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1 EXECUTIVE SUMMARY 
During the post-launch Cal/Val Phase of SMAP there are two objectives for each science product 

team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate 
accuracies of the science data products as specified in the L1 science requirements according to the 
Cal/Val timeline.  This report provides analysis and assessment of the SMAP Level 2 Soil Moisture 
Passive (L2SMP) Version 5 and the L2SMP Enhanced (L2SMP_E) Version 2 data products.  The L2SMP 
product is provided on a 36-km grid and the L2SMP_E on a 9-km grid.  The SMAP Level 3 Soil Moisture 
Passive (L3SMP, L3SMP_E) products are simply a daily composite of the L2 half-orbit files.  Hence, 
analysis and assessment of the L2SMP and L2SMP_E products can also be considered to cover the 
L3SMP and L3SMP_E products. 

The new versions of the products incorporate three changes that may have an impact on 
performance: 1) a recalibration of the L1 brightness temperature (TB) products, 2) inclusion of an L1 
water body correction of TB over land, and 3) a revised method for computing the effective temperature 
used to normalize TB to emissivity as part of the soil moisture retrieval process.   

Assessment methodologies utilized include comparisons of SMAP soil moisture retrievals with in 
situ soil moisture observations from core validation sites (CVS) and sparse networks, and 
intercomparison with products from ESA’s Soil Moisture Ocean Salinity (SMOS) mission.  The primary 
assessment methodology is the CVS comparisons using established metrics and time series plots.  These 
metrics include unbiased root mean square error (ubRMSE), bias, and correlation.  The ubRMSE captures 
time-random errors, bias captures the mean differences or offsets, and correlation captures phase 
compatibility between data series. In addition, beginning with this assessment the overall mean absolute 
bias (MAB) is included in the metrics tables for each algorithm.  It should be noted that some changes 
have been made in the calibration and upscaling of select CVS based upon follow-up investigations by 
Cal/Val Partners.  In addition, the assessment period is now 36 months (as opposed to 19 months in the 
L2SMP Version 4 and L2SMP_E Version 1 assessments [1]).  

SMAP L2SMP supports a total of five alternative retrieval algorithms.  Of these, the Single Channel 
Algorithm–H polarization (SCA-H), Single Channel Algorithm–V polarization (SCA-V), and Dual 
Channel Algorithm (DCA) are the most mature and are the focus of this assessment.  These same retrieval 
algorithms were also used in L2SMP_E. 

The first step in assessment was the comparison of the L2SMP AM (Descending) and PM 
(Ascending) Version 5 products to the CVS and sparse network observations.  CVS (AM) results 
indicated that the SCA-V provided the best overall performance with an ubRMSE of 0.037 m3/m3, bias of 
-0.001 m3/m3 and correlation of 0.821. These metrics exceed the SMAP mission requirements and those 
of the SMOS products.  A portion of the change in the metrics may be associated with the longer period 
of record (19 vs 36 months) since longer records may include a wider range of anomalous conditions or a 
more typical set of conditions.  Sparse network results confirmed the trends seen in the CVS comparisons.  
The overall conclusion is that the L2SMP AM and PM products have improved performance with a 
reduction in bias and ubRMSE that exceeds the mission accuracy requirements for L2 passive retrieved 
soil moisture (the L2SMP soil moisture shall meet or exceed an accuracy of 0.040 m3/m3 ubRMSE over 
land in the absence of frozen ground, permanent snow/ice, or dense vegetation; this requirement is 
actually written for retrieved soil moisture at 10 km spatial resolution, but has been applied by the SMAP 
team to all L2 passive soil moisture products).  The combination of analyses using the CVS and sparse 
networks, intercomparison with products from the SMOS mission, and recent triple colocation analyses 
have contributed to a better understanding of the performance uncertainties.  The assessment now 
includes 36 months of intercomparisons, and several papers have been published in peer-reviewed 
journals [2-5] as well as numerous investigations listed in the Bibliography section of the report.  These 
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analyses satisfy the criteria established by the Committee on Earth Observing Satellites (CEOS) for Stage 
4 validation. 

The L2SMP_E are posted at 9 km but the contributing domain (i.e. primary spatial area contributing 
to the radiometer brightness temperature response) is larger than this, approximately 33 km.  A different 
set of CVS domains than those used for the L2SMP were identified in order to assess the performance of 
the L2SMP_E product; all ground measurements of soil moisture within the 33-km domain were used and 
compared to the SMAP retrieved soil moisture at each CVS.  Additional information on the L2SMP_E 
product can be found in [1].  

Version 2 of the L2SMP_E, for both AM and PM orbits, were assessed using the CVS and sparse 
networks.  Both the AM and PM products meet the mission requirements and reflect the patterns for 
L2SMP.  SCA-V had the best overall metrics of all the retrieval algorithms with an ubRMSE of 0.038 
m3/m3, bias of -0.001 m3/m3 and correlation of 0.814 for AM orbits, and an ubRMSE of 0.036 m3/m3, bias 
of -0.002 m3/m3 and correlation of 0.818 for the PM orbits.  For the same reasons noted for the L2SMP, 
the maturity of the L2SMP_E product is now at CEOS Stage 4. 

 Overall conclusions in this assessment: 

• L2SMP and L2SMP_E performances continue to meet the SMAP Project requirements. 

• The changes made to the L1 products and L2 algorithms have had little impact on the overall 
ubRMSE but improved the bias (which also led to a drop in overall RMSE below 0.05 m3/m3). 

• SCA-V continues to outperform the alternative algorithms. 

• Both the L2SMP and L2SMP_E products have achieved CEOS Validation Stage 4.  
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2 OBJECTIVES OF CAL/VAL 
During the post-launch Cal/Val (Calibration/Validation) Phase of SMAP there are two objectives for 

each science product team: 

• Calibrate, verify, and improve the performance of the science algorithms, and 
• Validate accuracies of the science data products as specified in Level 1 science requirements 

according to the Cal/Val timeline. 

The process is illustrated in Figure 2.1.  In this Assessment Report the progress of the Level 2 Soil 
Moisture Passive Team in addressing these objectives is described.  The approaches and procedures 
utilized follow those described in the SMAP Cal/Val Plan [6] and Algorithm Theoretical Basis Document 
for the Level 2 & 3 Soil Moisture (Passive) Data Products [7]. 

 

 
Figure 2.1.  Overview of the SMAP Cal/Val Process. 

 

SMAP established a unified definition base in order to effectively address the mission requirements.    
These are documented in the SMAP Handbook/ Science Terms and Definitions [8], where Calibration 
and Validation are defined as follows: 

• Calibration: The set of operations that establish, under specified conditions, the relationship 
between sets of values or quantities indicated by a measuring instrument or measuring system and 
the corresponding values realized by standards. 

• Validation: The process of assessing by independent means the quality of the data products 
derived from the system outputs. 

The L2SMP Team adopted the same soil moisture retrieval accuracy requirement for the fully validated 
L2SMP data (0.040 m3/m3) that is listed in the L1 Mission Requirements Document [9] for the active/ 
passive soil moisture product. 
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In assessing the maturity of the L2SMP (and L2SMP_E) products, the team considered the guidance 
provided by the Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and 
Validation (WGCV) [10]: 

• Stage 1:  Product accuracy is assessed from a small (typically < 30) set of locations and time 
periods by comparison with in situ or other suitable reference data. 

• Stage 2: Product accuracy is estimated over a significant set of locations and time periods by 
comparison with reference in situ or other suitable reference data.  Spatial and temporal 
consistency of the product and with similar products has been evaluated over globally 
representative locations and time periods.  Results are published in the peer-reviewed literature. 

• Stage 3: Uncertainties in the product and its associated structure are well quantified from 
comparison with reference in situ or other suitable reference data.  Uncertainties are characterized 
in a statistically robust way over multiple locations and time periods representing global 
conditions.  Spatial and temporal consistency of the product and with similar products has been 
evaluated over globally representative locations and periods.  Results are published in the peer-
reviewed literature. 

• Stage 4: Validation results for stage 3 are systematically updated when new product versions are 
released and as the time series expands. 

Based on the extensive validation analyses to date, the number of peer reviewed publications as well as 
numerous investigations listed in the Bibliography section of the report, the length of the SMAP period of 
record, and the utilization of feedback of validation in a systematic update, with this Version of L2SMP 
and L2SMP_E the team has completed Stage 4. The Cal/Val program will continue with the goals of 
increasing the robustness of the soil moisture products and addressing specific site issues.  
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3 BRIEF DESCRIPTION OF THE L2SMP AND L2SMP_E 
The L2SMP product is derived using SMAP L-band radiometer time-ordered observations (L1CTB 

product) as the primary input [7] along with other ancillary data on finer grid resolutions, to retrieve soil 
moisture (and other geophysical parameters as applicable) from a forward model.  The resulting soil 
moisture retrieval output fields, along with others carrying supplementary geolocation information, 
brightness temperatures, quality flags, and ancillary data, are posted on a 36-km Earth-fixed grid using the 
global cylindrical Equal-Area Scalable Earth Grid projection, Version 2 (EASEv2).  The 36-km grid 
resolution is close to the 3-dB native spatial resolution of the instrument observations.  The use of the 
fixed grid facilitates temporal analyses and ingestion of the products into some user applications.  
However, it presents challenges to validation given that many core validation sites (CVS) are not centered 
or contained in a single 36-km EASE grid cell.  As a result, a shifted variation of the L2SMP grid is used 
for validation and assessment purposes (Validation Grid-VG).  

Following the SMAP launch, methodologies for improving the spatial information of the SMAP 
radiometer products were explored that resulted in the L1CTB_E (Enhanced) product.  Backus-Gilbert 
(BG) optimal interpolation methodology is used that takes advantage of the radiometer oversampling on 
orbit.  The processing results in data at a higher spatial density by virtue of TB interpolation at a 9-km 
grid resolution in L1BTB_E.  It is important to note that the L1CTB_E processing does not improve the 
native resolution (~36 km) of the original TB measurements acquired by the SMAP radiometer.  It is a 
posting of data interpolated to a 9-km grid, which can enhance spatial information (see Figure 3.1). The 
fine grid resolution (9 km) of L1CTB_E provides a convenient basis to produce passive soil moisture 
retrieval at the same fine grid resolution.  Operationally, this is achieved by applying the same soil 
moisture inversion algorithms used for the standard 36-km L2SMP product to the enhanced 9-km 
L2SMP_E product.  The 9-km posting provides more flexibility in co-locating the grids and CVS data 
and therefore does not require the use of the VG in validation and assessment of the L2SMP_E product. 

 

 
 
(a) Enhanced Passive Soil Moisture Product 

 
 

(b) Standard Passive Soil Moisture Product 
 

Figure 3.1.  Compared with the current standard L2SMP soil moisture product in (b), the enhanced 
L2SMP_E soil moisture product in (a) demonstrates a more detailed distribution of surface  

soil moisture and shows spatial features more clearly than does the standard product. 
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4 L1 RADIOMETER PRODUCT UPDATES  
The L2SMP soil moisture retrievals are based on Version 4 of the radiometer Level 1B and 1C 

brightness temperature data [http://nsidc.org/data/smap/smap-data.html].  An assessment of data quality 
and calibration is available at NSIDC [http://nsidc.org/data/docs/daac/smap/sp_l1b_tb/index.html], from 
which the material in this section is drawn.  A more detailed discussion of the radiometer calibration and 
products can be found in [11,12,13].  The Version 4 TB data meet the noise equivalent delta temperature 
(NEDT) and geolocation requirements with margin as they did in Version 3 (see Table 4.1) [14]. 

The SMAP L1 radiometer calibration algorithm for the Version 4 release has been significantly 
improved compared to the Version 3 dataset.  The calibration changes can be summarized as follows: (1) 
improved SMAP reflector emissivity values, (2) concurrent antenna pattern correction (APC), noise-
diode, and reference load calibration, and (3) improved galaxy correction model over the ocean.  

The new SMAP calibration adjusted V and H-pol microwave emissivity values for the reflector 
based on antenna temperature deviations observed during annual SMAP eclipse seasons.  An emissivity 
correction slightly impacts the gain and bias of the radiometer front-end antenna temperatures.  In 
addition to an emissivity correction, SMAP implemented an optimized concurrent calibration scheme that 
utilizes cold-sky looks with ocean back-lobes, cold-sky looks with ocean/land transition back-lobes, 
vicarious global mean ocean observations, and nadir ocean and land observations.  The retrieved noise-
diode temperature, reference load temperature and APC value calibration coefficients along with ocean 
bias correction provide a completely bias free full-range SMAP calibration.  The final calibration 
correction for ocean regions is a reflected galaxy correction upgrade, where wind speed-dependent sky 
maps are used to correct for any galaxy contribution into the antenna temperature.  Any previously 
observed fore-aft differences in L1C_TB radio frequency interference (RFI) still remain.  The RFI 
behavior is similar as before: conditions in the Americas and Europe are good with poorer conditions in 
Asia. 

These changes in SMAP calibration resulted in a change in metrics when comparing SMAP TB to 
SMOS TB.  Global average brightness temperature comparisons over land areas are now 1.15 K (for H 
pol) and 0.66 K (for V pol) greater than SMOS (mean difference at top of the atmosphere after Faraday 
rotation correction was applied).  In summary, the radiometer calibration is very stable over time, and 
changes in agreement with SMOS are consistent with intentional calibration changes in SMAP data.  The 
noise and geolocation performance meet requirements with margin.  Excellent performance should be 
expected over homogeneous land surfaces. 
 

Table 4.1. Version 3* Characteristics of SMAP L1 Radiometer Data 
 (*now superceded by Version 4) 

Parameter  Mission Requirement 

NEDT1 1.1 K < 1.6 K1 

Geolocation accuracy 2.7 km < 4 km 

Land SMAP/SMOS bias (H pol) -2.65 K n/a 

Land SMAP/SMOS bias (V pol) -2.71 K n/a 
1 

                                                            
1An NEDT of 1.6 K for a single-look L1B_TB footprint is equivalent to an NEDT of 0.51 K on a 30 x 30 km 

grid (Table 2.1 in SMAP Radiometer Error Budget, JPL D-61632 [14]).  When combined with other error terms in 
the L1 radiometer error budget, the current single-look footprint NEDT of 1.1 K should result in an NEDT of less 
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It is a challenge to validate brightness temperatures over land targets due to the heterogeneity of the 
land surface.  SMOS L1 brightness temperature provides an opportunity to check the consistency in 
brightness temperature between the two L-band missions.  SMOS has in general benefitted from more 
extensive Cal/Val activities than SMAP due to its relative longevity in operational data acquisition 
(SMOS launched in November 2009).  SMOS observations at the top of the atmosphere were reprocessed 
to 40° incidence angle (after applying Faraday rotation correction).  SMAP L1B observations were co-
located with reprocessed SMOS observations (only SMAP and SMOS observations acquired less than 30 
minutes  apart were used).  The current L1B radiometer data (T15560) were compared with the most 
recent SMOS L1B data (version 620) for this analysis.        

Figure 4.1 shows the density plot of the brightness temperature (top of the atmosphere) comparison 
between SMOS and SMAP over land targets for V-pol and H-polarization.  SMOS and SMAP 
observations show a very strong correlation over land targets (Table 4.2).  SMAP observations show a 
warmer TB bias (about 0.66 K for V pol and 1.15 K for H pol) as compared to SMOS for both 
polarizations.  Most of the RMSD can be attributed to the bias between the two satellites.  Global average 
brightness temperature comparisons over ocean areas with SMOS are quite favorable indicating less than 
0.25 K mean bias at top of the atmosphere.  Efforts will be made to address these differences in TB 
calibration and to develop a consistent L-band brightness temperature dataset between SMOS and SMAP 
missions.  The impact of these TB differences on soil moisture comparisons between the two satellites is 
more complex because the two missions use different soil moisture algorithms and ancillary datasets. 

 

  

 
Figure 4.1.  Density plot of the L1 brightness temperature comparison (top of the 

atmosphere) between SMAP (T15560) and SMOS (version 620) observations  
over land targets for V-pol (right) and H-pol (left). 

 

  

                                                                                                                                                                                                
than 0.51 K on a 30 x 30 km grid.  If all other error sources are within the requirements, this level of NEDT (< 0.51 
K) should result in a total radiometric uncertainty of less than 1.3 K as required in the L2SMP error budget.     
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Table 4.2.  Summary statistics of the brightness temperature comparison between SMOS 
(version 620) and SMAP (T15560) for May 5, 2015-March 31, 2018. 

 

  RMSD (K) R Bias [SMAP-SMOS] 
(K) 

ubRMSD (K) 

H pol 

Land 3.40 0.9921 1.15 3.20 

Ocean 2.44 0.7061 0.08 2.44 

Overall 2.71 0.9994 0.38 2.69 

V pol 

Land 3.05 0.9968 0.66 2.98 

Ocean 2.52 0.7679 -0.23 2.51 

Overall 2.66 0.9994 -0.02 2.66 

4.1 Water Body Correction 
Prior to implementing the actual soil moisture retrieval, a preliminary step in the processing is to 

perform a water body correction to the brightness temperature data for cases where a significant 
percentage of the grid cell contains open water.  For the Version 5 L2SMP and Version 2 L2SMP_E, 
water correction is performed at the footprint level using the SMAP radiometer antenna gain pattern.  
This correction procedure is performed in the Version 4 SMAP L1B Radiometer Half-Orbit Time-
Ordered Brightness Temperatures (L1BTB) product.  Both the horizontally and vertically polarized L1B 
brightness temperatures over land are corrected for the presence of water within the antenna field of view 
(FOV).  The resulting L1B brightness temperatures are then interpolated on the 36-km EASE Grid 2.0 
projections using the inverse-distance squared interpolation method and on the 9-km EASE Grid 2.0 
projections using the Backus-Gilbert optimal interpolation method.  Overall it is expected that over land, 
the resulting brightness temperatures will become warmer upon the removal of the contribution of water 
to the original uncorrected observations.  As stated in the product page of the Version 4 SMAP L1BTB 
product, water correction is performed as long as the antenna-gain-weighted water fraction within the 
antenna FOV is less than or equal to 0.9 and when the antenna boresight falls on a land location as 
indicated by a static high-resolution land/water mask.  Further details of this procedure can be found in 
the User Guide, ATBD [13], or Assessment Report of the Version 4 SMAP L1B Radiometer Half-Orbit 
Time-Ordered Brightness Temperatures (L1BTB) product. 
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5 ALTERNATIVE L2SMP/L2SMP_E ALGORITHMS  
The current L2SMP/L2SMP_E products contain soil moisture retrieval fields produced by the 

baseline and several optional algorithms.  Inside an L2SMP/L2SMP_E granule the soil_moisture field is 
the one that links to the retrieval result produced by the currently-designated baseline algorithm.  At 
present, the operational L2SMP/L2SMP_E Science Production Software (SPS) produces and stores soil 
moisture retrieval results from the following five algorithms: 

1. Single Channel Algorithm V-pol (SCA-V) 
2. Single Channel Algorithm H-pol (SCA-H) 
3. Dual Channel Algorithm (DCA) 
4. Microwave Polarization Ratio Algorithm (MPRA) 
5. Extended Dual Channel Algorithm (E-DCA) 

All algorithms operate on the same zeroth-order microwave emission model commonly known as the 
tau-omega model.  In essence, this model relates brightness temperatures (SMAP L1 observations) to soil 
moisture (SMAP L2 retrievals) through ancillary information (e.g. soil texture, soil temperature, and 
vegetation water content) and a soil dielectric model.  The algorithms differ in their approaches to solve 
for soil moisture from the model under different constraints and assumptions.  Of these, the Single 
Channel Algorithm–V polarization (SCA-V), Single Channel Algorithm–H polarization (SCA-H), and 
Dual Channel Algorithm (DCA) are the most mature and are the focus of this assessment.  Below is a 
concise description of these three algorithms.  Further details are provided in [7].  

Given the results to date from the L2SMP/L2SMP_E Cal/Val analyses, the SCA-V algorithm 
continues to deliver slightly better performance overall than the alternative algorithms.  For this reason, 
the SCA-V will continue to be the operational baseline algorithm for this release of L2SMP/L2SMP_E 
data.  Throughout the rest of the SMAP mission, the choice of the operational algorithm of the product 
will be evaluated on a regular basis as analyses of new observations and Cal/Val data become available or 
if significant improvements can be achieved by algorithm modifications. 

5.1 Single Channel Algorithm V-pol (SCA-V) 
In the SCA-V, the vertically polarized TB observations are converted to emissivity using a surrogate 

for the physical temperature of the emitting layer.  The derived emissivity is corrected for vegetation and 
surface roughness to obtain the soil emissivity.  The Fresnel equation is then used to determine the 
dielectric constant from the soil emissivity.  Finally, a dielectric mixing model is used to solve for the soil 
moisture given knowledge of the soil texture.  [Note:  The software code includes the option of using 
different dielectric models.  Currently, the software switch is set to the Mironov model [15]].  
Analytically, SCA-V attempts to solve for one unknown variable (soil moisture) from one equation that 
relates the vertically polarized TB to soil moisture.  Vegetation information is provided by a 11-year 
climatological data base of global NDVI and a table of tau-omega parameters based on land cover. 

5.2 Single Channel Algorithm H-pol (SCA-H) 
The SCA-H is similar to SCA-V in that the horizontally polarized TB observations are converted to 

emissivity using a surrogate for the physical temperature of the emitting layer.  The derived emissivity is 
corrected for vegetation and surface roughness to obtain the soil emissivity.  The Fresnel equation is then 
used to determine the dielectric constant.  Finally, a dielectric mixing model is used to obtain the soil 
moisture given knowledge of the soil texture.  Analytically, SCA-H attempts to solve for one unknown 
variable (soil moisture) from one equation that relates the horizontally polarized TB to soil moisture. 
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Vegetation information is provided by a 11-year climatological data base of global NDVI and a table of 
tau-omega parameters based on land cover. 

5.3 Dual Channel Algorithm (DCA) 
In the DCA, both the vertically and horizontally polarized TB observations are used to solve for soil 

moisture and vegetation optical depth.  The algorithm iteratively minimizes a cost function (Φ2) that 
consists of the sum of squares of the differences between the observed and estimated TBs: 

minΦDCA
2 = (TB,v

obs − TB,v
est)2 + (TB,h

obs − TB,h
est)2 (1) 

 
In each iteration step, the soil moisture and vegetation opacity are adjusted simultaneously until the cost 
function attains a minimum in a least squares sense.  Similar to SCA-V and SCA-H, ancillary information 
such as effective soil temperature, surface roughness, and vegetation single scattering albedo must be 
known a priori before the inversion process.  DCA permits polarization dependence of coefficients in the 
forward modeling of TB observations.  As currently implemented for this release, the H and V parameters 
are set the same.  During ongoing Cal/Val activities leading up to future releases of the L2SMP data, 
implementing polarization dependence for the tau-omega model parameters will be investigated. 

5.4 An Improved Effective Temperature Methodology 
New to the June, 2018 data release is an improved depth correction scheme for the effective soil 

temperature, which is a critical parameter in passive soil moisture retrieval.  At L-band frequency, the 
contributing soil depth of microwave emission may be different from the pre-defined discrete soil depths 
at which the soil temperatures are available from a land surface model.  The resulting discrepancy can 
contribute to a dry bias of retrieved soil moisture (i.e., retrieval lower than in situ soil moisture) if the 
model-based effective soil temperature is colder than the soil temperature "seen" by the radiometer.  
Conversely, wet bias of retrieved soil moisture will occur if the model-based effective soil temperature is 
warmer than the soil temperature "seen" by the radiometer.  Since the contributing soil depth of 
microwave emission varies with soil moisture, the corresponding depth correction scheme for the 
effective soil temperature must account for soil moisture variability for brightness temperature 
observations acquired between AM (descending overpasses) and PM (ascending passes).  To achieve this 
objective, the following modified formulation of the Choudhury model [16] has been found to result in 
good agreement between the in situ soil moisture data and the retrieved soil moisture: 

   Teff = K × [ Tsoil2 + C (Tsoil1 - Tsoil2) ]  

where C = 0.246 for AM soil moisture retrieval and 1.000 for PM soil moisture retrieval, and K = 1.000 
for IGBP land cover classes 1 through 5 (dense vegetation classes) and 1.020 elsewhere.  Tsoil1 refers to 
the average soil temperature for the first soil layer (0-10 cm) and Tsoil2 refers to the average soil 
temperature for the second soil layer (10-20 cm) of the GMAO GEOS-5 land surface model. 
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6 METHODOLOGIES USED FOR L2SMP/L2SMP_E CAL/VAL 
Validation is critical for accurate and credible product usage, and must be based on quantitative 

estimates of uncertainty.  For satellite-based retrievals, validation should include direct comparison with 
independent correlative measurements.  The assessment of uncertainty must also be conducted and 
presented to the community in normally used metrics in order to facilitate acceptance and 
implementation. 

During mission definition and development, the SMAP Science Team and Cal/Val Working Group 
identified the metrics and methodologies that would be used for L2-L4 product assessment.  These 
metrics and methodologies were vetted in community Cal/Val workshops and tested in SMAP pre-launch 
Cal/Val rehearsal campaigns.  The methodologies identified and their general roles are: 

• Core Validation Sites (CVS): Accurate estimates of products at matching scales for a limited set 
of conditions  

• Sparse Networks: One point in the grid cell for a wide range of conditions  
• Satellite Products: Estimates over a very wide range of conditions at matching scales  
• Model Products: Estimates over a very wide range of conditions at matching scales  
• Field Campaigns: Detailed estimates for a very limited set of conditions 

In the case of the L2SMP/L2SMP_E data products, all of these methodologies can contribute to product 
assessment and improvement.   

6.1 Validation Grid (VG) 
The scanning radiometer on SMAP provides elliptical footprint observations across the scan.  The 

orientation of this ellipse varies across the swath, and on successive passes a point on the ground might be 
observed with very different azimuth angles.  A standard assumption in using radiometer observations is 
that the signal is dominated by the energy originating within the 3 dB (half-power) footprint (ellipse).  
The validity of this contributing area assumption will depend upon the heterogeneity of the landscape. 

A major decision was made for SMAP to resample the radiometer data to an Earth-fixed grid at a 
resolution of 36 km.  This was to facilitate temporal analyses and the disaggregation algorithm planned 
for the AP (active/passive) product.  It ignores azimuth orientation and some contribution beyond the 3 
dB footprints mentioned above, although the SMAP L1B_TB data do include a sidelobe correction.  An 
important point is that TBs on the Earth-fixed 36-km grid are used in the retrieval of soil moisture, and it 
is the soil moisture for these 36-km grid cells that must be validated and improved. 

The standard SMAP processor provides L2 surface (0-5 cm) soil moisture using only the radiometer 
(passive) data posted on a 36-km EASE2 Grid.  The standard SMAP grid was established without any 
consideration of where the CVS might be located.  In addition, the CVS were established in most cases to 
satisfy other (non-SMAP) objectives of the Cal/Val Partners.  One of the criteria for categorizing a site as 
a CVS is that the number of individual in situ stations (N) within the site is large (target is N ≥ 9 for 36 
km).  It was observed when examining the distribution of points at a site that in many cases only a few 
points fell in any specific standard 36-km grid cell.  Therefore, it was decided that special SMAP 
validation grids (VGs) would be established for validation assessment that would be tied to the existing 
SMAP 3-km standard grid but would allow the shifting of the 36-km grids at a site to fully exploit N 
being as large as possible (i.e. the validation grid would be centered over the collection of in situ points at 
a given CVS to the extent possible).  The approach used for validation grid processing is illustrated in 
Figure 6.1. 
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Figure 6.1. Illustration of validation grid processing.  The EASE2 grid boxes are shifted 

by 3-km increments (although 9-km shifts are shown for clarity) to allow a better 
geographical match with the in situ validation sites. 

 

Computationally the L2 and L3 VG products are the same as the standard product.  The selection of 
the VGs for each site was done by members of the SMAP Algorithm Development Team and Science 
Team.  As noted, the 3-km grid does not change.  The selection of the VGs also considered avoiding or 
minimizing the effects of land features that were not representative of the sampled domain or were known 
problems in retrieval (e.g., non-representative terrain, large water bodies, etc.).   

 

 

Validation Grid Processing Illustrated 

Standard Grid (SG) Processing Validation Grid (VG) Processing 

36 km 

9 km 

Box 2 

Box 1 

36 km 

9 km 

Box 1 

Both fore- and aft-look 
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Both fore- and aft-look 
data are used in VG 
processing 

Box 2 

Box 3 

Box 4 

Box 5 

The composition of the L1B 
footprints used in the gridding 
process changes for each VG box 
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7 SUMMARY OF REFINEMENTS IN L2SMP VERSION 5 AND 
L2SMP_E VERSION 2 AND VALIDATION 
• Expanded Assessment Period:  For the previous validated (Version 4) data release report, the 

analysis time period was April 1, 2015 - October 31, 2016 (19 months).  The start date in 2015 
was based on when the radiometer data were judged to be stable following instrument start-up 
operations.  The end date was based upon the closing date of the Version 4 release report.  The 
current assessment report expands the time period from April 1, 2015 through March 31, 2018, 
which provides a more robust 3-year assessment.  

• Changes to Teff:  Improved the depth correction scheme for the effective soil temperature, which 
is a critical parameter in passive soil moisture retrieval.   

• Changes in the Calibration and Upscaling of Some CVS:  

‒ Little River:  A temporarily installed ground in situ measurement network was used to 
relate the average soil moisture measured with the permanent network with the soil 
moisture observed in areas not covered by the permanent network.  This comparison 
resulted in a relatively significant average offset adjustment in the upscaled soil moisture 
compared to the upscaled soil moisture used in previous assessments.  

‒ Carman:  Based on analysis of vertically and horizontally installed in situ soil moisture 
sensors in the permanent network and a temporary network, it was concluded that the 
vertically installed sensors capture surface soil moisture behavior that corresponds better 
with what the SMAP radiometer observes.  Earlier analyses used the horizontal sensors 
for the computation of performance metrics between the SMAP soil moisture retrievals 
and the upscaled in situ soil moisture. 

‒ TxSON:  Soil samples harvested from the station locations were used to test different soil 
moisture probe calibration equations.  The analyses resulted in a change of the previously 
used calibration equation.  This change has a non-negligible impact on the upscaled soil 
moisture and estimated performance metrics. 

• Improved Quality Control of CVS Data:  The in situ data downloaded from the Cal/Val Partners 
is now run through an improved automatic quality control before determining the upscaled soil 
moisture values for each grid cell.  This process can result in the removal of stations that then 
requires modification of the upscaling function.  
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8 ASSESSMENTS 
In this section several assessments and intercomparisons are presented.  The standard L2SMP AM 

and PM (Version 5) and L2SMP_E AM and PM (Version 2) are examined for the expanded time period.  
Changes from the previous assessment (L2SMP Version 4 and L2SMP_E Version 1 [1]) will be noted if 
they occur.  These assessments utilize CVS, sparse network, and SMOS comparisons. 

8.1 L2SMP  

8.1.1 Core Validation Sites 

The primary validation for the L2SMP soil moisture is a comparison of retrievals at 36 km with 
ground-based observations that have been verified as providing a spatial average of soil moisture at the 
same scale, referred to as core validation sites (CVS) in the SMAP Calibration/Validation Plan [6]. 

In situ data are critical in the assessment of the SMAP products.  These comparisons provide error 
estimates and a basis for modifying algorithms and/or parameters.  A robust analysis will require many 
sites representing diverse conditions.  However, there are relatively few sites that can provide the type and 
quality of data required.  SMAP established a Cal/Val Partners Program in order to foster cooperation 
with these sites and to encourage the enhancement of these resources to better support SMAP Cal/Val.  
The current set of sites that provide data for L2SMP are listed in Table 8.1. 

Not all of the sites in Table 8.1 have reached a level of maturity that would support their use as CVS.    
Prior to initiating the beta-release assessments, the L2SMP and Cal/Val Teams reviewed the status of all 
sites to determine which sites were ready to be designated as CVS.  This process is repeated prior to each 
new assessment (Version 5), with the addition of new screening procedures for in situ data as well as 
changes in upscaling at some CVS.  The basic process is as follows: 

• Develop and implement the validation grid 
• Assess the site for conditions that would introduce uncertainty 
• Determine if the number of points is large enough to provide reliable estimates  
• Assess the geographic distribution of the in situ points 
• Determine if the in situ instrumentation has been either (1) widely used and known to be well-

calibrated or (2) calibrated for the specific site in question 
• Perform quality assessment of each point in the network 
• Establish a scaling function (default function is a linear average of all stations) 
• Conduct pre-launch assessment using surrogate data appropriate for the SMAP L2SMP product 

(i.e. SMOS soil moisture) 
• Review any supplemental studies that have been performed to verify that the network represents 

the SMAP product over the grid domain 

The current CVS for the L2SMP product are marked with an asterisk in Table 8.1.  A total of 15 CVS 
were used in this assessment.  Each of these should have at least 9 points (ground in situ measurement 
stations); however, exceptions are made to allow fewer in situ stations if the site has a well-established 
scaling and calibration function.  The status of candidate sites will continue to be reviewed periodically 
to determine if they should be classified as CVS and used in future assessments.  Note that the table 
includes comments on sites that are used for some of the L2SMP_E analyses discussed later. 
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The in situ data downloaded from the Cal/Val Partners is run through an automatic quality control 
(QC) before determining the upscaled soil moisture values for each pixel (grid cell).  The QC is 
implemented largely following the approach presented in [17].  The procedure includes checks for 
missing data, out of control values, spikes, sudden drops, and physical temperature limits.  Additionally, 
the physical temperature is checked to be above 4°C because many sensors experience change in 
behavior at colder temperatures.  In several cases the sites include stations that do not perform as 
expected, or at all, during the comparison period.  These stations are removed from consideration 
altogether, and a new configuration is set for the site accounting for only the stations that produce a 
reasonable amount of data over the comparison period.  Consequently, the upscaling functions for these 
sites are also based on the remaining set of stations. 

The key tool used in L2SMP CVS analyses is illustrated by Figure 8.1.  These charts are updated as 
changes are made to L1 data, L2 algorithms, or in preparation for periodic reviews with Cal/Val Partners.  
It includes a time series plot of in situ and retrieved soil moisture as well as flags that were triggered on a 
given day, an XY scatter plot of SMAP retrieved soil moisture compared to the average in situ soil 
moisture, and the quantitative statistical metrics.  It also shows the CVS site distribution.  When the in 
situ values are marked with a magenta color instead of red, it means that the in situ quality flag is raised.  
Several alternative algorithms and the SMOS soil moisture product are also displayed (SMOS L2 v650 
was used).  These plots are carefully reviewed and discussed by the L2SMP Team and Cal/Val Partners 
on a periodic basis.  Systematic differences and anomalies are identified for further investigation. This 
particular site (HOBE) was selected for illustration because it was relatively new in the last assessment 
process. 

All sites are then compiled to summarize the metrics and compute the overall performance.  Tables 
8.2 and 8.3 present the overall results for the current L2SMP Version 5 validated data sets.  The 
combined scatter plots associated with these results are shown in Figure 8.2.  These metrics and plots 
include the removal of questionable-quality and retrieval-flagged data. 

The key results for this assessment are summarized in the SMAP Average results row in Table 8.2.  
First, all algorithms have about the same ubRMSE, differing by 0.009 m3/m3, and exceed or are very close 
to the SMAP mission goal of 0.04 m3/m3.  Second, the correlations are also very similar.  For both of 
these metrics, the SCA-V shows superior performance.  More obvious differences among the algorithms 
were found in the bias, with the SCA-V now having an overall bias close to zero while the bias for the 
other algorithms is larger.  

Based upon the metrics and considerations discussed, the SCA-V has been selected to continue as 
the operational baseline algorithm for this release (Version 5).  As a longer period of observations builds 
and additional CVS are added, the evaluations will be repeated on a periodic basis. 

For guidance in expected performance, the SMOS soil moisture products for each site over the same 
time period were analyzed.  Summary statistics are included in Table 8.2.  For the CVS analyzed here, 
SMAP SCA-V outperforms SMOS for all metrics. 

Also shown in Tables 8.2 and 8.3 are the metric averages from the L2SMP Version 4 assessment.  
As noted previously, in addition to the product changes, there is also a longer period of record associated 
with Version 5.  Comparing the two versions, the ubRMSE decreased only for the SCA-V, while the 
others were constant.  There was a decrease in the bias for the SCA-V.  Overall, the algorithms appear to 
be stable over time. 
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Table 8.1. SMAP Cal/Val Partner Sites Providing L2SMP Validation Data 

 Site Name   Site PI   Area   Climate regime   IGBP Land Cover  
 Walnut Gulch*   M. Cosh   USA (Arizona)   Arid   Shrub open  
 Reynolds Creek*   M. Cosh   USA (Idaho)   Arid   Grasslands  
 Fort Cobb*   M. Cosh   USA (Oklahoma)   Temperate   Grasslands  
 Little Washita*   M. Cosh   USA (Oklahoma)   Temperate   Grasslands  
 South Fork*   M. Cosh   USA (Iowa)   Cold   Croplands  
 Little River*   M. Cosh   USA (Georgia)   Temperate   Cropland/natural mosaic  
 TxSON*   T. Caldwell   USA (Texas)   Temperate   Grasslands  
 Millbrook   M. Temimi   USA (New York)   Cold   Deciduous broadleaf  
 Kenaston*   A. Berg   Canada   Cold   Croplands  
 Carman*  H. McNairn   Canada   Cold   Croplands  
 Monte Buey*  M. Thibeault   Argentina   Arid   Croplands  
 Bell Ville   M. Thibeault   Argentina   Arid   Croplands  
 REMEDHUS*   J. Martinez   Spain   Temperate   Croplands  
Valencia  E. Lopez-Baeza Spain  Arid  Woody Savannas 
 Twente*   Z. Su   Netherlands  Cold   Cropland/natural mosaic  
 HOBE*  F. Udall  Denmark  Temperate Croplands 
 Kuwait   H. Jassar   Kuwait   Temperate   Barren/sparse  
 Niger   T. Pellarin   Niger   Arid   Grasslands  
 Benin   T. Pellarin   Benin   Arid   Savannas  
 Naqu   Z. Su   Tibet   Polar   Grasslands  
 Maqu   Z. Su   Tibet   Cold   Grasslands  
 Ngari   Z. Su   Tibet   Arid   Barren/sparse  
 MAHASRI*   J. Asanuma   Mongolia   Cold   Grasslands  
 Yanco*   J. Walker   Australia   Arid   Croplands  
 Kyeamba   J. Walker   Australia   Temperate   Croplands  
*=CVS used in both L2SMP and L2SMP_E assessments. 

 

 

It should be noted that a small underestimation bias should be expected when comparing satellite 
retrievals to in situ soil moisture sensors during drying conditions.  Satellite L-band microwave signals 
respond to a surface layer of a depth that varies with soil moisture (this depth is taken to be ~0-5 cm for 
average soils under average conditions).  The in situ measurement is centered at 5 cm and measures a 
layer from ~ 3 to 7 cm.  For some surface conditions and climates, it is expected that the surface will be 
slightly drier than the layer measured by the in situ sensors.  For example, Adams et al. [18] reported that 
a mean difference of 0.018 m3/m3 existed between the measurements obtained by inserting a probe 
vertically from the surface versus horizontally at 5 cm for agricultural fields in Manitoba, Canada.  Drier 
conditions were obtained using the surface measurement and this difference was more pronounced for 
mid- to dry conditions and minimized during wet conditions. 

A review of the individual CVS indicates that several sites (South Fork, Little River, Carman, Fort 
Cobb and Twente) have larger bias values. Of these, South Fork, Carman and Twente also have large 
ubRMSE, which may suggest error sources that cannot be accounted for with the current 
algorithm/parameter approach.  Efforts are under way at South Fork and Carman to better understand the 
causes of the errors and to determine if there is anything that can done to mitigate these errors. 
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Figure 8.1.  L2SMP Assessment Tool Report for the HOBE Network, Denmark Descending (AM) Passes. 
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Table 8.2.  SMAP L2SMP Version 5 CVS Assessment for Descending (AM) Overpasses 

CVS 
ubRMSE (m3/m3) Bias (m3/m3) RMSE (m3/m3) R N 

SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA 

Reynolds Creek 0.044 0.041 0.054 -0.053 -0.007 0.037 0.069 0.042 0.065 0.62 0.674 0.646 230 266 266 

Walnut Gulch 0.023 0.023 0.040 -0.019 0.008 0.036 0.03 0.025 0.054 0.768 0.817 0.814 272 354 352 

TxSON 0.021 0.021 0.041 -0.066 -0.007 0.096 0.069 0.022 0.104 0.921 0.925 0.830 446 446 435 

Fort Cobb 0.033 0.028 0.044 -0.067 -0.029 0.026 0.074 0.041 0.051 0.861 0.885 0.816 463 463 462 

Little Washita 0.024 0.021 0.041 -0.057 -0.013 0.061 0.061 0.025 0.073 0.893 0.918 0.824 490 490 483 

South Fork 0.062 0.053 0.056 -0.033 -0.010 0.023 0.071 0.054 0.061 0.600 0.647 0.624 321 327 327 

Little River 0.042 0.033 0.047 0.009 0.058 0.144 0.043 0.067 0.152 0.859 0.875 0.641 481 481 473 

Kenaston 0.038 0.028 0.041 -0.053 -0.022 0.030 0.065 0.035 0.051 0.769 0.828 0.65 215 215 215 

Carman 0.099 0.070 0.074 -0.076 -0.063 -0.035 0.124 0.094 0.082 0.469 0.515 0.444 239 239 239 

Monte Buey 0.072 0.049 0.044 -0.030 -0.013 0.001 0.078 0.05 0.044 0.711 0.864 0.754 146 156 159 

REMEDHUS 0.037 0.037 0.050 -0.022 0.005 0.028 0.043 0.037 0.058 0.858 0.848 0.817 371 380 379 

Twente 0.072 0.054 0.059 0.023 0.045 0.078 0.076 0.071 0.098 0.879 0.889 0.751 330 347 347 

HOBE 0.046 0.029 0.032 0.019 -0.007 -0.026 0.05 0.03 0.041 0.867 0.876 0.724 58 58 58 

MAHASRI 0.031 0.032 0.035 0.000 0.003 0.008 0.031 0.032 0.035 0.792 0.799 0.802 223 222 220 

Yanco 0.044 0.038 0.045 0.001 0.033 0.068 0.044 0.051 0.082 0.949 0.953 0.917 283 288 289 

Mean Absolute 
Bias  0.035 0.022 0.046    

SMAP L2SMP  
Average V5 0.046 0.037 0.047 -0.028 -0.001 0.038 0.062 0.044 0.070 0.788 0.821 0.737  

SMOS L2SM 
Average V5 0.053 -0.024  (MAB=0.035) 0.065 0.671  

SMAP L2SMP 
Average V4 0.046 0.039 0.047 -0.037 -0.028 -0.015 0.071 0.061 0.066 0.772 0.795 0.700  

SMOS L2SMP 
Average V4 0.053 -0.028 0.072 0.710  
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Table 8.3.  SMAP L2SMP Version 5 CVS Assessment for Ascending (PM) Overpasses 

CVS 
ubRMSE (m3/m3) Bias (m3/m3) RMSE (m3/m3) R N 

SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA 

Reynolds Creek 0.046 0.042 0.050 -0.061 -0.013 0.037 0.076 0.044 0.062 0.618 0.696 0.696 266 307 307 

Walnut Gulch 0.026 0.026 0.041 -0.030 -0.001 0.028 0.040 0.026 0.049 0.710 0.739 0.714 391 515 513 

TxSON 0.019 0.020 0.037 -0.056 -0.002 0.089 0.059 0.029 0.096 0.926 0.921 0.802 485 485 479 

Fort Cobb 0.038 0.030 0.038 -0.063 -0.033 0.008 0.074 0.044 0.039 0.857 0.876 0.802 492 492 491 

Little Washita 0.025 0.022 0.038 -0.045 -0.008 0.051 0.052 0.024 0.063 0.899 0.911 0.782 504 504 501 

South Fork 0.061 0.045 0.056 -0.031 -0.017 0.008 0.068 0.048 0.057 0.630 0.739 0.659 346 349 349 

Little River 0.042 0.034 0.055 0.016 0.061 0.138 0.045 0.070 0.149 0.849 0.829 0.436 418 418 411 

Kenaston 0.035 0.024 0.046 -0.047 -0.020 0.027 0.059 0.031 0.054 0.810 0.878 0.648 278 278 278 

Carman 0.088 0.056 0.061 -0.072 -0.066 -0.047 0.114 0.087 0.077 0.510 0.622 0.521 212 215 215 

Monte Buey 0.065 0.043 0.045 0.001 -0.001 -0.012 0.065 0.043 0.047 0.816 0.890 0.697 132 143 146 

REMEDHUS 0.035 0.036 0.048 -0.032 -0.007 0.017 0.048 0.036 0.050 0.853 0.844 0.815 383 407 406 

Twente 0.073 0.052 0.050 0.043 0.050 0.062 0.085 0.072 0.080 0.894 0.910 0.814 416 435 439 

HOBE 0.041 0.026 0.032 0.031 0.004 -0.018 0.051 0.026 0.036 0.842 0.821 0.576 58 58 58 

MAHASRI 0.032 0.033 0.035 -0.012 -0.005 0.000 0.034 0.033 0.035 0.701 0.679 0.681 303 325 310 

Yanco 0.054 0.041 0.040 0.011 0.034 0.056 0.055 0.053 0.069 0.957 0.960 0.936 315 319 322 

Mean Absolute 
Bias  0.037 0.021 0.040    

SMAP L2SMP  
Average V5 0.045 0.035 0.045 -0.023 -0.002 0.030 0.062 0.044 0.064 0.791 0.821 0.724  

SMOS L2SMP 
Average V5 0.051 -0.031  (MAB=0.036) 0.066 0.686  

SMAP L2SMP 
Average V4 0.046 0.039 0.047 -0.037 -0.028 -0.015 0.071 0.061 0.066 0.772 0.795 0.700  

SMOS L2SMP 
Average V4 0.053 -0.028 0.072 0.710  
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Figure 8.2.  Scatterplot of SMAP L2SMP Version 5 CVS Assessment for Descending (AM) Overpasses  

(SCA-H left panel, SCA-V middle panel, and DCA right panel). 
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8.1.2 Sparse Networks 

The intensive network CVS validation described above can be complemented by sparse networks as 
well as by new/emerging types of soil moisture networks.  The current set of networks being utilized by 
SMAP are listed in Table 8.4. 

The defining feature of these networks is that the measurement density is low, usually resulting in 
one ground measurement point per SMAP footprint.  These observations cannot be used for validation 
without addressing two issues: verifying that they provide a reliable estimate of the 0-5 cm surface soil 
moisture layer and that the one measurement point is representative of conditions across the entire SMAP 
footprint. 

SMAP has been evaluating methodologies for upscaling data from these networks to SMAP footprint 
resolutions.  A key element of the upscaling approach is Triple Colocation that combines the in situ data 
and SMAP soil moisture product with another independent source of soil moisture, likely to be a model-
based product [5]. 

Although limited by upscaling, sparse networks do offer many sites in different environments and 
are typically operational with very low latency.  They are very useful as a supplement to the limited 
number of CVS. 

Table 8.4.  Sparse Networks Providing L2SMP and L2SMP_E Validation Data 

Network Name PI/Contact Area No. of Sites 
(L2SMP) 

No. of Sites 
(L2SMP_E) 

NOAA Climate Reference Network (CRN) M. Palecki USA 60 56 
USDA NRCS Soil Climate Analysis Network 

(SCAN) M. Cosh USA 101 100 

GPS E. Small Western USA 80 77 
COSMOS M. Zreda Mostly USA 30 32 

SMOSMania J. Calvet Southern France 10 11 
Pampas M. Thibeault Argentina 16 14 

Oklahoma Mesonet - Oklahoma, USA 94 96 
Mongolian Grasslands (MAHASRI) J. Asanuma Mongolia 13 13 

 

The sparse network metrics are summarized in Table 8.5 and 8.6.  Because of the larger number of 
sites, it is possible to also examine the results based upon the IGBP land cover classification used by 
SMAP.  For these comparisons the SMOS metrics are included for each category. The reliability of the 
analyses based upon these classes will depend upon the number of sites available (N). 

Overall, the relative performance of the algorithms based on ubRMSE is similar to that obtained 
from the CVS -- SCA-V has the best metrics, with an ubRMSE of 0.049 m3/m3, bias of 0.004 m3/m3 and 
correlation of 0.664 for AM orbits, and an ubRMSE of 0.049 m3/m3, bias of 0.008 m3/m3 and correlation 
of 0.637 for the PM orbits.    Compared to the CVS results, the sparse network values are higher for 
ubRMSE and bias and lower for R, which is expected due to the significant change in scale between a 
point and the grid product.  When comparing Version 5 AM to Version 4 AM, both the ubRMSE and 
correlation show a slight improvement with a significant improvement in bias.  Considering the many 
caveats that must be considered in making sparse network comparisons, the algorithm performance is 
quite good.  This result provides additional confidence in the previous conclusions based on the CVS.   
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Interpreting the results based on land cover is more complex.  There are no clear patterns associated 
with broader vegetation types.  The ubRMSE values for SCA-V are all between 0.022 and 0.065 m3/m3.  
Grasslands had larger bias values, which needs to be investigated.  Forest results are based on very 
limited sites and should not be generalized.   

Figure 8.3 contains scatterplots of the SCA-V retrieved versus observed in situ soil moisture for 
SMAP standard and enhanced L2 passive soil moisture products.  Focusing on Figure 8.3a and 8.3b for 
the L2SMP AM & PM Version 5, the distribution reflects the summary metrics discussed above. 

SMOS (Level 2 UDP) metrics are also included in Tables 8.5 and 8.6 (in blue) as supporting 
information.  It should be noted that while SMOS retrievals are based on a different land cover 
classification scheme (ECOCLIMAP), this does not have any impact on the comparisons shown, which 
compares the soil moisture retrievals to the in situ observations for the points that fall into these 
categories.  Overall, the SMOS products are showing a higher bias and ubRMSE and lower correlation 
than the SMAP SCA-V retrievals.  There was a small increase in ubRMSE and decrease in bias in the 
SMOS results from the Version 4 analysis. 

 

 
Figure 8.3.  Scatterplots of the sparse network in situ observations and SMAP baseline SCA-V retrievals:  

(a) L2SMP AM Version 5, (b) L2SMP PM Version 5, (c) L2SMP_E AM Version 2,  
and (d) L2SMP_E PM Version 2.  
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Table 8.5.  SMAP L2SMP Version 5 Sparse Network Assessment for Descending (AM) Overpasses 

IGBP Class 
ubRMSD (m3/m3) Bias (m3/m3) RMSD (m3/m3) R N 

SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS  
Evergreen needleleaf forest 0.059 0.037 0.052 0.068 -0.051 -0.008 0.073 -0.064 0.081 0.038 0.091 0.096 0.548 0.843 0.772 0.521 3 

Evergreen broadleaf forest                  
Deciduous needleleaf forest                  
Deciduous broadleaf forest                  

Mixed forest 0.045 0.044 0.061 0.081 -0.041 0.012 0.095 -0.094 0.062 0.053 0.115 0.125 0.689 0.693 0.604 0.682 2 

Closed shrublands                  
Open shrublands 0.040 0.041 0.051 0.052 -0.039 -0.002 0.042 -0.010 0.062 0.056 0.077 0.065 0.559 0.571 0.561 0.504 47 

Woody savannas 0.063 0.057 0.073 0.098 -0.034 0.016 0.096 -0.062 0.093 0.086 0.134 0.140 0.678 0.709 0.511 0.499 22 

Savannas 0.046 0.045 0.050 0.057 -0.039 0.002 0.043 -0.021 0.071 0.061 0.081 0.070 0.878 0.870 0.836 0.824 6 

Grasslands 0.050 0.049 0.059 0.061 -0.067 -0.026 0.034 -0.046 0.089 0.069 0.084 0.088 0.690 0.701 0.651 0.608 240 

Permanent wetlands 0.083 0.072 0.071 0.097 -0.014 0.008 0.047 -0.058 0.084 0.072 0.085 0.113 0.366 0.349 0.203 0.406 1 

Croplands 0.079 0.067 0.072 0.080 -0.036 -0.010 0.033 -0.049 0.115 0.099 0.106 0.122 0.562 0.605 0.531 0.560 61 

Urban and built-up                  
Crop/Natural vegetation 

mosaic 0.060 0.053 0.068 0.084 -0.013 0.031 0.102 -0.084 0.084 0.082 0.133 0.153 0.684 0.736 0.577 0.504 16 

Snow and ice                  
Barren/Sparse 0.025 0.026 0.034 0.043 -0.015 0.014 0.063 -0.004 0.039 0.045 0.082 0.051 0.580 0.570 0.484 0.483 6 

Mean Absolute Bias  0.065 0.055 0.085 0.085    
SMAP L2SMP_E         

Average V2  (SMOS) 0.055 0.049 0.059 0.072 -0.035 0.004 0.063 -0.049 0.078 0.066 0.099 0.102 0.623 0.664 0.573 0.559  

SMAP L2SMP_E     
Average V1  (SMOS) 0.053 0.05 0.057 0.066 -0.061 -0.031 0.01 -0.049 0.093 0.077 0.081 0.099 0.643 0.663 0.633 0.576  

Average is based upon all sets of observations, not the average of the land cover category results. 
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Table 8.6.  SMAP L2SMP Version 5 Sparse Network Assessment for Ascending (PM) Overpasses 

IGBP Class 
ubRMSD (m3/m3) Bias (m3/m3) RMSD (m3/m3) R N 

SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS  
Evergreen needleleaf forest 0.059 0.038 0.054 0.060 -0.046 -0.003 0.083 -0.046 0.077 0.039 0.100 0.076 0.555 0.799 0.705 0.633 3 

Evergreen broadleaf forest                  
Deciduous needleleaf forest                  
Deciduous broadleaf forest                  

Mixed forest 0.048 0.046 0.063 0.083 -0.040 0.011 0.089 -0.048 0.063 0.051 0.110 0.096 0.641 0.649 0.533 0.669 2 

Closed shrublands                  
Open shrublands 0.040 0.041 0.051 0.053 -0.043 -0.005 0.043 -0.008 0.063 0.055 0.078 0.069 0.526 0.521 0.483 0.472 48 

Woody savannas 0.063 0.058 0.073 0.097 -0.013 0.027 0.093 -0.050 0.092 0.089 0.130 0.131 0.679 0.690 0.474 0.526 22 

Savannas 0.047 0.047 0.055 0.056 -0.034 0.007 0.049 -0.031 0.071 0.063 0.089 0.077 0.864 0.847 0.787 0.828 6 

Grasslands 0.049 0.048 0.057 0.060 -0.062 -0.024 0.030 -0.042 0.086 0.069 0.084 0.086 0.696 0.703 0.638 0.621 240 

Permanent wetlands 0.086 0.069 0.067 0.087 -0.003 0.006 0.025 -0.071 0.086 0.069 0.071 0.113 0.359 0.372 0.246 0.450 1 

Croplands 0.078 0.065 0.070 0.078 -0.019 -0.004 0.026 -0.047 0.113 0.098 0.103 0.116 0.573 0.612 0.516 0.558 61 

Urban and built-up                  
Crop/Natural vegetation 

mosaic 0.062 0.055 0.073 0.081 0.014 0.047 0.102 -0.072 0.083 0.089 0.136 0.137 0.665 0.707 0.488 0.490 15 

Snow and ice                  
Barren/Sparse 0.027 0.027 0.037 0.047 -0.018 0.014 0.071 0.006 0.040 0.046 0.089 0.055 0.507 0.467 0.353 0.359 6 

Mean Absolute Bias  0.064 0.056 0.085 0.078    
SMAP L2SMP_E         

Average V2  (SMOS) 0.056 0.049 0.060 0.070 -0.026 0.008 0.061 -0.041 0.077 0.067 0.099 0.096 0.606 0.637 0.522 0.561  

SMAP L2SMP_E     
Average V1  (SMOS) 0.053 0.051 0.059 0.065 -0.063 -0.043 -0.016 -0.043 0.097 0.083 0.084 0.095 0.618 0.629 0.595 0.578  

Average is based upon all sets of observations, not the average of the land cover category results. 
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8.2 L2SMP_E  

8.2.1 Core Validation Sites 

The new L2SMP_E Version 2 is assessed using the same approach as that employed for L2SMP.   
The major difference between L2SMP_E and L2SMP is that this product is assessed using a different set 
of CVS.  Because it is possible to now provide a retrieval for every SMAP 9-km grid cell where feasible, 
the need for using the validation grid (as used for L2SMP) is not expected to be as important an issue in 
performing validation.  It should be noted that the validation grid allowed centering the retrieval on any 3-
km grid, whereas the L2SMP_E retrieval process can only be centered on a 9-km grid.  Thus, the ability 
to match the in situ network to the grid may be more restrictive for L2SMP_E.  Each available CVS was 
reviewed to identify the 9-km grid cell that satisfied the CVS criteria for the new 33-km contributing 
domain.  Therefore, the mix/weighting of in situ stations and grid center will be different between the 
CVS sets used for the two products.  

The CVS results are summarized in Tables 8.7 and 8.8 for the AM and PM overpasses, respectively. 
The best algorithm choice remains the SCA-V and the ubRMSE meets/exceeds the SMAP mission 
requirements. When compared to the L2SMP retrievals, the differences in the metrics are negligible.  
These results indicate that the L2SMP_E products can be used in place of L2SMP without loss of 
accuracy.  

8.2.2 Sparse Networks 

The sparse network results are summarized in Tables 8.9 and 8.10 for the AM and PM overpasses, 
respectively.  Comparing the overall metrics for the L2SMP products to the L2SMP_E products, the 
results are nearly identical and therefore support the trends observed in the CVS analysis. 
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Table 8.7.  SMAP L2SMP_E Version 2 CVS Assessment for Descending (AM) Overpasses 

CVS 
ubRMSE (m3/m3) Bias (m3/m3) RMSE (m3/m3) R N 

SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA 

Reynolds Creek 0.040 0.040 0.055 -0.058 -0.013 0.036 0.070 0.042 0.065 0.627 0.644 0.592 138 141 141 

Walnut Gulch 0.022 0.024 0.042 -0.013 0.018 0.052 0.025 0.030 0.067 0.816 0.834 0.815 158 188 188 

TxSON 0.022 0.022 0.041 -0.067 -0.009 0.087 0.070 0.024 0.096 0.930 0.931 0.821 404 404 396 

Fort Cobb 0.033 0.028 0.044 -0.083 -0.045 0.009 0.089 0.053 0.045 0.861 0.882 0.813 445 445 445 

Little Washita 0.024 0.022 0.042 -0.062 -0.018 0.055 0.066 0.028 0.069 0.891 0.912 0.815 429 429 425 

South Fork 0.062 0.055 0.055 -0.059 -0.038 -0.012 0.085 0.067 0.057 0.655 0.671 0.628 259 265 265 

Little River 0.047 0.037 0.050 0.015 0.062 0.144 0.049 0.072 0.152 0.746 0.781 0.550 419 419 415 

Kenaston 0.039 0.027 0.041 -0.026 0.006 0.057 0.046 0.028 0.070 0.753 0.800 0.585 187 187 187 

Carman 0.086 0.064 0.066 -0.062 -0.047 -0.022 0.106 0.080 0.070 0.513 0.571 0.488 235 237 237 

Monte Buey 0.074 0.049 0.043 -0.032 -0.016 -0.001 0.081 0.052 0.043 0.712 0.838 0.777 181 191 195 

REMEDHUS 0.040 0.039 0.053 -0.016 0.012 0.038 0.043 0.041 0.065 0.850 0.846 0.818 343 348 348 

Twente 0.072 0.054 0.059 0.023 0.045 0.078 0.076 0.071 0.098 0.879 0.889 0.751 330 347 347 

HOBE 0.049 0.036 0.065 0.004 -0.003 0 0.049 0.036 0.065 0.723 0.860 0.755 117 117 117 

MAHASRI 0.031 0.032 0.035 0 0.003 0.008 0.031 0.032 0.035 0.792 0.799 0.802 223 222 220 

Yanco 0.045 0.039 0.046 -0.004 0.029 0.064 0.045 0.049 0.079 0.947 0.951 0.915 284 289 290 

Mean Absolute Bias  0.035 0.024 0.044    
SMAP L2SMP_E 

Average V2 0.046 0.038 0.049 -0.029 -0.001 0.039 0.062 0.047 0.072 0.780 0.814 0.728  

SMOS L2SMP_E 
Average V2 0.053 -0.022 0.067 0.665  

SMAP L2SMP_E 
Average V1 0.046 0.038 0.047 -0.034 -0.015 0.010 0.067 0.054 0.064 0.781 0.819 0.739  

SMOS L2SMP_E 
Average V1 0.052 -0.011 0.067 0.748  
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Table 8.8.  SMAP L2SMP_E Version 2 CVS Assessment for Ascending (PM) Overpasses 

CVS 
ubRMSE (m3/m3) Bias (m3/m3) RMSE (m3/m3) R N 

SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA 

Reynolds Creek 0.045 0.042 0.053 -0.064 -0.016 0.044 0.078 0.045 0.069 0.555 0.624 0.621 180 191 191 

Walnut Gulch 0.024 0.024 0.038 -0.026 0.005 0.034 0.035 0.024 0.051 0.722 0.760 0.730 286 386 383 

TxSON 0.020 0.020 0.035 -0.058 -0.005 0.081 0.061 0.021 0.089 0.927 0.929 0.822 442 442 440 

Fort Cobb 0.038 0.029 0.038 -0.079 -0.048 -0.007 0.087 0.057 0.038 0.850 0.869 0.795 479 479 478 

Little Washita 0.025 0.022 0.037 -0.050 -0.013 0.045 0.056 0.026 0.058 0.900 0.911 0.788 463 463 461 

South Fork 0.062 0.047 0.058 -0.054 -0.045 -0.027 0.083 0.065 0.064 0.668 0.737 0.608 268 271 271 

Little River 0.045 0.037 0.059 0.022 0.064 0.134 0.050 0.074 0.146 0.763 0.746 0.314 367 368 365 

Kenaston 0.035 0.023 0.047 -0.021 0.008 0.056 0.041 0.024 0.073 0.823 0.890 0.665 255 255 255 

Carman 0.080 0.051 0.055 -0.056 -0.050 -0.031 0.097 0.071 0.064 0.553 0.656 0.550 205 207 207 

Monte Buey 0.063 0.042 0.040 -0.002 -0.004 -0.015 0.063 0.043 0.043 0.832 0.901 0.773 152 164 168 

REMEDHUS 0.037 0.037 0.050 -0.026 0.002 0.027 0.045 0.037 0.057 0.863 0.851 0.817 388 395 393 

Twente 0.073 0.052 0.050 0.043 0.050 0.062 0.085 0.072 0.080 0.894 0.910 0.814 416 435 439 

HOBE 0.047 0.034 0.063 0.015 0.006 0.006 0.050 0.035 0.064 0.687 0.849 0.767 117 117 117 

MAHASRI 0.032 0.033 0.035 -0.012 -0.005 0.000 0.034 0.033 0.035 0.701 0.679 0.681 303 325 310 

Yanco 0.054 0.041 0.040 0.008 0.031 0.053 0.054 0.051 0.066 0.958 0.960 0.936 316 320 323 

Mean Absolute Bias  0.036 0.023 0.041    
SMAP L2SMP_E 

Average V2 0.045 0.036 0.047 -0.024 -0.002 0.031 0.061 0.045 0.066 0.780 0.818 0.712  

SMOS L2SMP_E 
Average V2 0.055 -0.026 0.068 0.677  

SMAP L2SMP_E 
Average V1 0.047 0.039 0.049 -0.036 -0.027 -0.011 0.070 0.060 0.066 0.772 0.814 0.729  

SMOS L2SMP_E 
Average V1 0.052 -0.016 0.068 0.750  
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Table 8.9.  SMAP L2SMP_E Version 2 Sparse Network Assessment for Descending (AM) Overpasses 

IGBP Class 
ubRMSD (m3/m3) Bias (m3/m3) RMSD (m3/m3) R N 

SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS  
Evergreen needleleaf forest 0.029 0.029 0.049 0.095 -0.028 0.023 0.090 -0.043 0.051 0.045 0.103 0.124 0.654 0.641 0.571 -0.031 2 

Evergreen broadleaf forest                  
Deciduous needleleaf forest                  
Deciduous broadleaf forest                  

Mixed forest 0.056 0.057 0.066 0.057 -0.045 -0.008 0.047 -0.069 0.072 0.058 0.081 0.090 0.655 0.640 0.579 0.711 1 

Closed shrublands                  
Open shrublands 0.039 0.040 0.049 0.053 -0.040 0.000 0.049 -0.009 0.063 0.054 0.079 0.064 0.529 0.547 0.540 0.473 45 

Woody savannas 0.059 0.055 0.072 0.095 -0.011 0.033 0.108 -0.054 0.087 0.087 0.140 0.140 0.728 0.736 0.497 0.434 19 

Savannas 0.032 0.030 0.039 0.045 -0.037 -0.008 0.012 -0.025 0.063 0.052 0.063 0.060 0.869 0.869 0.859 0.851 3 

Grasslands 0.050 0.049 0.058 0.062 -0.069 -0.028 0.035 -0.045 0.092 0.071 0.084 0.088 0.687 0.697 0.644 0.612 239 

Permanent wetlands                  
Croplands 0.076 0.065 0.072 0.079 -0.039 -0.013 0.032 -0.048 0.112 0.098 0.105 0.116 0.563 0.600 0.519 0.559 61 

Urban and built-up                  
Crop/Natural vegetation 

mosaic 0.067 0.059 0.070 0.093 -0.024 0.014 0.081 -0.093 0.096 0.087 0.122 0.166 0.636 0.674 0.548 0.463 23 

Snow and ice                  
Barren/Sparse 0.022 0.022 0.029 0.031 -0.014 0.014 0.058 -0.003 0.035 0.035 0.067 0.039 0.618 0.603 0.539 0.526 6 

Mean Absolute Bias  0.063 0.055 0.080 0.083    
SMAP L2SMP_E         

Average V2  (SMOS) 0.048 0.045 0.056 0.068 -0.034 0.003 0.057 -0.043 0.075 0.065 0.094 0.099 0.660 0.668 0.588 0.511  

SMAP L2SMP_E     
Average V1  (SMOS) 0.054 0.051 0.060 0.065 -0.062 -0.032 0.010 -0.049 0.095 0.079 0.084 0.098 0.642 0.654 0.608 0.572  

Average is based upon all sets of observations, not the average of the land cover category results. 
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Table 8.10.  SMAP L2SMP_E Version 2 Sparse Network Assessment for Ascending (PM) Overpasses 

IGBP Class 
ubRMSD (m3/m3) Bias (m3/m3) RMSD (m3/m3) R N 

SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS  
Evergreen needleleaf forest 0.036 0.036 0.053 0.077 -0.034 0.023 0.107 -0.039 0.058 0.054 0.120 0.124 0.498 0.485 0.403 0.007 2 

Evergreen broadleaf forest                  
Deciduous needleleaf forest                  
Deciduous broadleaf forest                  

Mixed forest 0.057 0.055 0.057 0.056 -0.038 -0.002 0.052 -0.055 0.068 0.055 0.077 0.078 0.676 0.704 0.694 0.724 1 

Closed shrublands                  
Open shrublands 0.039 0.040 0.050 0.055 -0.045 -0.003 0.052 -0.006 0.064 0.053 0.083 0.069 0.526 0.524 0.466 0.425 45 

Woody savannas 0.058 0.055 0.073 0.094 0.004 0.042 0.107 -0.045 0.087 0.090 0.140 0.126 0.724 0.717 0.452 0.485 19 

Savannas 0.033 0.033 0.041 0.049 -0.031 -0.002 0.016 -0.024 0.060 0.054 0.067 0.073 0.864 0.842 0.814 0.774 3 

Grasslands 0.050 0.049 0.057 0.062 -0.064 -0.025 0.032 -0.041 0.089 0.071 0.084 0.087 0.695 0.702 0.634 0.619 239 

Permanent wetlands                  
Croplands 0.075 0.063 0.069 0.077 -0.025 -0.008 0.025 -0.048 0.111 0.097 0.102 0.114 0.570 0.607 0.513 0.551 61 

Urban and built-up                  
Crop/Natural vegetation 

mosaic 0.066 0.058 0.069 0.090 0.001 0.028 0.075 -0.088 0.092 0.088 0.117 0.153 0.633 0.674 0.531 0.494 23 

Snow and ice                  
Barren/Sparse 0.023 0.024 0.033 0.039 -0.017 0.015 0.067 -0.002 0.038 0.036 0.075 0.048 0.509 0.461 0.356 0.389 6 

Mean Absolute Bias  0.063 0.057 0.083 0.081    
SMAP L2SMP_E         

Average V2  (SMOS) 0.049 0.046 0.056 0.067 -0.028 0.008 0.059 -0.039 0.074 0.067 0.096 0.097 0.633 0.635 0.540 0.497  

SMAP L2SMP_E     
Average V1  (SMOS) 0.053 0.051 0.059 0.065 -0.063 -0.041 -0.012 -0.043 0.097 0.083 0.084 0.094 0.639 0.645 0.601 0.575  

Average is based upon all sets of observations, not the average of the land cover category results. 
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8.3 Summary 
Three alternative L2SMP retrieval algorithms were evaluated using three methodologies in 

preparation for this release.  The algorithms included the Single Channel Algorithm–H Polarization 
(SCA-H), Single Channel Algorithm–V Polarization (SCA-V), and Dual Channel Algorithm (DCA).  
Assessment methodologies were Core Validation Sites (CVS), sparse networks, and intercomparisons 
with SMOS. 

For the current validated release (Version 5) of L2SMP, the goal was to update the previous 
assessment based primarily on CVS comparisons using metrics and time series plots.  This assessment 
was supported by global assessments using sparse networks and SMOS intercomparisons.  These analyses 
indicated that the SCA-V had better unbiased root mean square error and correlation and lower bias than 
the SCA-H or DCA.  Based on the results, it is recommended that the SCA-V be continued as the 
operational baseline algorithm for this release.  The overall ubRMSE of the SCA-V retrieved soil 
moisture from the descending (AM) orbits is 0.037 m3/m3, which is better than the mission requirement.  
Overall bias has also been reduced significantly compared to earlier versions of the L2SMP product. 

Sparse network comparisons are more difficult to interpret due to upscaling but provide many more 
locations than the CVS.  The analyses conducted here supported the conclusion reached in the CVS 
assessment, and contributed to improving validation through Triple Colocation analyses of uncertainties.  
The sparse network data also allowed the evaluation of performance based on land cover. 

SMAP CVS and sparse network retrievals were compared to SMOS. These analyses supported the 
conclusions of prior assessments that the L2SMP currently has better performance metrics than SMOS.  

The analyses described above were repeated for the L2SMP PM products. These show comparable 
performance to the AM results for all metrics. The comparable performance for AM and PM retrievals is 
attributed to the improved land surface temperature correction approach implemented in the new version.  

The L2SMP_E Version 2 product was assessed using CVS chosen specifically to exploit the posting 
(9 km) and contributing domain (33 km) of the product.  Results were essentially the same as those 
obtained in the L2SMP Version 5 analyses, which suggests that the product is as reliable as L2SMP.  

Based on the extensive validation analyses to date, the number of peer reviewed publications 
(including the numerous independent investigations noted in the bibliography section), the length of the 
SMAP period of record, and the utilization of feedback of validation in a systematic update, with this 
version of L2SMP and L2SMP_E the team has completed CEOS Stage 4 validation [10].  The Cal/Val 
program will continue throughout the mission with the goals of increasing the robustness of the soil 
moisture products and addressing specific site issues.  
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9 OUTLOOK AND FUTURE PLANS 
Satellite passive microwave retrieval of soil moisture has been the subject of intensive study and 

assessment for the past several decades.  Over this time there have been improvements in the microwave 
instruments used, primarily in the availability of L-band sensors on orbit.  However, sensor resolution has 
remained roughly the same over this period, which is actually an achievement considering the increase in 
sensor wavelength from X band to C band to L band over the years.  With spatial resolution in the 25-50 
km range, there will always be heterogeneity within the satellite footprint that will influence the accuracy 
of the retrieved soil moisture as well as its validation.  Precipitation types and patterns are one of the 
biggest contributors to this heterogeneity.  As a result, one should not expect that the validation metric 
ubRMSE will ever approach zero except in very homogeneous domains.  In contrast, bias tends to be 
indicative of a systematic error, possibly related to algorithm parameterization and model structure.  High 
quality data are needed to discover and address these systematic errors.  Some issues that should be 
considered during the extended SMAP mission include: 

• Increasing the number of CVS.  There are several candidate calibration/validation sites that may 
yet qualify as CVS.  Several will require additional time for further development (such as 
Millbrook, Kuwait, India).   

• Evaluate the impacts of algorithm structure and components on retrieval.  There are some aspects 
of soil moisture retrieval algorithms that are used because they facilitate operational soil moisture 
retrieval.  One of these simplifying aspects is the use of the Fresnel equations that specify that 
conditions in the microwave contributing depth are uniform.  While there is ample evidence that 
this is true in most cases, it should be recognized that this assumption is a potential source of 
error – some effort should be made to evaluate when and where it limits soil moisture retrieval 
accuracy.  Another assumption is that a single dielectric mixing model applies under all 
conditions globally.  All of the commonly-used dielectric models are highly dependent on the 
robustness of the data set used in their development.  The impact of this assumption on retrieval 
error needs further evaluation.  Another consideration in the current DCA is the assumption of 
equality of the vegetation parameters for the H and V polarizations.  This assumption does 
simplify retrieval but it is not valid for all categories of vegetation.  

• Optimization of algorithm parameters. The current release retains the same set of algorithm 
parameters used previously in SMAP Data Versions 2 to 4.  Because the current algorithm 
parameters do not vary in time, they are likely to be inadequate for producing accurate retrieval 
results in agricultural areas where there is often high temporal variability of vegetation amount, 
land cover heterogeneity, and terrain roughness due to tillage.  Initial attempts with spatio-
temporal optimization of algorithm parameters have resulted in modest gains in retrieval 
performance at CVS.  Full implementation of the optimization results would require more 
rigorous validation involving sparse network comparison in addition to CVS comparison, as well 
as a significant redesign of the current SMAP operational processing codes.  It is anticipated that 
the benefits of using optimal coefficients will be demonstrated in future releases of the L2SMP 
product, along with other improvements.  

• Possible subdivision of crop land cover class into distinct crop subclasses.  Another source of 
error is SMAP’s use of a single IGBP land cover class to cover the great variety of global crops.  
One area of future work will examine the possibility of subdividing the single crop class into a 
number of distinct subclasses (e.g., corn, soybeans, wheat, rice) with appropriate parameterization 
which would better represent the main global crop structural categories.  Due to the latency 
problem in acquiring up-to-date crop maps, this issue is not likely to be addressed until the final 
bulk reprocessing of SMAP data.  
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• Incorporating field campaign results into algorithm assessments and improvements.  Several 
SMAP field campaigns were conducted in 2016.  Analyses of the data are ongoing and results 
from these field campaigns will be used in future assessments and algorithm improvements.  It is 
expected that the results of the Iowa and Manitoba campaigns in 2016 will be of great value in 
resolving the significant error in soil moisture retrievals at these CVS (South Fork and Carmen). 

• Precipitation flag improvement.  Satellite observations made shortly after (or during) a rain event 
can be difficult to interpret and use in validation.  A wet surface will dominate what the 
radiometer observes, which may be much wetter than at the 5 cm depth of an in situ sensor (due 
to the lag time for the wetting front to infiltrate down to the in situ sensor depth).  Smaller 
precipitation events may be more problematic than larger events that wet a thicker surface layer.  
The divergence in these satellite observations will also be dependent on antecedent conditions 
(i.e., rain on a very dry soil).  At the present time the GMAO model precipitation forecast for the 
three hours preceding a SMAP overpass at a given site is used.  There is evidence that this 
approach is not adequate and that a longer time window might be necessary.  However, achieving 
a longer time window for the SMAP precipitation flag will require additional/alternative 
processing of the GMAO data.  Additionally, a comparison between using GMAO forecast model 
data and the GPM blended satellite data for the SMAP precipitation flag has begun.  

• Improvement of retrievals over forests. Dense forests (where VWC > 5 kg/m2) typically exceed 
the currently accepted threshold for accurate soil moisture retrieval.  SMAP provides a flagged 
retrieval over forests, and the spatial extent of these flagged areas is quite large.  At this point 
there is no supporting validation of the L2SMP soil moisture retrieved for forest areas, and the 
SMAP forest retrievals are quite different from SMOS.  While extending accurate soil moisture 
retrievals to forests would likely be very beneficial to a variety of end users of the data, the 
SMAP team has little confidence in the accuracy and the appropriateness of the current baseline 
retrieval approach for soil moisture retrieval in forests.  Future efforts to improve these retrievals 
should include both a careful evaluation of alternative algorithms and improving validation 
resources through a combination of CVS, temporary networks, and field campaigns.  Planning is 
underway for a 2019 field campaign. 
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