
HAIC	Weather	Radar	Data	
This	document	provides	a	basic	description	of	the	weather	radar	(WXR)	data	collected	during	the	2014	
HAIC	Flight	Campaign	(conducted	near	Darwin,	Australia)	and	the	data	collected	during	the	2015	HAIC	
Flight	Campaign	(conducted	near	Cayenne,	French	Guiana).	

HAIC	Flight	Campaign	Flights	for	Darwin	

A	summary	of	the	flights	with	aircraft	and	radar	start	and	stop	times	is	provided	in	the	Table	below.	

Flight	
Number	 Date	

Aircraft-State	Data	
UTC	Times	(hh:mm)	

Radar	Data	
UTC	Times	(hh:mm)	

Start	 Stop	 Start	 Stop	
fs140001	 01/16/2014	 01:22	 05:24	 02:10	 05:09	
fs140002	 01/16/2014	 21:03	 00:30	 21:25	 00:10	
fs140003	 01/17/2014	 02:07	 05:15	 02:30	 04:50	
fs140004	 01/18/2014	 21:18	 00:50	 21:51	 00:40	
fs140005	 01/21/2014	 04:12	 07:25	 04:34	 05:39	
fs140006	 01/23/2014	 19:34	 23:25	 22:09	 23:19	
fs140007	 01/24/2014	 19:38	 22:40	 20:08	 21:24	
fs140008	 01/27/2014	 20:03	 23:16	 20:43	 23:14	
fs140009	 01/28/2014	 20:46	 23:49	 21:08	 23:38	
fs140010	 01/29/2014	 19:34	 23:22	 20:06	 23:07	
fs140011	 01/30/2014	 00:45	 02:26	 01:13	 02:16	
fs140012	 02/02/2014	 19:49	 23:50	 20:35	 23:39	
fs140013	 02/03/2014	 02:37	 06:36	 04:05	 06:28	
fs140014	 02/04/2014	 19:51	 23:56	 20:34	 23:45	
fs140015	 02/05/2014	 22:56	 02:35	 23:27	 02:29	
fs140016	 02/07/2014	 19:42	 00:20	 23:23	 00:12	
fs140017	 02/08/2014	 01:36	 03:57	 -	 -	
fs140018	 02/08/2014	 20:16	 00:12	 20:48	 23:56	
fs140019	 02/09/2014	 20:11	 00:19	 20:48	 00:14	
fs140020	 02/10/2014	 01:33	 04:04	 02:07	 03:56	
fs140021	 02/17/2014	 06:07	 08:36	 06:27	 08:27	
fs140022	 02/17/2014	 20:56	 01:07	 21:43	 00:48	
fs140023	 02/18/2014	 20:51	 00:52	 21:37	 22:10	

NOTE:	 Airbus/SAFIRE	has	not	provided	radar	data	for	fs140017	and	the	
radar	data	for	fs140005,	fs140006,	and	fs140016	are	incomplete.	



As	additional	summary	information,	all	of	the	flight	paths	may	be	observed	using	Google	Earth®	and	the	
following	embedded	KMZ	file	(double-click	icon	to	run	in	Google	Earth®).	

HAICFlights.kmz
	

	

HAIC	Flight	Campaign	Flights	for	Cayenne	

A	summary	of	the	flights	with	aircraft	and	radar	start	and	stop	times	is	provided	in	the	Table	below.	

Flight	
Number	 Date	

Aircraft-State	Data	
UTC	Times	(hh:mm)	

Radar	Data	
UTC	Times	(hh:mm)	

Start	 Stop	 Start	 Stop	
fs150009	 05/09/2015	 15:35	 18:43	 16:09	 18:36	
fs150010	 05/10/2015	 18:33	 21:27	 18:55	 21:17	
fs150011	 05/12/2015	 19:37	 22:34	 19:54	 22:15	
fs150012	 05/14/2015	 13:40	 17:21	 13:57	 17:07	
fs150013	 05/15/2015	 08:09	 12:14	 08:35	 12:06	
fs150014	 05/16/2015	 08:01	 12:01	 08:08	 11:50	
fs150015	 05/16/2015	 15:35	 18:37	 15:51	 18:29	
fs150016	 05/18/2015	 19:27	 22:47	 19:27	 22:29	
fs150017	 05/19/2015	 13:49	 17:33	 14:19	 17:27	
fs150018	 05/23/2015	 08:49	 12:53	 09:14	 12:36	
fs150019	 05/23/2015	 15:00	 19:12	 15:23	 18:59	
fs150020	 05/24/2015	 08:36	 12:11	 08:51	 12:08	
fs150021	 05/25/2015	 18:54	 22:45	 19:07	 22:30	
fs150022	 05/26/2015	 08:08	 12:02	 08:33	 11:59	
fs150023	 05/26/2015	 12:54	 16:00	 13:10	 15:51	
fs150024	 05/27/2015	 08:06	 12:12	 08:27	 11:58	
fs150025	 05/28/2015	 19:00	 22:58	 19:25	 22:50	
fs150026	 05/29/2015	 08:25	 12:10	 08:47	 12:06	

	

As	additional	summary	information,	all	of	the	flight	paths	may	be	observed	using	Google	Earth®	and	the	
following	embedded	KMZ	file	(double-click	icon	to	run	in	Google	Earth®).	

HAICFlights2015.kmz
	



Available	Data	

There	are	two	different	kinds	of	data	described	in	this	document	with	corresponding	directories	of	files.		
There	is	a	directory	labeled	KMZ	which	provides	daily	4D	tracks	of	the	aircraft	that	can	be	played	within	
Google	Earth®	(for	information	on	Google	Earth®	and/or	its	player	see:	
https://support.google.com/earth).		A	second	directory	(WXR)	has	all	the	radar	data.		The	radar	data	is	
described	in	the	WXR	Data	File	Format	section	below.			

WXR	Data	File	Format	

The	radar	data	is	located	in	the	radar	directory.		The	radar	data	is	organized	by	each	flight	in	a	separate	
subdirectory.		Then	each	subdirectory	has	multiple	data	files.		Each	data	file	consists	of	a	single	sweep	
(±60	degrees	in	azimuth)	of	measured	radar	reflectivity.		The	filenames	are	of	the	following	format:			

wsr_YYYYMMDDHHMMSS.dat	

These	WXR	files	are	in	binary	format	and	the	data	is	organized	using	the	ARINC	708	standard;	however,	
in	addition	to	the	standard	200	bytes	per	frame,	these	data	have	4	more	bytes	per	frame	that	provides	
UTC	time	information	-	producing	a	total	of	204	bytes	per	frame.		Decoding	of	this	added	time	variable	is	
analogous	to	decoding	standard	UNIX	time	stamps	(ie,	number	of	seconds	past	midnight	since	
01	January	1970).		This	UTC	time	variable	is	the	same	variable	recorded	in	the	aircraft	state	files.	

Using	the	ARINC	708	data	standard,	the	files	have	antenna	azimuth	angle,	antenna	elevation	angle,	
range	setting,	gain	setting	(as	well	as	other	radar	parameters),	and	512	range	bins	of	reflectivity.		This	
recorded	reflectivity	only	consists	of	the	displayed	color,	not	an	actual	dBZ	value.		These	data	are	
provided	at	intervals	of	once	per	radar	frame	as	specified	in	the	708	standard.		Since	the	range	setting	is	
included	in	each	frame	of	data,	this	range	setting	can	change	within	a	sweep	and	therefore	within	a	file.		
A	description	of	reading	the	ARINC	radar	files	and	the	subroutines	used	to	read	these	files	in	C++	are	
shown	below	and	included	in	the	radar	data	subdirectory.	

Each	radar	WXR	data	file	(.dat)	file	has	a	corresponding	image	file	(.png)	in	images	subdirectory.		This	
image	is	a	screen	capture	of	the	radar	PPI	display.	

It	is	important	to	note	that	time	is	recorded	as	whole	numbers	of	seconds,	and	since	radar	frames	occur	
more	quickly,	times	does	not	increment	(change)	every	frame	-	but	a	time	value	is	always	provided.	

	

708	File	Attributes	

Color	Scale	

The	reflectivity	color	labels	are	conforming	to	the	scale	provided	in	Table	5-6	of	the	Honeywell	Primus	
660	Digital	Weather	Radar	System	Pilot’s	Manual	(Revision	3,	August	2003).		The	5	color	labels	are	
	



	

	

	

	

	

Gain	Mapping	

The	Honeywell	Primus	660	marketing	literature	states	the	variable	gain	range	is	from	+3	dB	to	-15	dB.			

Range	Bin	Mapping	

The	installed	Honeywell	Primus	660	Digital	Weather	Radar	allows	the	pilot	to	select	any	one	of	eight	
different	range	settings.		The	(.dat)	files	consist	of	radar	data	from	the	first	range	bin	(at	zero	range)	to	
the	512th	range	bin	(located	at	a	distance	equal	to	the	radar’s	range	setting).			

Reading	708	Radar	Files	

As	mentioned	above	the	708	ARINC	standard	has	1600	bits	(200	bytes).	The	files	from	Darwin	and	
Cayenne	are	204	bytes	with	the	extra	4	bytes	containing	the	time	variable.		The	ARINC	708	format	
includes	the	64	bits	of	header,	then	1536	bits	of	reflectivity	(3	bits	for	each	512	range	bins).		The	
following	figure	shows	a	representation	of	the	708	reflectivity	data	with	the	added	4	bytes	for	time.	The	
time	variable	has	a	resolution	of	one	second,	therefore	each	frame	has	a	value	but	the	time	is	not	
unique	for	each	frame.	

label	 color	 Min	dBZ	(≥)	 Max	dBZ	(<)	
0	 black	 	 23	
1	 Green	 23	 33	
2	 Yellow	 33	 40	
3	 Red	 40	 53	
4	 Magenta	 53	 	



	
Figure	1:	Graphical	Representation	of	the	708	Format	from	Darwin	and	Cayenne.	

Included	in	the	radar	subdirectories	are	source	code	files	for	C++	classes	to	read	these	modified	708	
data	files	from	Darwin	and	Cayenne.		The	reader	is	provided	to	support	analysis	and	visualization	by	
simply	extracting	and	decoding	the	information	from	the	data	files	and	making	it	available	through	a	
defined	interface.		Because	analysis	goals,	environments,	and	tools	vary,	no	additional	functionality	is	
provided.	

The	source	code	files	include	header	files	(*.h)	for	declaring	the	class	definitions	and	source	files	(*.cpp)	
for	implementing	the	class	methods.		The	base	class	(read708)	is	designed	for	standard	ARINC	data	files.		
A	derived	class	(readFalcon)	extends	the	base	class	to	read	the	modified	files	containing	time	
information.		The	classes	are	contained	in	unique	namespaces	to	avoid	naming	conflicts.		Standard	
Doxygen	annotations	are	included	for	documenting	the	public	interfaces	of	the	classes.	(See:	
www.doxygen.org	for	more	information).	

40	bits

40	
bits

1110 0 01 0 Header	64	bits

Time

G		a		i n
Gai n

Mode			Annun T		i l			t						A		n	g		l		e
R				a					n					g				e S					c			a			n												A					n					g					l					e

Reflectivity	(512	range	bins	x	3	bits	=	1536	bits)



	

Figure	2:	708	Data	File	Reader	UML	Class	Diagram	

The	public	interface	provides	methods	for	reading	a	single	frame	of	data	at	a	time	and	then	retrieving	
the	information	for	the	frame.		The	readFrame	method	throws	a	custom	endOfFile	exception	when	the	
end	of	the	file	is	reached	or	a	runtime	error	when	there	is	an	error	reading	the	frame.		Azimuth	(scan	
angle)	and	elevation	(tilt)	angles	are	provided	in	degrees.		Range	is	provided	in	nautical	miles.		Gain	is	
provided	in	dB.		Display	value	is	provided	for	a	given	range	bin	and	corresponds	to	the	label	provided	in	
the	table	in	section	Color	Scale	above.		Because	the	ARINC	708	standard	defines	512	range	bins,	only	
values	of	0-511	are	valid	inputs	and	zero	is	returned	for	all	other	inputs.		In	addition,	the	extended	
readFalcon	class	provides	UTC	time	in	seconds	as	described	in	WXR	Data	File	Format	above.	

Support	

Any	questions	regarding	the	2014	and	2015	HAIC	flight	data	should	be	addressed	to:	

Steven	Harrah	
NASA	Langley	Research	Center	
Hampton,	VA		23681-2199	
	
Email:	 Steven.D.Harrah@NASA.gov	

read708

#in_flnme: FILE
#nDataWords: unsigned int
#buffer: unsigned short
#headerData: unsigned short
#blockData: unsigned short
#displayValue: unsigned int
#azimuth: float
#elevation: float
#range: float
#gain: float

<<create>>-read708(_fileName: string)
<<destroy>>-read708()
+readFrame(: void): void
+getAzimuth(: void): float
+getElevation(: void): float
+getGain(: void): float
+getRange(: void): float
+getDisplayValue(_bin: unsigned int): unsigned int
<<create>>-read708(_fileName: string, _nDataWords: unsigned int)
#initialize(_fileName: string): void
#resetValues(: void): void
#decodeHeader(: void): void
#determineGain(_gainWord: int): void
#decodeFrame(: void): void

endOfFileException

<<create>>-endOfFileException()

readFalcon

-time: unsigned long

<<create>>-readFalcon(_fileName: string)
<<destroy>>-readFalcon()
+getTime(: void): unsigned long
-resetValues(: void): void
-determineGain(_gainWord: int): void
-decodeFrame(: void): void


