21 November 2019

CHEESEHEAD 2019 Radiosonde Data Quality Report

## Holger Vömel, William Brown

Earth Observing Laboratory National Center for Atmospheric Research Boulder, CO



Earth Observing Laboratory In situ Sensing Facility

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH P. O. Box 3000 BOULDER, COLORADO 80307-3000 The radiosonde data for this project were quality controlled and are maintained by the Earth Observing Laboratory at the National Center for Atmospheric Research (NCAR). The National Center for Atmospheric Research is managed by the University Corporation for Atmospheric Research and sponsored by the National Science Foundation.

The radiosondes, helium, and balloons used in this campaign were supplied jointly by the National Science Foundation's Lower Atmospheric Observing Facilities deployment pool via a facility request led by Ankur Desai and by the University of Wisconsin's Space Science and Engineering Center via a proposal led by Erik Olson and Tim Wagner.

If information or plots from this document are used for publication or presentation purposes, please provide appropriate acknowledgement to NCAR/EOL and NSF and refer to the citation listed below. Please feel free to contact the authors for further information.

### **Contacts:**

Holger Vömel (voemel@ucar.edu) Bill Brown (wbrown@ucar.edu)

#### **Radiosonde operators:**

- NCAR: Liz Bernhardt, Bill Brown, Rick Brownigg, Dan Buonome, Hendrik Gilmer, Gary Granger, Kurt Knudson, Robert Menke, John Miltzer, Steve Oncley, David Ortigoza, Matt Paulus, John Sobtzak, Isabel Suhr, Lou Verstraete, Kyle Wislinsky, Jacquie Witte
- U. Wisconsin: Brian Butterworth, Ryan Clare, Ankur Desai, Leo Mikula, James Mineau, Bailey Murphy, Sreenath Paleri, Jonathan Thom

KIT: Hannes Vogelmann, Luise Wanner

### **Mailing Address:**

NCAR/Earth Observing Laboratory P.O. Box 3000 3090 Center Green Dr. Boulder, CO 80301, USA

#### Websites:

CHEESEHEAD home page: <u>https://www.eol.ucar.edu/field\_projects/cheesehead</u> Integrated sounding system home page: <u>https://www.eol.ucar.edu/content/iss-operations-cheesehead</u>

### To refer to this data set or report, please include the following citation:

NCAR/EOL In-situ Sensing Facility, University of Wisconsin - Space Science & Engineering Center (SSEC). 2019. NCAR/EOL ISS and UWI SPARC Radiosonde Data. Version 1.0. UCAR/NCAR - Earth Observing Laboratory. https://doi.org/10.26023/9WA4-KQKZ-9Q12. Accessed 22 Feb 2021.

| Version | Date        | Author   | Change Description                              |  |  |
|---------|-------------|----------|-------------------------------------------------|--|--|
| 1.0     | 21 Nov 2019 | H. Vömel | Initial Data Release                            |  |  |
| 1.1     | 18 Feb 2021 | H. Vömel | Added missing credit to University of Wisconsin |  |  |

### **Document Version Control**

# 1 Table of Contents

| 2 | Da  | taset Overview           | 1 |
|---|-----|--------------------------|---|
| 3 | Ra  | diosonde sounding system | 2 |
| 4 | Qu  | ality control procedures | 3 |
|   | -   | Standard quality control |   |
|   | 4.2 | Custom quality control   | 3 |
| 5 | So  | unding metrics           | 4 |
| 6 |     | mospheric Measurements   |   |
| 7 |     | st of all soundings      |   |
| 8 |     | ferences                 |   |

# 2 Dataset Overview

The Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors (CHEESEHEAD) field campaign investigated long-standing puzzles regarding the role of atmospheric boundary-layer responses to scales of spatial heterogeneity in surface-atmosphere heat and water exchanges. From 20 June to 11 October 2019 one Integrated Sounding System (ISS) was deployed near Park Falls, WI. This document describes the quality of the data obtained from the NCAR/EOL radiosonde launches the ISS location.

Campaign staff from NCAR/EOL, University of Wisconsin, and Karlsruhe Institute of Technology successfully launched 172 radiosondes. Soundings were typically launched at 18:00 UTC (13:00 local time) for the duration of the campaign. Three intensive periods took place between 9 and 13 July, 19 and 24 August, and 23 and 28 September, with between 4 and 5 radiosonde launches per day.

Only one sounding failed shortly after launch, requiring a re-launch. The overall success rate during this campaign was 99.4%.

Figure 1 shows the flight tracks of the ascending part of all soundings.

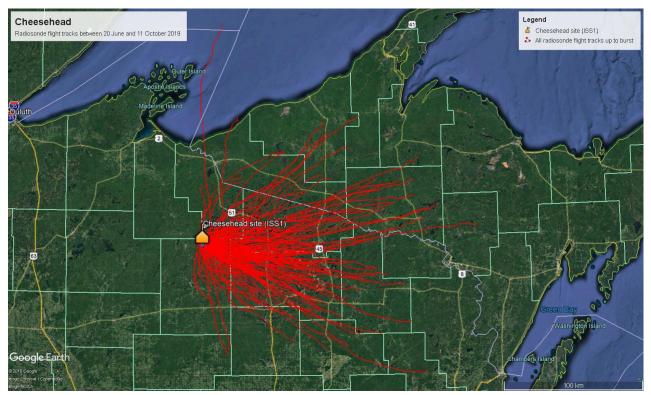



Figure 1: Location of the ISS site during CHEESEHEAD and flight tracks of all ascending radiosonde profiles. The sounding location was 12 km east of Park Falls, WI.

## **3** Radiosonde sounding system

This campaign used Vaisala RS41-SGP radiosondes, which were received and processed by the Vaisala MW41 sounding system using software version 2.11.0. The radiosondes used by NCAR/EOL include a pressure sensor, which provides a better altitude and pressure determination in the boundary layer and is more suitable for unstable conditions in convective environments. The sounding system was configured to meet the needs of NCAR for high-resolution data and complete metadata description. All sondes were launched using 100 g balloons supplied by Scientific Sales.

The MWX raw data files from the sounding system were saved along with the ASCII output files, which contained the initially processed profiles.

Data for some, but not all soundings were recorded also on descent; however, these data are not analyzed or archived and can be made available only upon request.

The sounding systems automatically ingest surface reference observations, which are provided by sets of reference sensors near each launch site. These observations are stored in the surface observations metadata fields of the sounding files and used in the quality control procedures of the sounding data.

The reference sensors used for the radiosonde system during CHEESEHEAD are listed in Table 1.

| Parameter    | Location                                            | Sensor             |
|--------------|-----------------------------------------------------|--------------------|
| Pressure     | The reference pressure was installed on a mast at 2 | Vaisala PTB210     |
|              | m height near the launch site.                      |                    |
| Temperature  | The reference sensors for temperature, humidity,    | Lufft WS300        |
| and humidity | wind speed, and wind direction were installed on a  |                    |
|              | mast at 2 m height near the launch site.            |                    |
| Wind         | The reference sensor for wind speed and wind        | Gill Wind Observer |
|              | direction was installed on a mast at 10 m height    | (2D sonic)         |
|              | near the launch site.                               |                    |

Table 1: Surface reference observations provided by the ISS meteorological reference sensors during CHEESEHEAD.

# 4 Quality control procedures

## 4.1 Standard quality control

The Vaisala system performs a sequence of standard quality control procedures and corrections for all radiosonde data:

- Applies a ground check correction for pressure using the pressure correction measured during the sonde preparation to compensate for small biases inherent in this type of pressure sensor.
- Performs a coarse outlier check for all measurement parameters
- Automatically detects launch based on change in pressure
- Performs a radiation correction for the temperature measurement using the radiation correction lookup table for the Vaisala RS41 radiosonde
- Corrects for response time lag of the temperature sensor
- Smooths the temperature profile
- Corrects for response time lag of the humidity sensor
- Filters out the balloon pendulum effect in the calculation of winds
- Calculates geopotential altitude based on the measured pressure profile

## 4.2 Custom quality control

In addition to the standard Vaisala procedures, all metadata are verified, and all measured parameters including reference measurements are checked for consistency and for any previously unidentified issue. The radiosonde measurements before launch are compared against the reference measurements and the causes for early termination are investigated. In the CHEESEHEAD data set, the following issues were identified and corrected:

- a. In three soundings (20190814\_180005, 20190821\_180006, 20190923\_175919) the balloon was launched up to 5 s earlier than when the launch was detected. The missing data have been reprocessed from raw data and the launch time stamp has been properly adjusted. Note that the file name was not changed, only the metadata inside the file.
- b. The sounding 20190730\_175824 did not record any data for the first 1.4 min after launch. The sounding system interpolated over this time. In the quality-controlled data set, these data have been removed.
- c. The reference wind sensor had been incorrectly configured during system setup and all reference wind directions were offset by 180°. This error was corrected in the quality controlled data. Due to the filtering of the balloon pendulum motion, this error also influenced the winds reported by the radiosonde up to 20 s after launch. These data have also been corrected by analyzing the raw data.
- d. Sounding 20190827\_180005 stopped data processing early due to failure of the radiosonde GPS. A full profile up to 16.1 km was recorded. The balloon continued to transmit thermodynamic data up to 20.8 km, but was unable to measure any winds after that point. The data have been limited to 16.1 km.

e. Sounding 20190803\_180205 encountered a period of descent for about 12 s, during which the sonde fell 20 m. Since only ascending data are reported, this descending motion causes a data gap of about 25 s at an altitude of 10.14 km.

The final quality controlled data are provided in NetCDF format following the CF-1.6 metadata convention for climate and forecasting. For a detailed description of the data format, refer to Vömel et al., 2018, <u>https://doi.org/10.5065/D65X27SR</u>.

# 5 Sounding metrics

At the CHEESEHEAD site, about 12 km east of Park Falls, WI, 172 successful radiosondes were launched between 20 June and 11 October 2019. Soundings were launched daily at 18:00 UTC and at higher frequency during three intensive observation periods. Between 9 and 13 July 2019, sondes were launched nominally at 10:20, 12:00, 14:15, 18:00, and 21:45. Between 19 and 24 August, sondes were launched nominally at 11:10, 14:15, 18:00, and 21:45, and between 23 and 28 September, sondes were launched at 11:45, 14:15, 18:00, and 21:45 (all times UTC).

Only one sonde failed shortly after launch (3 October 2019), requiring a re-release of a second sonde with a delay of 17 min off the nominal schedule.

The distribution of ceiling heights is shown in Figure 2. Burst heights below 14 km occurred on 5 consecutive days between 2 and 6 July, where a bad batch of balloons was suspected to be the main factor for the early bursts. Sounding 20190923\_214509 reached the highest burst altitude at 24.27 km.

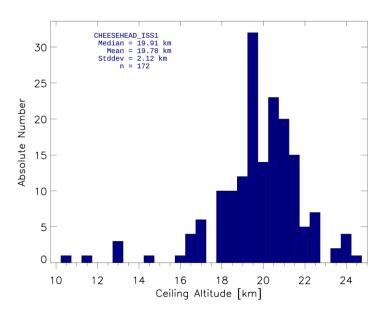



Figure 2: Distribution of ceiling heights for all radiosondes launched during CHEESEHEAD.

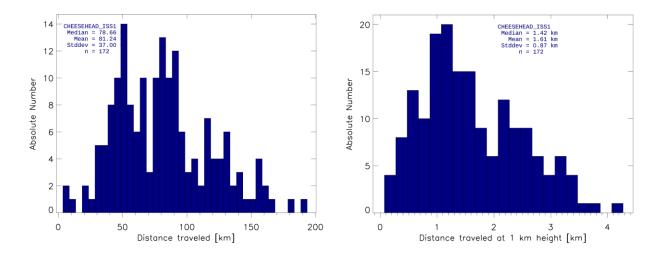



Figure 3: Distribution of balloon distance at end of data recording (left panel) and at 1 km above ground (right panel).

At burst, data were received up to a distance of 192 km. The distribution of balloon distances at ceiling altitude and at 1 km above ground is shown in Figure 3. The median distance at which a sounding was terminated was 79 km and the closest distance was 3.5 km. At 1 km above ground, the median distance was 1.4 km from the launch site and all balloons were closer than 4.5 km at that altitude.

Balloons were filled with 23 ft<sup>3</sup> of helium until 14 September and with 20 ft<sup>3</sup> of helium until the end of the campaign. During CHEESEHEAD balloons filled with 23 ft<sup>3</sup> rose with an average rise rate of 4.35 m/s to an average burst height of 19.6 km, and those filled with 20 ft<sup>3</sup> rose with an average rise rate of 4.15 m/s to a burst height of 21.2 km. The average rise rate profiles for the two different fill volumes is shown in Figure 4. The distribution of rise rates for all soundings is shown in Figure 5.

The sequence of all balloon rise rates (Figure 6) shows that during CHEESEHEAD this type of balloon rises faster in the lowest 2 km with an average rise rate of about 5.1 m/s shortly after launch

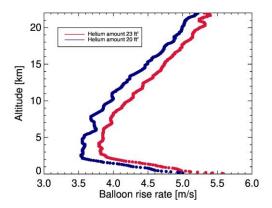



Figure 4: Average rise rates profiles for the two different helium fill values used during CHEESEHEAD.

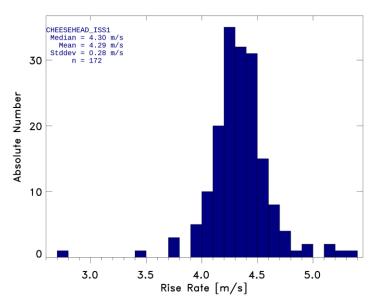



Figure 5: Distribution of rise rates for all radiosondes launched during CHEESEHEAD.

and a minimum of 3.7 m/s at about 3 km altitude. As a result, the vertical resolution of measurements in the lowest troposphere increases from about 5.1 m to 3.7 m between the surface and 3 km altitude.

Two cases were observed, where the balloon encountered fast updrafts in some layers. These cases are shown in red colors in the lower troposphere. Sounding 20190803\_180205 was launched in rain and was caught in a series of updrafts and downdrafts. The largest balloon rise rate was 18 m/s indicating an updraft velocity of about 14 m/s. In this sounding the region of strong rise rate variations extended up to 14 km. Sounding 20190626\_180028 showed a peak rise rate 12 m/s at about 3 km. Other soundings also showed smaller rise rate excursions indicated by the lighter colors in the middle troposphere.

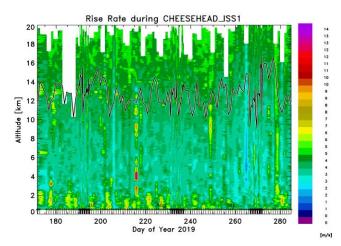



Figure 6: Time series contours of rise rate profiles for all radiosondes launched during CHEESEHEAD. Each launch is indicated by a small arrow at the bottom of the diagram. The intensive observation periods are indicated by the higher density of launch arrows. For a list of all soundings, see Section 7.

## 6 Atmospheric Measurements

Air temperature and relative humidity measurements from all radiosondes are shown in Figure 7. The period of soundings with burst altitudes below 12 km during the early part of July is most likely due to poorly performing balloons. The soundings span a period of three months, during which surface temperatures changed from on average  $+25^{\circ}$ C to  $+10^{\circ}$ C. The tropopause (shown as thin black line) ranged between about 9.1 and 16.7 km with the most common altitude around 12.6 km. It is also indicated by the rapid drop of relative humidity to values of less than 5%. As is customary, all relative humidity profiles are clipped at 100 % relative humidity over liquid.

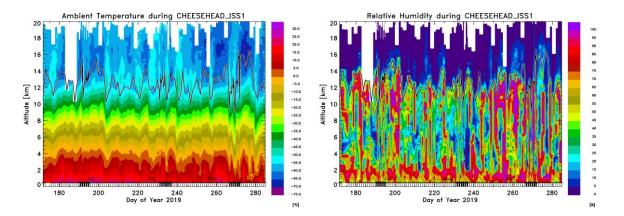



Figure 7: Time series contours of temperature profiles (top) and relative humidity profiles (bottom) from all radiosondes launched during CHEESEHEAD. The tropopause is shown as thin black line typically between 12 and 14 km.

The zonal wind speed measurements are shown in Figure 8. The proximity of the jet stream is indicated by high wind speeds in the upper troposphere reaching up to 80 m/s.

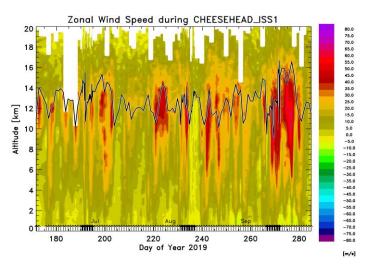



Figure 8: Time series contours of zonal wind speed profiles for all radiosondes launched during CHEESEHEAD.

# 7 List of all soundings

| #        | Date                       | Time     | Radiosonde           | Ceiling altitude | Rise rate | Duration     |
|----------|----------------------------|----------|----------------------|------------------|-----------|--------------|
| π        | [UTC]                      | [UTC]    | serial number        | [km]             | [m/s]     | [min]        |
| 1        | 20 Jun 2019                | 15:01:24 | N4511167             | 18.9             | 4.9       | 63.1         |
| 2        | 20 Jun 2019                | 19:08:26 | N4510856             | 19.6             | 4.3       | 74.4         |
| 3        | 21 Jun 2019                | 18:22:33 | N4511165             | 20.3             | 4.6       | 72.1         |
| 4        | 24 Jun 2019                | 18:01:50 | N4440153             | 19.0             | 4.0       | 77.4         |
| 5        | 25 Jun 2019                | 17:59:44 | N4510843             | 17.2             | 4.4       | 63.7         |
| 6        | 26 Jun 2019                | 18:00:28 | N4440151             | 19.3             | 4.7       | 66.9         |
| 7        | 27 Jun 2019                | 17:59:38 | P5010075             | 21.4             | 4.6       | 76.4         |
| 8        | 28 Jun 2019                | 17:59:02 | P5010595             | 18.5             | 4.4       | 68.9         |
| 9        | 29 Jun 2019                | 18:03:27 | P5010073             | 19.4             | 4.3       | 74.1         |
| 10       | 30 Jun 2019                | 18:03:31 | P5010596             | 22.3             | 4.5       | 81.1         |
| 11       | 01 Jul 2019                | 17:59:47 | P4930466             | 19.4             | 4.4       | 71.3         |
| 12       | 02 Jul 2019                | 17:57:41 | P4930496             | 11.7             | 4.1       | 46.0         |
| 13       | 03 Jul 2019                | 17:59:17 | P4930474             | 13.0             | 4.1       | 50.3         |
| 14       | 04 Jul 2019                | 17:57:49 | P5010076             | 12.8             | 4.4       | 46.8         |
| 15       | 05 Jul 2019                | 18:18:04 | P4930486             | 12.8             | 4.3       | 48.0         |
| 16       | 06 Jul 2019                | 17:59:23 | P5010077             | 10.2             | 4.0       | 40.9         |
| 17       | 07 Jul 2019                | 17:57:09 | P4930487             | 18.6             | 4.4       | 69.0         |
| 18       | 08 Jul 2019                | 17:58:11 | P4930484             | 20.0             | 4.2       | 77.4         |
| 19       | 09 Jul 2019                | 10:37:22 | P4930473             | 17.8             | 4.3       | 66.9         |
| 20       | 09 Jul 2019                | 12:11:56 | P4930421             | 21.3             | 4.2       | 82.3         |
| 21       | 09 Jul 2019                | 14:07:02 | P4930323             | 20.7             | 4.5       | 74.4         |
| 22       | 09 Jul 2019                | 18:00:01 | P4930471             | 18.9             | 4.4       | 70.3         |
| 23       | 09 Jul 2019                | 21:47:36 | P4930521             | 19.9             | 4.3       | 75.4         |
| 24       | 10 Jul 2019                | 10:20:20 | P4930522             | 20.4             | 4.1       | 80.9         |
| 25       | 10 Jul 2019                | 11:59:01 | P4930493             | 21.7             | 4.3       | 81.4         |
| 26       | 10 Jul 2019                | 14:16:27 | P4930492             | 18.8             | 4.3       | 71.9         |
| 20       | 10 Jul 2019                | 18:00:03 | P4930489             | 20.3             | 4.3       | 76.6         |
| 28       | 10 Jul 2019                | 21:45:02 | P4930498             | 19.6             | 4.2       | 70.0         |
| 28       | 11 Jul 2019                | 10:23:27 | P4930498             | 19.5             | 4.2       | 74.9         |
| 30       | 11 Jul 2019                | 11:58:06 | P4930491<br>P4930488 | 20.6             | 4.2       | 78.0         |
| 31       | 11 Jul 2019                | 14:14:02 | P5010560             | 18.0             | 4.3       | 70.9         |
| 32       | 11 Jul 2019                | 17:59:59 | P3010380<br>P4930472 | 20.8             | 4.1       | 70.9         |
| 33       | 11 Jul 2019                | 21:45:56 | P4930472<br>P4930482 | 19.3             | 4.5       | 78.9         |
| 34       | 12 Jul 2019                | 10:20:12 | P4930482<br>P4930485 | 19.5             | 4.1       | 77.4         |
| 35       | 12 Jul 2019                | 11:59:18 | P4930483             | 21.5             | 4.2       | 79.4         |
| 36       | 12 Jul 2019                | 14:14:31 | P4930324             | 21.3             | 4.4       | 79.4         |
| 37       | 12 Jul 2019                | 17:58:13 | P4930434             | 17.8             | 4.4       | 58.4         |
| 38       | 12 Jul 2019                | 21:45:02 | P4930434             | 21.1             | 4.5       | 76.1         |
| 38       | 12 Jul 2019<br>13 Jul 2019 | 10:20:06 | P4930433<br>P4930464 | 18.9             | 4.5       | 78.1         |
| 39<br>40 |                            | 12:00:02 |                      | 18.9             |           |              |
| 40       | 13 Jul 2019                |          | P4930517             |                  | 4.6       | 70.1         |
| 41       | 13 Jul 2019                | 14:15:13 | R2320707             | 20.7             | 4.2       | 80.0         |
| 42       | 13 Jul 2019                | 18:00:03 | R2320706             | 18.0             | 4.3       | 67.6<br>81.0 |
|          | 13 Jul 2019                | 21:45:17 | R2320705             | 20.9             | 4.2       | 81.9         |
| 44       | 14 Jul 2019                | 18:00:04 | R2340941             | 18.6             | 4.4       | 68.6         |
| 45       | 15 Jul 2019                | 18:00:02 | R2340943             | 20.2             | 4.5       | 73.8         |
| 46       | 16 Jul 2019                | 18:00:01 | R2340935             | 19.3             | 4.4       | 72.0         |
| 47       | 17 Jul 2019                | 18:00:11 | R2320704             | 19.9             | 4.2       | 76.7         |
| 48       | 18 Jul 2019                | 18:00:03 | R2340934             | 20.9             | 4.4       | 78.0         |
| 49       | 19 Jul 2019                | 18:00:05 | P4930467             | 17.1             | 4.3       | 64.4         |
| 50       | 20 Jul 2019                | 18:01:57 | P4930497             | 21.3             | 4.5       | 76.7         |
| 51       | 21 Jul 2019                | 18:00:08 | R2340948             | 20.9             | 4.6       | 74.1         |

| <b>F</b> 2 | 22 1.1 2212                | 47.50.44             | <b>D</b> 4020000     | 40.2         |            | 60.0         |
|------------|----------------------------|----------------------|----------------------|--------------|------------|--------------|
| 52         | 22 Jul 2019                | 17:58:41             | P4930802             | 19.3         | 4.6        | 68.3         |
| 53         | 23 Jul 2019                | 17:59:09             | P4930469             | 18.9         | 4.5        | 68.2         |
| 54         | 24 Jul 2019                | 17:58:47             | P4930470             | 21.9         | 3.4        | 104.5        |
| 55         | 25 Jul 2019                | 17:58:03             | R2340947             | 20.5         | 4.7        | 70.7         |
| 56         | 26 Jul 2019                | 18:01:37             | R2340946             | 19.6         | 4.2        | 75.2         |
| 57         | 27 Jul 2019                | 18:00:01             | R2340945             | 19.5         | 4.3        | 74.5         |
| 58         | 28 Jul 2019                | 18:00:50             | P4930494             | 20.8         | 4.6        | 74.4         |
| 59         | 29 Jul 2019                | 17:57:05             | R2320504             | 18.1         | 4.5        | 65.9         |
| 60         | 30 Jul 2019                | 17:58:24             | R2340933             | 17.8         | 4.4        | 66.1         |
| 61         | 31 Jul 2019                | 17:56:33             | R2340953             | 19.4         | 4.7        | 66.5         |
| 62         | 01 Aug 2019                | 18:00:02             | R2340942             | 19.6         | 4.2        | 75.0         |
| 63         | 02 Aug 2019                | 18:00:02             | R2340954             | 20.4         | 4.4        | 76.4         |
| 64         | 03 Aug 2019                | 18:02:05             | R2340932             | 19.3         | 5.1        | 61.2         |
| 65         | 04 Aug 2019                | 18:02:26             | R2340950             | 19.9         | 4.2        | 76.7         |
| 66         | 05 Aug 2019                | 17:58:18             | R2340949             | 19.9         | 4.8        | 68.1         |
| 67         | 06 Aug 2019                | 17:59:21             | R2320223             | 16.7         | 4.2        | 65.2         |
| 68         | 07 Aug 2019                | 18:00:07             | R2320110             | 18.7         | 4.1        | 74.0         |
| 69         | 08 Aug 2019                | 17:59:20             | R2320126             | 20.5         | 4.4        | 75.6         |
| 70         | 09 Aug 2019                | 18:00:02             | R2320102             | 19.0         | 4.5        | 68.0         |
| 71         | 10 Aug 2019                | 17:57:04             | R2320099             | 19.3         | 4.3        | 72.4         |
| 72         | 11 Aug 2019                | 17:57:37             | R2320122             | 21.7         | 4.2        | 83.7         |
| 73         | 12 Aug 2019                | 17:59:42             | R2320097             | 18.6         | 4.4        | 68.8         |
| 74         | 13 Aug 2019                | 18:08:51             | R2320098             | 17.2         | 4.1        | 67.2         |
| 75         | 14 Aug 2019                | 18:00:05             | R2320106             | 16.7         | 4.5        | 60.6         |
| 76         | 15 Aug 2019                | 18:00:17             | R2320101             | 18.5         | 4.4        | 68.3         |
| 77         | 16 Aug 2019                | 18:00:04             | R2320112             | 19.2         | 4.3        | 73.5         |
| 78         | 17 Aug 2019                | 18:03:27             | R2320100             | 21.1         | 4.4        | 77.7         |
| 79         | 18 Aug 2019                | 18:00:30             | R2340931             | 18.6         | 4.3        | 69.8         |
| 80         | 18 Aug 2019                | 21:34:51             | R2320114             | 19.3         | 4.1        | 76.4         |
| 81         | 19 Aug 2019                | 11:10:47             | R2320113             | 21.1         | 4.2        | 82.3         |
| 82         | 19 Aug 2019                | 14:15:09             | R2320113             | 20.4         | 4.4        | 76.2         |
| 83         | 19 Aug 2019                | 18:00:26             | R2320107             | 22.2         | 4.4        | 82.0         |
| 84         | 19 Aug 2019                | 21:45:13             | R2320100             | 19.8         | 4.1        | 78.7         |
| 85         | 20 Aug 2019                | 11:10:34             | R2320111<br>R2320109 | 20.8         | 4.4        | 77.9         |
| 86         | 20 Aug 2019<br>20 Aug 2019 | 14:07:15             | P4930445             | 20.5         | 4.4        | 75.8         |
| 87         | -                          | 18:00:02             | P4930445             | 19.5         | 4.4        | 73.8         |
| 88         | 20 Aug 2019                | 21:45:06             |                      | 20.3         | 4.5        | 80.7         |
| 89         | 20 Aug 2019                |                      | P4930437             |              |            |              |
| 89<br>90   | 21 Aug 2019<br>21 Aug 2019 | 11:12:49<br>14:15:02 | P4930463<br>P4930520 | 19.7<br>19.4 | 4.4<br>4.5 | 73.5<br>70.8 |
| 90<br>91   |                            | 14:13:02             | P4930458             | 21.1         | 4.5        | 70.8         |
| 91         | 21 Aug 2019<br>21 Aug 2019 | 21:45:04             | P4930438             | 19.6         | 4.7        | 73.8         |
| 92         |                            | 03:47:21             |                      |              | 4.4        |              |
| 93<br>94   | 22 Aug 2019                | 11:10:58             | P4930457             | 18.9         | 1          | 71.9         |
|            | 22 Aug 2019                |                      | P4930459             | 20.2         | 4.3        | 76.8         |
| 95         | 22 Aug 2019                | 14:15:01             | P4930460             | 20.5         | 4.3        | 77.2         |
| 96         | 22 Aug 2019                | 18:00:10             | P4930461             | 22.6         | 4.4        | 83.4         |
| 97         | 22 Aug 2019                | 21:45:17             | P4930446             | 20.6         | 4.5        | 75.2         |
| 98         | 23 Aug 2019                | 11:10:34             | P4930462             | 16.6         | 4.1        | 66.2         |
| 99         | 23 Aug 2019                | 14:15:16             | P4930448             | 20.2         | 4.0        | 81.2         |
| 100        | 23 Aug 2019                | 18:00:08             | P4930447             | 17.2         | 4.2        | 66.1         |
| 101        | 23 Aug 2019                | 21:46:14             | P4930426             | 21.3         | 4.4        | 79.1         |
| 102        | 24 Aug 2019                | 11:13:27             | P4930490             | 20.4         | 4.3        | 76.6         |
| 103        | 24 Aug 2019                | 14:15:05             | P4930423             | 19.6         | 4.2        | 75.5         |
| 104        | 24 Aug 2019                | 18:00:06             | P4930450             | 18.1         | 4.2        | 70.6         |
| 105        | 24 Aug 2019                | 21:45:07             | P4930146             | 18.5         | 4.2        | 70.7         |
| 106        | 25 Aug 2019                | 18:00:03             | P4930148             | 16.8         | 4.2        | 65.3         |
| 107        | 26 Aug 2019                | 18:00:10             | P4930145             | 18.1         | 4.1        | 70.9         |

| 108 | 27 Aug 2019 | 18:00:05 | P4930409  | 16.4 | 4.2 | 62.5  |
|-----|-------------|----------|-----------|------|-----|-------|
| 109 | 28 Aug 2019 | 18:00:05 | P4930413  | 19.9 | 4.2 | 76.6  |
| 110 | 29 Aug 2019 | 18:00:02 | P4930425  | 19.1 | 4.3 | 72.5  |
| 111 | 30 Aug 2019 | 18:07:45 | P5010082  | 19.0 | 4.3 | 71.8  |
| 112 | 31 Aug 2019 | 18:00:04 | P5010081  | 18.4 | 4.3 | 68.6  |
| 113 | 01 Sep 2019 | 18:00:01 | P5010074  | 20.6 | 4.4 | 76.4  |
| 114 | 02 Sep 2019 | 18:00:03 | P5010083  | 19.7 | 4.4 | 72.2  |
| 115 | 03 Sep 2019 | 18:00:22 | P5010084  | 20.6 | 4.4 | 76.3  |
| 116 | 04 Sep 2019 | 18:00:40 | P4930412  | 19.5 | 4.3 | 73.5  |
| 117 | 05 Sep 2019 | 18:04:42 | P4930414  | 19.4 | 5.1 | 61.9  |
| 118 | 06 Sep 2019 | 18:00:05 | P4930424  | 17.1 | 4.6 | 60.4  |
| 119 | 07 Sep 2019 | 18:00:08 | P4930147  | 20.8 | 4.4 | 76.8  |
| 120 | 08 Sep 2019 | 18:00:06 | P5010079  | 19.7 | 4.1 | 78.1  |
| 121 | 09 Sep 2019 | 18:08:50 | P4930149  | 19.1 | 4.1 | 75.2  |
| 122 | 10 Sep 2019 | 18:00:05 | P5010080  | 21.1 | 4.2 | 81.8  |
| 123 | 11 Sep 2019 | 18:00:03 | P4930150  | 18.6 | 4.2 | 72.7  |
| 124 | 12 Sep 2019 | 18:00:05 | R2320105  | 14.5 | 4.2 | 56.2  |
| 125 | 13 Sep 2019 | 18:03:35 | R2320123  | 21.4 | 4.2 | 83.6  |
| 126 | 14 Sep 2019 | 17:59:55 | R2321349  | 19.6 | 4.4 | 71.9  |
| 127 | 15 Sep 2019 | 18:00:01 | R2321366  | 19.3 | 4.2 | 75.7  |
| 128 | 16 Sep 2019 | 17:59:35 | R2321346  | 19.8 | 3.9 | 82.2  |
| 129 | 17 Sep 2019 | 17:58:22 | R2321498  | 24.1 | 4.1 | 95.3  |
| 130 | 18 Sep 2019 | 17:58:28 | R2320125  | 22.5 | 4.2 | 86.7  |
| 131 | 19 Sep 2019 | 18:00:01 | R2320104  | 20.6 | 4.0 | 83.7  |
| 132 | 20 Sep 2019 | 17:59:26 | R2320124  | 20.4 | 4.0 | 82.8  |
| 133 | 21 Sep 2019 | 18:05:01 | R2321348  | 18.0 | 2.7 | 109.8 |
| 134 | 22 Sep 2019 | 17:58:53 | R2320103  | 23.6 | 4.3 | 90.0  |
| 135 | 23 Sep 2019 | 11:51:38 | R2321347  | 21.1 | 4.2 | 82.6  |
| 136 | 23 Sep 2019 | 14:13:10 | R2321493  | 21.7 | 4.2 | 84.5  |
| 137 | 23 Sep 2019 | 17:59:19 | R1820180  | 21.8 | 4.4 | 81.5  |
| 138 | 23 Sep 2019 | 21:45:09 | R1740035  | 24.3 | 4.1 | 96.5  |
| 139 | 24 Sep 2019 | 11:47:36 | R2310480  | 22.6 | 4.1 | 89.0  |
| 140 | 24 Sep 2019 | 14:15:50 | R2341026  | 21.7 | 3.9 | 91.1  |
| 141 | 24 Sep 2019 | 17:59:05 | R1840316  | 22.4 | 4.1 | 89.7  |
| 142 | 24 Sep 2019 | 21:45:05 | R2321497  | 23.9 | 4.2 | 93.5  |
| 143 | 25 Sep 2019 | 11:50:00 | R2321489  | 20.6 | 4.3 | 77.5  |
| 144 | 25 Sep 2019 | 14:13:22 | R2321495  | 24.1 | 4.0 | 99.2  |
| 145 | 25 Sep 2019 | 17:57:53 | R2321367  | 21.3 | 4.3 | 80.9  |
| 146 | 25 Sep 2019 | 21:45:03 | R2321364  | 21.4 | 4.3 | 81.8  |
| 147 | 26 Sep 2019 | 11:48:55 | R2321345  | 22.0 | 3.9 | 91.4  |
| 148 | 26 Sep 2019 | 14:15:48 | R2321363  | 22.6 | 3.7 | 99.8  |
| 149 | 26 Sep 2019 | 18:12:31 | R2321258  | 19.7 | 4.1 | 78.6  |
| 150 | 26 Sep 2019 | 21:45:04 | R2321500  | 22.4 | 4.5 | 81.8  |
| 151 | 27 Sep 2019 | 11:47:51 | R2321490  | 20.6 | 4.2 | 80.5  |
| 152 | 27 Sep 2019 | 14:14:03 | R2310479  | 23.5 | 4.2 | 90.9  |
| 153 | 27 Sep 2019 | 18:00:18 | P5010577  | 21.3 | 4.0 | 85.9  |
| 154 | 27 Sep 2019 | 21:45:05 | P5010524  | 20.2 | 4.5 | 73.6  |
| 155 | 28 Sep 2019 | 03:00:01 | P5010522  | 20.8 | 3.9 | 86.3  |
| 156 | 28 Sep 2019 | 11:47:57 | P5010523  | 19.7 | 4.1 | 78.9  |
| 157 | 28 Sep 2019 | 14:13:40 | P5010528  | 21.8 | 4.0 | 88.5  |
| 158 | 28 Sep 2019 | 17:59:29 | P5010526  | 19.6 | 4.3 | 73.5  |
| 159 | 28 Sep 2019 | 21:44:15 | P5010522  | 20.5 | 4.0 | 84.3  |
| 160 | 29 Sep 2019 | 18:00:08 | P5010520  | 21.0 | 4.0 | 86.2  |
| 161 | 30 Sep 2019 | 18:00:06 | P5010521  | 21.0 | 3.9 | 87.0  |
| 162 | 01 Oct 2019 | 18:00:48 | P5010019  | 21.0 | 4.5 | 76.3  |
| 163 | 02 Oct 2019 | 18:00:02 | P5010551  | 20.8 | 4.3 | 78.7  |
| 105 | 02 000 2013 | 10.00.02 | 1 3010331 | 20.0 | т.э | 70.7  |

### **CHEESEHEAD 2019, Radiosonde Data Quality Report**

| 164 | 03 Oct 2019 | 18:17:36 | P5010527 | 21.1 | 3.8 | 89.5 |
|-----|-------------|----------|----------|------|-----|------|
| 165 | 04 Oct 2019 | 18:01:58 | P5010552 | 18.0 | 5.2 | 56.3 |
| 166 | 05 Oct 2019 | 18:01:29 | P5010525 | 19.4 | 5.3 | 58.9 |
| 167 | 06 Oct 2019 | 18:01:24 | R2321259 | 21.4 | 4.2 | 82.6 |
| 168 | 07 Oct 2019 | 18:00:06 | R2320205 | 16.0 | 3.7 | 69.6 |
| 169 | 08 Oct 2019 | 18:00:26 | R2321491 | 19.1 | 4.5 | 68.5 |
| 170 | 09 Oct 2019 | 17:59:41 | R2310477 | 20.3 | 4.6 | 72.0 |
| 171 | 10 Oct 2019 | 18:00:03 | R1740468 | 24.2 | 4.2 | 93.1 |
| 172 | 11 Oct 2019 | 18:04:33 | R1740098 | 21.2 | 4.3 | 80.7 |

# 8 References

Vömel, H., G. Granger, and I. Suhr, 2018, NCAR/EOL/ISF Radiosonde NetCDF Data Files, UCAR/NCAR - Earth Observing Laboratory. <u>https://doi.org/10.5065/D65X27SR.</u>