GPS,				enabled GPS
10	GGLAT	datum WGS84	decimal degree	decimal degree	GV-NOGPS	(Reference)
		Geometric altitude above mean sea level,		meter (above		GV Novatel Omnistar- enabled GPS
11	GGALT	datum WGS84	m asl	sea level)	GV-NOGPS	(Reference)
						Multiple Enclosure
		Carban diavida (CO2)		a a ut u a u us illia a		Device for
		Carbon dioxide (CO2) adjusted to the WMO		part per million dry air mole		Unfractionated Sampling of Air
12	CO2_MED	scale	ppm	fraction	MEDUSA-IR	(MEDUSA)
		Oxygen/nitrogen ratio		per meg (see		
13	O2N2_MED	(O2/N2) per meg	per meg	reference)	MEDUSA-SM	
						Multiple Enclosure Device for
		delta (Ar/N2). See Data				Unfractionated
		Dictionary's More				Sampling of Air
14	ArN2_MED	Information worksheet.	per meg	per meg	MEDUSA-MS	(MEDUSA)
						Multiple Enclosure Device for
		delta 13C in CO2. See				Unfractionated
		Data Dictionary's More				Sampling of Air
15	13CO2_MED	Information worksheet.	per mil	per mil	MEDUSA-MS	(MEDUSA)
						Multiple Enclosure
		delta180 in CO2. See				Device for Unfractionated
		Data Dictionary's More				Sampling of Air
16	18CO2_MED	Information worksheet.	per mil	per mil	MEDUSA-MS	(MEDUSA)
						Multiple Enclosure Device for
						Unfractionated
						Sampling of Air
17	MED14c	D14C in CO2	per mil	per mil	MEDUSA-MS	(MEDUSA)
						Multiple Enclosure
		MEDUSA sample closure time, seconds,				Device for Unfractionated
		since 0000 UTC on day				Sampling of Air
18	MEDUTCc	, flight started	s	second	MEDUSA-SC	(MEDUSA)
						Multiple Enclosure
						Device for Unfractionated
		MEDUSA pressure of				Sampling of Air
19	MEDpres	flask when analyzed	torr	torr	MEDUSA-PR	(MEDUSA)
						Multiple Enclosure Device for
				Standard cubic		Unfractionated
		MEDUSA mean flow		centimeter per		Sampling of Air
20	MEDFlow	rate during flask filling	sccm	minute	MEDUSA-TM	(MEDUSA)
		Apparent potential oxygen (APO) based on				
		best available data,				
		weighted by MEDUSA				
		averaging kernel. See				
	APO_MED	Data Dictionary's More			AO2-QCLS-	Variaus
24	APU WED	Information worksheet.	per meg	per meg	OMS	Various
21	711 0_11120			part per million		Quantum Cascade

Column	Column name	Expanded description	Unit	Unit long name	Instrument	Instrument code
				fraction		system built by
						Harvard/Aerodyne)
						Multiple Enclosure Device for
		Proportion of MEDUSA				Unfractionated
		kernel with QCLS CO2				Sampling of Air
23	wt.qcls	data	proportion	proportion	MEDUSA-DA	(MEDUSA) Harvard Licor 6251
						NDIR CO2 sensor,
				part per million		heritage NASA
24	CO2 OMS	Carbon dioxide (CO2)	ppmv	dry air mole fraction	OMS	"Observations of the Middle Stratosphere"
24	002_0005		ppinv	Indetion		Multiple Enclosure
						Device for
		Proportion of MEDUSA kernel with OMS CO2				Unfractionated Sampling of Air
25	wt.oms	data	proportion	proportion	MEDUSA-DA	(MEDUSA)
				part per million		
26	CO2 AO2	Carbon dioxide (CO2) ppm	ppm	dry air mole fraction	AO2-IR	NCAR Airborne Oxygen Instrument
20	02_402	ppin	ppin	inaction	A02-III	Multiple Enclosure
						Device for
		Proportion of MEDUSA kernel with AO2 CO2				Unfractionated Sampling of Air
27	wt.ao2	data	proportion	proportion	MEDUSA-DA	(MEDUSA)
		Elapsed flight time,				
		seconds, since 0000 UTC on day flight				GV time sychronized to
28	UTC	started	S	second	GV-TIME	GPS
				per meg (see		NCAR Airborne Oxygen
29	02_A02	Oxygen (O2) per meg	per meg	reference)	AO2-VUV	Instrument
		Atmospheric potential oxygen (APO). See				
		Data Dictionary's More				NCAR Airborne Oxygen
30	APO_AO2	Information worksheet.	per meg	per meg	AO2-M	Instrument
		Temperature of the ambient air outside the				
31	ATX	aircraft	deg C	degree Celsius	GV-AV	GV Avionics
						Multiple Enclosure
		Representative altitude above mean sea level				Device for Unfractionated
		of MEDUSA sample,		meter (above		Sampling of Air
32	GGALTm	datum WGS84	m asl	sea level)	MEDUSA-DA	(MEDUSA)
		Reference static pressure: research				
		static pressure				GV Paroscientific Model
~~	DOVO	corrected for airflow	h D -	have 1	01/00	1000, using fuselage
33	PSXC	effects	hPa	hectopascal	GV-PS GV-	holes Multiple GV
34	THETA	Potential temperature	к	kelvin	MULTIPLE	instruments
		Equivalent potential				GV and UCATS
35	THETAE	temperature	К	kelvin	GV-UCATS	instruments
				part per billion		Quantum Cascade Laser System (NCAR
				dry air mole		system built by
	CO_QCLS	Carbon monoxide (CO)	ppbv	fraction	QCLS-NDIR	Harvard/Aerodyne)
36				part per billion		Quantum Cascade Laser System (NCAR
36						
36				dry air mole		system built by
36	CH4_QCLS	Methane (CH4)	ppbv		QCLS-IR	

Column	Column name	Expanded description	Unit	Unit long name	Instrument	Instrument code
		• •				
				fraction		system built by Harvard/Aerodyne)
39	O3_ppb	Ozone (O3)	nnhu	part per billion dry air mole fraction	UV-PHOT-N	UV ozone photometer (NOAA)
39	O3_ppb		ppbv	part per million	00-2001-10	GV near-infrared vertical cavity surface
40	H2Oppmv_vxl	Water (H2O) mole fraction	ppmv	dry air mole fraction	GV-VCSEL	emitting laser (VCSEL) hygrometer
41	AKRD	Aircraft attack angle	deg	degree	GV-GP	GV gust probe
42	MR	H2O mixing ratio	g/kg	gram per kilogram	GV-CMS	GV cooled-mirror sensor
43	QCXC	Dynamic pressure, corrected, reference	hPa	hectopascal	GV-CDPT	GV calibrated differential pressure transducer
44	TASX	Airspeed, true	m/s	meter per second	GV-MENSOR	GV Mensor 6100 sensor
45	SSRD	Aircraft sideslip angle	deg	degree	GV-GP	GV gust probe
46	DPXC	Dew point temperature of the ambient air outside the aircraft	dog C		GV-CMS	GV cooled-mirror sensor
40	DPXC	Water (H2O), liquid	deg C	gram per cubic	GV-CIVIS	GV PMS liquid water content sensor (King
47	PLWCC	content	g/m3	meter	GV-LWCS	probe) GV Novatel Omnistar-
48	GGSPD	Ground speed	m/s	meter per second	GV-NOGPS	enabled GPS (Reference)
49	GGTRK	Ground track (direction)	degree		GV-NOGPS	GV Novatel Omnistar- enabled GPS (Reference)
50	UIC	Wind vector, East component, GPS- corrected	m/s	meter per second	GV-GUST	GV 5-hole radome gust probe
51	VIC	Wind vector, North component, GPS- corrected	m/s	meter per second	GV-GUST	GV 5-hole radome gust probe
52	WIC	Vertical wind speed	m/s	meter per second	GV- MULTIPLE	Multiple GV instruments
53	PALT	Pressure altitude	m	meter	NACA	National Advisory Committee for Aeronautics method
54	PALTF	Pressure altitude	ft	foot	NACA	National Advisory Committee for Aeronautics method
55	PCAB_SP2	Cabin pressure	torr	torr	SP2-PRES	Single particle soot photometer
56	РІТСН	Aircraft pitch attitude angle	degree	degree	GV-HIRS	GV Honeywell YG1854 Laseref SM Inertial Reference System 1
57	RHUM	Relative humidity	%	percent	GV-SENSOR	GV aircraft sensor
58	RICE	Raw icing rate indicator	icing rate index	loing rate index	GV-RICE	GV Rosemount Model 871FA icing rate detector
58		Naw ICINg Fate INGICATOR		Icing rate index	GV-KILE	GV Honeywell YG1854 Laseref SM Inertial
59	ROLL	Roll angle	degree	degree	GV-HIRS	Reference System 1

Column	Column name	Expanded description	Unit	Unit long name	Instrument	Instrument code
60	ТСАВ	Cabin temperature at aerosol rack	deg C	degree Celsius	GV-SENSOR	GV aircraft sensor
61	THETAV	Virtual potential temperature	к	kelvin	GV-UCATS	GV and UCATS instruments
01	111217.0	Total temperature	K	Reivin	0100,113	motiumento
62	ттх	(static and RAM), reference	m/s	meter per second	GV-SENSOR	GV aircraft sensor
63	UXC	Wind vector, longitudinal component, GPS- corrected	m/s	meter per second	GV-GUST	GV 5-hole radome gust
64	XMACH2	Mach number squared	None	None	GV-SENSOR	GV aircraft sensor
65	CONC1DC_LWO	Cloud water droplet (40-600 um) concentration	number/L	number per liter	GV-1DOAP	One Dimensional Optical Array Probe
66	CONC2C_LWO	Cloud water droplet (25-800 um) concentration	number/L	number per liter	GV-2DOAP	Two Dimensional Optical Array Probe
67	 DBAR1DC_LWO	Mean water droplet particle diameter?	um	micrometer	GV-2D-C	2D-C Probe
07	DDANIDC_LWO	Cloud water droplet (2-	un	number per	JV-20-C	Cloud droplet probe on
68	CONCD_LWI	50 um) concentration	number/cm3	cubic centimeter	GV-CDP	GV
69	DBARD_LWI	Mean water droplet particle diameter?	um	micrometer	GV-CDP	Cloud droplet probe on GV
				number per		Ultra-high sensitivity
70	CONCU_RWI	Particle number density	number per cm3	cubic centimeter	UHSAS	aerosol spectrometer
		Concentration of particles 0.1		number per		Ultra-high sensitivity
71	CONCU100_RWI	micrometer and larger Concentration of	number/cm3	cubic centimeter	UHSAS	aerosol spectrometer
		particles 0.5		number per		Ultra-high sensitivity
72	CONCU500_RWI	micrometer and larger	number/cm3	cubic centimeter	UHSAS	aerosol spectrometer
				part per billion dry air mole	GV-	GV AeroLaser VUV CO
73	CO_RAF	Carbon monoxide (CO) Black carbon	ppbv	fraction	AEROLASER	sensor
74	BC_ng_kg	(accumulation mode 100-600 nm assuming 1.8 g/cc density)	ng/kg	nanogram per kilogram of air	SP2	Single particle soot photometer
75	BC_ng_m3	Black carbon (accumulation mode 100-600 nm assuming 1.8 g/cc density)	ng/m3	nanogram per cubic meter of air	SP2	Single particle soot photometer
76	H2O_UWV	Water vapor (H2O)	ppmv	part per million dry air mole fraction	UCATS-UWV	Unmanned Aircraft Systems (UAS) Chromatograph for Atmospheric Trace Species
77	H2Oe_UWV	Water vapor (H2O) 1 sigma error	ppmv	part per million dry air mole fraction	UCATS-UWV	Unmanned Aircraft Systems (UAS) Chromatograph for Atmospheric Trace Species
78	03_U03	Ozone (O3)	ppbv	part per billion dry air mole fraction	UCATS-PHOT	2B (modified) UV ozone photometer (UCATS)

Example Data Records

Note that the **data file is space delimited and uses "NA" as the missing value code**. NA is typically used in data products processed by "R".

jd H.no Year DOY flt MEDpos MEDfIID UT_MID GGLON GGLAT GGALT CO2_MED 02N2_MED ArN2_MED 13CO2_MED 18CO2_MED MED14c MEDUTCc MEDpres MEDFlow APO_MED CO2_QCLS wt.qcls CO2_OMS wt.oms CO2_AO2 wt.ao2 UTC O2_AO2 APO_AO2 ATX GGALTm PSXC THETA THETAE CO_QCLS CH4_QCLS N2O_QCLS O3_ppb H2Oppmv_vxl AKRD MR QCXC TASX SSRD DPXC PLWCC GGSPD GGTRK UIC VIC WIC PALT PALTF PCAB_SP2 PITCH RHUM RICE ROLL TCAB THETAV TTX UXC XMACH2 CONC1DC_LWO CONC2C_LWO DBAR1DC_LWO CONCD_LWI DBARD_LWI CONCU_RWI CONCU100_RWI CONCU500_RWI CO_RAF BC_ng_kg BC_ng_m3 H2O_UWV H2Oe_UWV O3_UO3 CO2.ScrippsScale

9.93008101851852 1 2009 9 2 1 1017 80359 -111.9883 55.2881 7878 387.593587526272 -457.03 -10.08 NA NA NA 80388 778.1 3002 -260.353782234957 387.139537761599 0.999061810920887 387.037173171175 0.740676497299973 387.014399581885 0.999999825180297 80358.5163198629 -447.115600105627 - 252.675993078796 -50.8372587624755 7878.31569552142 344.731511032639 301.378770189894 301.466192413556 97.8884261356783 1842.75474126326 322.781912465479 54.7196883541389 83.949178973614 2.62794668453668 0.021229100096345 142.95172283792 215.906117246728 - 0.0808271298260794 -59.624309657432 -0.000996721183952335 219.86812033378 19.2899963818785 30.4324725073561 -4.24146059470332 NA 8221.62002660122 26973.8188245766 708.045805984368 2.71995159348899 33.3511882410699 0.639164498409487 -0.0945363595236594 0.664642633151417 301.382659997672 -27.6326014777876 1.84174700974394 0.520961509200041 NA NA NA 1.10786885479237 NA 15.2384125987544 9.85742540228193 0.667768143292657 85.5903163959958 3.87055306153041 2.09633431495966 90.5207332837505 3.71521398711153 59.4780600478677 387.44

981.925439814815 5 2011 251 13 30 1039 79958 -146.1989 85.1481 8376 386.695293800632 -463.01 -3.9 NA NA NA 79981 751 3878 -271.061575931232 386.548709363922 0.98138230117014 386.798316719479 0.991803743520594 386.582475475935 1.0000009813748 79958.2900015345 -463.305056588281 - 271.133392734888 -50.4348033538449 8375.69330040524 312.582796838575 310.524171361727 310.761372733726 89.1542900453748 1846.26979320355 323.008883351991 89.8428595836941 93.0301246901151 2.32735608559851 0.0583528987147442 151.33507840694 231.520040344514 - 0.146266282724318 -56.5771820879762 0.00315790796840617 224.112622795089 179.796493648133 10.8657073213254 7.2208907087949 0.575238450937703 8889.85965078726 29166.2060252099 NA 4.03887120448016 48.7429165713105 1.18125572466244 0.111449276831703 20.4282978471652 310.535188930943 -23.5651806043239 -7.71380982829086 0.597389409428995 NA NA NA 0.021854 2.3925 26.6438330001963 21.0867159109036 0.571302187182908 81.7666605363996 3.63544545262479 1.79472939981745 78.3364536935682 4.91559235490446 116.838739315261 386.54

981.92900462963 5 2011 251 13 31 1102 80266 -146.1681 84.5043 10769 390.657365277902 -490.07 -26.01 NA NA NA 80289 747.6 3860 -277.266752626552 390.440327647246 0.985865008452 390.656287883419 1.000000361581 390.584009124818 1.000000361581 80266.181515592 -487.851130486151 -274.660204155344 -42.5075461927416 10768.8977644149 218.320320513524 356.31481099219 356.336955237817 29.6273840285892 1755.35790082902 313.844669066549 294.404769489139 6.63130576505124 2.88762180887679 0.00412327983474336 111.606194830686 241.142425439455 -0.15646050041812 -78.0310767134808 0.00251023566249656 236.344542287894 179.726774218079 4.3244442785716 4.81623670545344 0.58915684792347 11230.6807187872 36846.0656592427 NA 4.70973260173842 1.00117360362574 1.20401852233208 0.00768800182168643 20.3158923426748 356.315715200745 -13.4621995315096 -4.88688175494728 0.625936539117148 NA NA NA 0.017179 3.425 12.0135777614604 11.1964817372774 0.389083763939329 27.2544719622098 5.87489218174976 1.95405209807423 6.2073320263873 1.30964206215405 296.976364842739 390.51

981.942569444444 5 2011 251 13 32 1303 81438 -145.9998 81.9933 13418 NA NA NA NA NA NA 81485 785.5 1902 NA 388.903065438717 0.0936895642171074 388.940693702545 0.999836246494519 388.987102708122 0.999999986499483 81438.1695331461 -488.298426349854 -283.496527043864 -42.4916410942861

13418.0294064073 147.828957884938 398.272910285374 398.291097413286 20.3562531710506 1707.87282623032 303.246449978356 533.611239257332 4.75542360435888 3.95506893562841 0.00294464571652961 74.6295763364406 239.888732914917 -0.168936917726608 -82.5780308315045 0.00105097445464219 237.79449342894 180.0968714895 2.66385854313176 2.18603170772579 0.32094295114531 13700.8751581048 44950.3774246565 NA 3.86409699839479 0.481186680829401 1.19099228027361 -0.10843756862992 20.2983746358665 398.273623836036 -13.7040789018298 -2.22731633356995 0.619287064520055 NA NA NA 0.0171703203253384 2.3925 7.18598071661405 6.99054083563807 0.284751067313867 19.3377704885065 6.66488727869925 1.48076531511174 2.51667313944778 1.12539566130525 525.732579205637 NA

Line breaks added to improve readability.

Supplementary Data File

Summary of 10-Second Data Completeness by Mission

A supplementary file is provided with this product that summarizes the completeness of the reported data values. The completeness entries are the number of non-missing observations for each species in the main data file for each mission and in total. The number of observation given for species "jd" is the maximum number of possible non-missing observations per mission. The data are provided in one space-delimited format ASCII file.

Example Data Records

MEDUSA_meta_summary.tbl

species total_nonmissing H1 H2 H3 H4 H5 jd 1689 271 350 333 384 351 H.no 1690 271 350 334 384 351 Year 1690 271 350 334 384 351 DOY 1690 271 350 334 384 351 flt 1690 271 350 334 384 351 MEDpos 1690 271 350 334 384 351 MEDfIID 1690 271 350 334 384 351 ... BC_ng_m3 1477 260 330 281 286 320 H2O_UWV 1677 271 344 333 378 351 H2Oe_UWV 1677 271 344 333 378 351 O3_UO3 1316 271 316 0 378 351 CO2.ScrippsScale 1568 261 329 320 368 290

References:

[Back To Contents]

Miller, Benjamin R., Ray F. Weiss, Peter K. Salameh, Toste Tanhua, Brian R. Greally, Jens Mühle, and Peter G. Simmonds. 2008. Medusa: A Sample Preconcentration and GC/MS Detector System for in Situ Measurements of Atmospheric Trace Halocarbons, Hydrocarbons, and Sulfur Compounds. Anal. Chem., 2008, 80 (5), pp 1536–1545. DOI: 10.1021/ac702084k

Schwarz, J. P., J. R. Spackman, R. S. Gao, L. A. Watts, P. Stier, M. Schulz, S. M. Davis, S. C. Wofsy, and D. W. Fahey. 2010. Global-scale black carbon profiles observed in the remote atmosphere and compared to models, *Geophys. Res. Lett.*, 37, L18812. doi:10.1029/2010GL044372.

Tollefson, J. 2010. Jet reveals atmosphere's secrets. Published online 17 August 2010, Nature 466, 912. doi:10.1038/466912a

Wofsy, S. C., B. C. Daube, R. Jimenez, E. Kort, J. V. Pittman, S. Park, R. Commane, B. Xiang, G. Santoni, D. Jacob, J. Fisher, C. Pickett-Heaps, H. Wang, K. Wecht, Q.-Q. Wang, B. B. Stephens, S. Shertz, A.S. Watt, P. Romashkin, T. Campos, J. Haggerty, W. A. Cooper, D. Rogers, S. Beaton, R. Hendershot, J. W. Elkins, D. W. Fahey, R. S. Gao, F. Moore, S. A. Montzka, J. P. Schwarz, A. E. Perring, D. Hurst, B. R. Miller, C. Sweeney, S. Oltmans, D. Nance, E. Hintsa, G. Dutton, L. A. Watts, J. R. Spackman, K. H. Rosenlof, E. A. Ray, B. Hall, M. A. Zondlo, M. Diao, R. Keeling, J. Bent, E. L. Atlas, R. Lueb, M. J. Mahoney. 2012.
HIPPO Merged 1-second Meteorology, Atmospheric Chemistry, and Aerosol Data (Release 20121129). EOL Dataset <u>https://data.eol.ucar.edu/dataset/112.028</u>
DOI <u>https://doi.org/10.5065/D6VX0DKK</u>

Data Center Information: [Back To Contents] This data set is available

through the NCAR EOL HIPPO Data Archive at https://www.eol.ucar.edu/field_projects/hippo

Data Archive:

Web Site: https://www.eol.ucar.edu/field_projects/hippo

Contact for Data Center Access Information:

Email: eol-archive@ucar.edu