SOCRATES Liquid Precipitation Properties Retrieval Product, Version 1.0

Authors

Litai Kang Affiliation: University of Washington, Department of Atmospheric Sciences, Seattle, WA, USA Email: <u>kanglt@uw.edu</u> ORCID: 0000-0001-6121-860X

Roger Marchand Affiliation: University of Washington, Department of Atmospheric Sciences, Seattle, WA, USA Email: <u>rojmarch@uw.edu</u> ORCID: 0000-0002-5218-6762

Robert Wood Affiliation: University of Washington, Department of Atmospheric Sciences, Seattle, WA, USA Email: <u>robwood2@uw.edu</u> ORCID: 0000-0002-1401-3828

1.0 Oveview

This dataset contains retrievals of liquid precipitation properties for the Southern Ocean Cloud Radiation and Aerosol Transport Experimental Study (SOCRATES) during January and February 2018. Liquidphase precipitation properties are retrieved where radar and lidar are zenith-pointing using radar reflectivity-velocity retrieval and radar-lidar retrievals. For more information on SOCRATES, see McFarquhar et al.(2021) and SOCRATES field catalog <u>https://catalog.eol.ucar.edu/socrates</u>. The liquid precipitation properties were derived using observations from the W-band HIAPER Cloud Radar (HCR) and High Spectral Resolution Lidar (HSRL) on board the Gulfstream-V High-performance Instrumented Airborne Platform for Environmental Research (GV-HIAPER) aircraft. The retrieval process are briefly described in Section 3.0. For detailed information on the retrieval process and validation results, please refer to Kang et al. (2024).

2.0 Instrument Description

The dataset is derived based on data from remote sensors include a 94-GHz W-band HIAPER Cloud Radar(HCR) (Vivekanandan et al., 2015) and a 532-nm High Spectral Resolution Lidar (HSRL) (Eloranta, 2005). The radar and lidar moments data version 3.1 were used as inputs for the retrieval algorithm and were processed by NCAR/EOL at 2 Hz (0.5 seconds) temporal resolution and 19 meters range vertical resolution. A detailed description of the HCR and HSRL Specifications, NCAR/EOL data processing and corrections are given in data readme file at https://data.eol.ucar.edu/file/download/53A7DB6F02CE2/readme_HCR_HSRL_SOCRATES_v3.2.pdf.

3.0 Data Collection and Processing

In brief, this dataset focuses on periods when the radar and lidar are zenith-pointing and when the precipitation falling from the clouds is in the liquid phase, as determined by the lidar particle linear depolarization ratio (PLDR). Once the precipitation phase is determined, two different retrieval techniques are used to derive the liquid precipitation properties: (1) a radar reflectivity-velocity retrieval (ZV retrieval) following Mace et al. (2002) and Marchand et al. (2007); (2) a radar-lidar retrieval

following O'Connor et al. (2005). The detailed information of the retrieval process can be found in Kang et al. (2024).

4.0 Data file structure and content

The dataset is produced in the Network Common Data Format (NetCDF). Each file is one zenith-pointing segment. Two classes of files represent the data from two different retrievals:

zv.RF##.B.YYYYMMDD_hhmmss_to_YYYYMMDD_hhmmss_v1.0.nc rl.RF##.B.YYYYMMDD_hhmmss_to_YYYYMMDD_hhmmss_v1.0.nc

where *zv* and *rl* represent radar reflectivity-velocity retrieval and radar-lidar retrieval, respectively; *RF##* represent the flight number, and *YYYYMMDD_hhmmss_to_YYYYMMDD_hhmmss* represent the start and end UTC time of this segment.

The Tables below gives the information on variables in the files:

Table.1 Variables in the radar-lidar retrieval files

Variable	Dimensions	Unit	Description
time	dim_time	S	time in seconds since the segment starts
height	dim_time,	m	height relative to the ground
	dim_height		
latitude	dim_time	degree	latitude of the aircraft
longitude	dim_time	degree	longitude of the aircraft
altitude	dim_time	m	altitude of radar
cloud_base	dim_time	m	cloud base height estimates
HCR_DBZ	dim_time,	dBZ	reflectivity factor
	dim_height		
HCR_WIDTH	dim_time,	$m s^{-1}$	doppler spectral width corrected for
	dim_height		turbulence and aircraft motion
HSRL_Beta	dim_time,	$m^{-1} sr^{-1}$	lidar backscatter coefficient
	dim_height		
HSRL_PLDR	dim_time,	unitless	HSRL Particle Linear Depolarization Ratio
	dim_height		
PLDR_bc_med_ts	dim_time	unitless	median HSRL Particle Linear Depolarization
			Ratio below cloud-base
D0	dim_time,	μm	median equivolumetric diameter
	dim_height		
mu	dim_time,	unitless	median equivolumetric diameter
	dim_height		
rain_rate	dim_time,	mm hr ⁻¹	rain rate
	dim_height	2	
N_precip	dim_time,	# m ⁻³	precipitation number concentration
	dim_height	2	
LWC_precip	dim_time,	g m ⁻³	precipitation liquid water content
	dim_height		
D precip	dim time,	μm	Precipitation LWC-weighted mean diameter
p_provib	dim height	P111	

sigma_precip	dim_time,	μm	Precipitation liquid water content weighted
	dim height		width

Table. 2 Variables in the ZV retrieval files

Variable	Dimensions	Unit	Description
time	dim_time	S	time in seconds since the segment starts
height	dim_time,	m	height relative to the ground
	dim_height		
latitude	dim_time	degree	latitude of the aircraft
longitude	dim_time	degree	longitude of the aircraft
altitude	dim_time	m	altitude of radar
cloud_base	dim_time	m	cloud base height estimates
HCR_DBZ	dim_time,	dBZ	reflectivity factor
	dim_height		
HCR_VEL_c	dim_time,	m s ⁻¹	corrected doppler velocity
	dim_height		
HSRL_PLDR	dim_time,	unitless	HSRL Particle Linear Depolarization Ratio
	dim_height		
PLDR_bc_med_ts	dim_time	unitless	median HSRL Particle Linear Depolarization
			Ratio below cloud-base
D0	dim_time,	μm	median equivolumetric diameter
	dim_height		
vt	dim_time,	m s ⁻¹	reflectivity-weighted the terminal fall
	dim_height		velocity
rain_rate	dim_time,	mm hr ⁻¹	rain rate
	dim_height		
N_precip	dim_time,	# m ⁻³	precipitation number concentration
	dim_height		
LWC_precip	dim_time,	g m ⁻³	precipitation liquid water content
	dim_height		
D precip	dim time,	μm	Precipitation LWC-weighted mean diameter
I	dim height	·	
sigma_precip	dim_time,	μm	Precipitation liquid water content weighted
	dim_height		width

5.0 References

- Eloranta, E. E. (2005). High Spectral Resolution Lidar. In C. Weitkamp (Ed.), *Lidar: Range-Resolved* Optical Remote Sensing of the Atmosphere (pp. 143–163). New York, NY: Springer.
- Kang, L., Marchand, R. T., & Wood, R. (*under review*) Stratocumulus Precipitation Properties over the Southern Ocean Observed from Aircraft during the SOCRATES campaign. *Journal of Geophysical Research: Atmospheres*

- Mace, G. G., Heymsfield, A. J., & Poellot, M. R. (2002). On retrieving the microphysical properties of cirrus clouds using the moments of the millimeter-wavelength Doppler spectrum. Journal of Geophysical Research: Atmospheres, 107(D24), AAC 22-1-AAC 22-26.
- Marchand, R. T., Ackerman, T. P., & Moroney, C. (2007). An assessment of Multiangle Imaging Spectroradiometer (MISR) stereo-derived cloud top heights and cloud top winds using groundbased radar, lidar, and microwave radiometers. Journal of Geophysical Research: Atmospheres, 112(D6).
- McFarquhar, G. M., Bretherton, C. S., Marchand, R., Protat, A., DeMott, P. J., Alexander, S. P., et al. (2021). Observations of Clouds, Aerosols, Precipitation, and Surface Radiation over the Southern Ocean: An Overview of CAPRICORN, MARCUS, MICRE, and SOCRATES. *Bulletin of the American Meteorological Society*, 102(4), E894–E928.
- NCAR/EOL HCR Team, NCAR/EOL HSRL Team. 2023. SOCRATES: NCAR HCR radar and HSRL lidar moments data. Version 3.1. UCAR/NCAR Earth Observing Laboratory.
- O'Connor, E. J., Hogan, R. J., & Illingworth, A. J. (2005). Retrieving Stratocumulus Drizzle Parameters Using Doppler Radar and Lidar. Journal of Applied Meteorology and Climatology, 44(1), 14–27.
- Vivekanandan, J., Ellis, S., Tsai, P., Loew, E., Lee, W.-C., Emmett, J., et al. (2015). A wing pod-based millimeter wavelength airborne cloud radar. *Geoscientific Instrumentation, Methods and Data Systems*, 4(2), 161–176.