## **CFI Climate Sentinels UQAM-PK Parsivel Disdrometer Data [UQAM]**

#### **Authors:**

Mathieu Lachapelle (Lead author, Corresponding author)

Ph.D Candidate/Student

Department of Earth and Atmospheric Sciences

Université du Québec à Montréal

lachapelle.mathieu@courrier.ugam.ca

Margaux Girouard (Co-author)

Master Candidate/Student

Department of Earth and Atmospheric Sciences

Université du Québec à Montréal

girouard.margaux@courrier.uqam.ca

Hadleigh Thompson (Co-author)
Research Assistant
Department of Earth and Atmospheric Sciences
Université du Québec à Montréal
thompson.hadleigh@uqam.ca
ORCID: 0000-0001-5145-5951

Julie M. Thériault (Co-author)

Professor

Department of Earth and Atmospheric Sciences

Université du Québec à Montréal

theriault.julie@uqam.ca

ORCID: 0000-0001-6534-5083

## 1. Data Set Description

- 1.1. Introduction: This dataset contains raw data from an OTT Parsivel<sup>2</sup> laser disdrometer permanently installed on the rooftop of UQAM President-Kennedy building in Montréal downtown, Québec. The instrument provides histograms of hydrometeor size and fallspeed. The site sits in the St. Lawrence River Valley. Several other sites also collected Parsivel data during WINTRE-MIX. Data from these other sites will also be made available in the WINTRE-MIX data archive (<a href="https://data.eol.ucar.edu/master\_lists/generated/wintre-mix/">https://data.eol.ucar.edu/master\_lists/generated/wintre-mix/</a>).
- **1.2. Data version:** v1.0, 31 August 2022
- **1.3**. **Time period covered:** 1 November 2021 24 April 2022
- 1.4. Location:

■ The OTT Parsivel laser disdrometer is mounted on a horizontal structure on the rooftop of UQAM President-Kennedy (UQAM-PK) building (Fig. 1), co-located with other meteorological instruments. The approximate location is shown in Fig. 2. The building is 39 m high and the station is 69 m above sea level. The laser-optical disdrometer is mounted 2 m above the station platform.

Latitude: 45.508594°Longitude: -73.568741°Elevation: 71 m MSL

1.5. Data frequency: 60 seconds

1.6. Web address: <a href="https://doi.org/10.26023/Y1V7-T00H-WK0X">https://doi.org/10.26023/Y1V7-T00H-WK0X</a>

Preliminary Parsivel data are visualized as "quick look" plots on the WINTRE-MIX field catalog ( <a href="https://catalog.eol.ucar.edu/wintre-mix/114/date/">https://catalog.eol.ucar.edu/wintre-mix/114/date/</a> ).

1.7. Dataset restrictions: Please refer to the WINTRE-MIX data policy (<a href="https://www.eol.ucar.edu/content/wintre-mixdata-policy">https://www.eol.ucar.edu/content/wintre-mixdata-policy</a>) as well as the WINTRE-MIX data management plan (<a href="https://www.eol.ucar.edu/system/files/Data\_Management\_Plan-1Dec2021.pdf">https://www.eol.ucar.edu/system/files/Data\_Management\_Plan-1Dec2021.pdf</a>) for more information regarding dataset restrictions and dissemination.



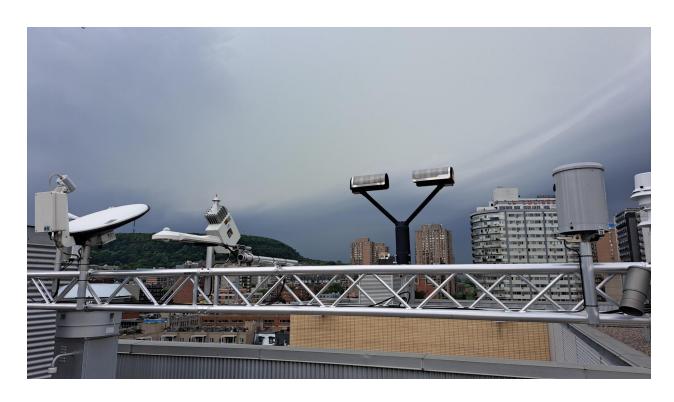



Fig. 1. Photos of the UQAM-PK weather station and OTT Parsivel laser disdrometer.

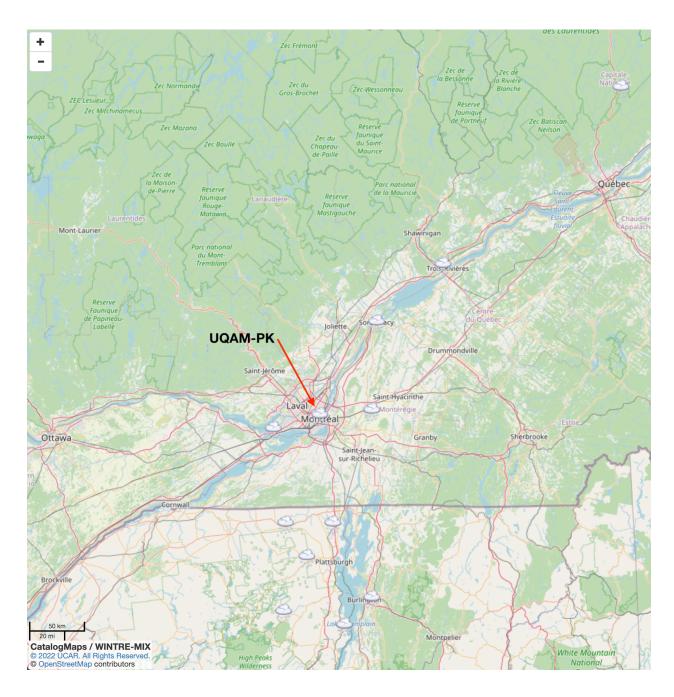



Fig. 2. Approximate location of UQAM-PK station in Montreal, QC.

## 2. Instrument Description

A Parsivel<sup>2</sup> laser disdrometer (Parsivel;

https://www.otthydromet.com/en/p-ott-parsivel-laser-present-weather-sensor/70.210.002.

3.0) was deployed at UQAM-PK (Fig. 1). The Parsivel uses measured extinction of a laser beam by falling hydrometeors to classify each hydrometeor by its size and fall speed. The data are recorded as counts in 32 size bins and 32 fall speed bins. The

attributes of the Parsivel are summarized in Table 1. More detailed technical information on the Parsivel is available in OTT (n.d.) and Tokay et al. (2014).

Table 1: Technical specifications and configuration settings for the Parsivel

| <u>Parameter</u>                                     | <u>Values</u> |
|------------------------------------------------------|---------------|
| Measuring surface                                    | 180 x 30 mm   |
| Measuring range – liquid precipitation particle size | 0.2 – 8 mm    |
| Measuring range – liquid precipitation particle size | 0.2 – 25 mm   |
| Measuring range – particle speed                     | 0.2 – 20 m/s  |
| Optical sensor laser diode – wavelength              | 650 nm        |
| Optical sensor laser diode – output power            | 0.2 mW        |
| Data collection frequency                            | 60 s          |

### 3. Data Collection and Processing

The Parsivel was configured to collect data every 60 seconds (Table 1). Heating was supplied to the sensor heads to prevent accumulation of snow and ice, using the default temperature threshold of 10 degC. Data was logged onto a Windows PC using the OTT ASDO Software (ASDO Basic Version 1.15.0) as daily text files. These were converted into netCDF files with additional metadata added. No quality control checks were applied beyond those used in the routine OTT processing.

#### 4. Data format

The whole dataset is saved in one file named  $UQAM\_Parsivel\_WINTRE-MIX.nc$  .

The variables provided in each file are summarized in Table 2. Additional metadata is provided in the netCDF file.

Table 2: Variables recorded in Parsivel netCDF files.

| <u>Parameter</u> | <u>Value</u>                                     | <u>Unit</u> |
|------------------|--------------------------------------------------|-------------|
| bin_velocities   | Middle of velocity bin                           | m s^-1      |
| bin_diameters    | Middle of diameter bins                          | mm          |
| time             | Measurement time in UTC                          | Timestamp   |
| Prcp_Intensity   | Intensity of precipitation                       | mm h^-1     |
| Prcp_Start       | Precipitation since start of period              | mm          |
| Wx_Code_Synop    | Synoptic Present Weather code                    | -           |
| Wx_Code_METAR    | METAR Special Weather code                       | -           |
| Wx_Code_NWS      | NWS Weather code                                 | -           |
| Reflectivity     | Radar reflectivity                               | dBZ         |
| Visibility       | Meteorological Optical<br>Range (MOR) visibility | m           |
| Signal_Ampl      | Signal amplitude of laserband                    | -           |
| Num_Particles    | Number of detected particles                     | -           |
| Sensor_Temp      | Temperature in sensor                            | degC        |
| Heating_Current  | Heating current                                  | Α           |
| Sensor_Voltage   | Sensor voltage                                   | V           |
| Kinetic_Energy   | Kinetic Energy                                   | J m^-2 h^-1 |

| Snow_Intensity                  | Snow Intensity                                            | mm h^-1                |
|---------------------------------|-----------------------------------------------------------|------------------------|
| Nd_Spectra                      | Particle number concentration in each diameter bin        | log10 (m^-3 mm^-1)     |
| Vd_Spectra                      | Average particle speed in each diameter bin               | m s^-1                 |
| Raw_Data                        | Number of counts in each combined velocity, diameter bins | -                      |
| latitude                        | Latitude of Parsivel                                      | deg N                  |
| longitude                       | Longitude of Parsivel                                     | deg W                  |
| height_above_mean<br>_sea_level | Elevation of Parsivel                                     | m above mean sea level |
| bin_diameters_width             | Width of diameter bins                                    | mm                     |
| bin_velocities_width            | Width of velocity bins                                    | m s^-1                 |

#### 5. Data Remarks

The two smallest size bins are outside the measurement range of the instrument and are not used. The Parsivel appears to systematically undercount drops in the third smallest size bin. Thus, drops with diameters < 0.37 mm are likely poorly characterized by this instrument.

Table 3 summarizes Parsivel at UQAM-PK interruptions > 1 h. Only 3 long interruptions occurred from 1 Feb 2022 - 15 March 2022, during the field campaign. They are highlighted in yellow. Most interruptions are due to construction on the rooftop station during winter 2021-2022.

Table 3: Summary of missing data

| Interruption   |                  |                  |
|----------------|------------------|------------------|
| length [hours] | Start            | End              |
| 8.2            | 2021-11-18 08:20 | 2021-11-18 16:33 |
| 14.0           | 2021-11-26 01:59 | 2021-11-26 16:00 |
| 214.8          | 2021-12-01 21:32 | 2021-12-10 20:17 |
| 59.1           | 2021-12-12 11:18 | 2021-12-14 22:21 |
| 1.6            | 2021-12-15 18:12 | 2021-12-15 19:48 |
| 83.3           | 2021-12-17 02:42 | 2021-12-20 13:57 |
| 376.2          | 2021-12-26 22:11 | 2022-01-11 14:23 |
| 41.6           | 2022-01-12 19:56 | 2022-01-14 13:34 |
| 17.0           | 2022-01-31 20:43 | 2022-02-01 13:41 |
| 9.6            | 2022-02-09 19:02 | 2022-02-10 04:39 |
| 13.8           | 2022-02-14 00:13 | 2022-02-14 14:00 |
| 14.5           | 2022-03-02 05:56 | 2022-03-02 20:28 |
| 11.8           | 2022-03-18 01:58 | 2022-03-18 13:44 |
| 26.5           | 2022-03-24 14:41 | 2022-03-25 17:11 |
| 43.0           | 2022-03-26 22:19 | 2022-03-28 17:18 |
| 30.5           | 2022-03-31 12:07 | 2022-04-01 18:38 |
| 30.1           | 2022-04-05 07:59 | 2022-04-06 14:00 |
| 56.7           | 2022-04-10 10:07 | 2022-04-12 18:47 |
| 16.3           | 2022-04-13 20:38 | 2022-04-14 12:56 |
| 6.4            | 2022-04-22 13:44 | 2022-04-22 20:10 |

# 6. Acknowledgment

Financial support was provided by Canada Foundation for Innovation (CFI), Canada Research Chair (CRC), Natural Sciences en Engineering Research Council (NSERC) of

Canada, Département des Sciences de la Terre et l'atmosphère de l'UQAM, and the Fonds de Recherche du Québec Nature et Technologie (FRQNT). We also thank George Huard and Frédéric Toupin that provided technical informatic support. This README was largely inspired from NYSM Chazy, NY Parsivel Disdrometer Data (Minder et al. 2022).

#### 7. References

Minder, J., N. Bain, W. Bartolini, Jr., K., and S. McKim, 2022: NYSM Chazy, NY Parsivel Disdrometer Data. Version 1.0. <a href="https://doi.org/10.26023/KRFX-TMZW-JJ0W">https://doi.org/10.26023/KRFX-TMZW-JJ0W</a>.

Tokay, A., Wolff, D. B., & Petersen, W. A. (2014). Evaluation of the New Version of the Laser-Optical Disdrometer, OTT Parsivel2. Journal of Atmospheric and Oceanic Technology, 31, 1276-1288. <a href="https://doi.org/10.1175/JTECH-D-13-00174.1">https://doi.org/10.1175/JTECH-D-13-00174.1</a>

\*OTT, n.d: Operating instructions – Present Weather Sensor Parsivel 2 . OTT Hydromet GmbH, document number: 70.210.001.BE.

\* OTT Parsivel manual is provided as an attachment.

#### 8. Appendix

Suggested GCMD keywords to accompany this dataset are provided below in no particular order:

- Solid precipitation
- Frozen precipitation
- Rain
- Freezing rain
- Drizzle
- Freezing drizzle
- Ice pellets
- Snow
- Droplet size
- Ice storms
- Snow storms
- Extratropical cyclones